Problem sheet 5

Solutions has to be uploaded into Moodle:
https://lernen. min. uni-hamburg. de/mod/assign/view. php? id=59752
until 20:00, June 15.

1. [4 points] A solution to the following one-dimensional SDE

$$
d X_{t}=-\theta X_{t} d t+\sigma d B_{t}, \quad X_{0}=x_{0}
$$

is called the Ornstein-Uhlenbeck process, where $\theta>0, \sigma>0$ are constants and B is an one-dimensional Brownian motion. Show that the Ornstein-Uhlenbeck process X is a strong Markov process whose transition distributions $P\left(t, x_{0}, \cdot\right)$ coincides with normal distribution with expectation $x_{0} e^{-\theta t}$ and variance $\frac{\sigma^{2}}{2 \theta}\left(1-e^{-2 \theta t}\right)$.

Hint: Show that the transition density $p(t, x, y), y \in \mathbb{R}$, satisfies the corresponding Kolmogorov forward PDE in t, x.
2. [4+3 points] (Disintegration of probability measures)
(a) Let P be a probability measure on the product $E \times S$ of complete separable metric spaces endowed with the Borel σ-algebra $\mathcal{B}(E \times S)$. Let μ be the marginal distribution of P on the first coordinate, that is,

$$
\mu(A)=P(A \times S), \quad A \in \mathcal{B}(E)
$$

Show that there exists a family $Q(x ; A), x \in E, A \in \mathcal{B}(S)$, such that
i. for every $A \in \mathcal{B}(S)$ the map $x \mapsto Q(x ; A)$ is measurable;
ii. for every $x \in E Q(x ; \cdot)$ is a measure on S;
iii. for every $F \in \mathcal{B}(E)$ and $A \in \mathcal{B}(S)$

$$
P(F \times A)=\int_{F} Q(x ; A) \mu(d x) .
$$

Hint: Use the theorem about the existence of regular conditional probability
(b) Let E, S be complete separable metric spaces and ξ, η be random variables taking values in E, S, respectively. Let also P be the distribution of (ξ, η). Construct the family Q from (a) in the following cases:
(i) ξ, η are independent;
(ii) $\eta=f(\xi)$, where $f: E \rightarrow S$ is a Borel measurable map;
(iii) $\eta=f\left(\xi, \xi_{1}\right)$, where ξ_{1} is an E-valued random variable independent of ξ and $f: E^{2} \rightarrow S$ is a Borel measurable map.
3. [4 points] (Coupling of random vectors) Let E and S be complete separable metric spaces. Consider $E \times S$-valued random vectors $\left(\xi_{1}, \eta_{1}\right)$ and $\left(\xi_{2}, \eta_{2}\right)$, defined probably on different probability spaces, such that Law $\eta_{1}=$ Law η_{2}. Construct a coupling $\left(\zeta_{1}, \zeta_{2}, \eta\right)$ (on a probability space) such that $\operatorname{Law}\left(\zeta_{1}, \eta\right)=\operatorname{Law}\left(\xi_{1}, \eta_{1}\right)$ and $\operatorname{Law}\left(\zeta_{2}, \eta\right)=\operatorname{Law}\left(\xi_{2}, \eta_{2}\right)$.

Hint: Construct the coupling $\left(\zeta_{1}, \zeta_{2}, \eta\right)$ on the canonical probability space using the disintegration approach from Exercise 2.

