

Problem sheet 6

Solutions has to be uploaded into Moodle: https://lernen.min.uni-hamburg.de/mod/assign/view.php?id=61456 until 20:00, June 29.

1. [3 points] Show that the SDE

$$dX_t = (|X_t|^{\alpha} \wedge 1)dB_t, \quad X_0 = x_0,$$

has a pathwise unique strong solution for every $\alpha \geq \frac{1}{2}$.

- 2. [3+2+3 points]
 - (a) Let $W_t, t \ge 1$, be a *n*-dimensional Brownian motion. Define $X_t = ||W_t||^2, t \ge 0$. Show that the process X is a weak solution to the SDE

$$dX_t = ndt + 2\sqrt{X_t}dB_t, \quad X_0 = 0.$$
(1)

- (b) Show that SDE (1) has a pathwise unique strong solution for every $n \in \mathbb{N}$.
- (c) Let Y_t be a solution¹ to

$$dY_t = \delta dt + 2\sqrt{Y_t}dB_t, \quad Y_0 = y_0$$

for some $y_0 > 0$ and $\delta \ge 2$. Prove that

$$\mathbb{P} \{ \exists t \ge 0 : Y_t = 0 \} = 0.$$

Hint: Use the fact that a two-dimensional Brownian motion never heat a fixed point, i.e

$$\mathbb{P}\left\{\exists t \ge 0 : B_t = a\right\} = 0$$

for every $a \in \mathbb{R}^2 \setminus \{0\}$.

- 3. [5 points] Let $L_t^{X,0}$ denote the (semimartingale) local time of X at 0, where X is a continuous semimartingale in \mathbb{R} . Let also B_t , $t \ge 0$, be an one dimensional Brownian motion. Show that
 - (a) $|B_t|, t \ge 0$, is a continuous semimartingale;
 - (b) $L^{|B|,0} = 2L^{B,0}$.

Hint: Use the fact that $\int_0^\infty \mathbb{I}_{\{X_t \neq 0\}} dL_t^{X,0} = 0$ a.s., which we will discuss next time.

¹This equation has a pathwise unique strong solution for every $\delta \ge 1$. Its solution is called δ -dimensional squared Bessel process