

Problem sheet 4

Solutions has to be uploaded into Moodle: https://lernen.min.uni-hamburg.de/mod/assign/view.php?id=58192 until 20:00, June 1.

1. (a) [3+2 points] Let the coefficients b, σ be bounded on \mathbb{R}^n and assume that the martingale problem associated with a second order differential operator \mathcal{A} is well posed. Suppose that there exists a bounded function $f : \mathbb{R}^n \to [0, \infty)$ from $\mathcal{C}^2(\mathbb{R}^n)$ such that

$$\mathcal{A}f(x) + \lambda f(x) \le c, \quad x \in \mathbb{R}^n,$$

holds for some $\lambda > 0$ and $c \ge 0$. Show that for any solution $X_t, t \ge 0$, to the corresponding martingale problem started at $x_0 \in \mathbb{R}^n$ one has

$$\mathbb{E} f(X_t) \le f(x_0)e^{-\lambda t} + \frac{c}{\lambda}(1 - e^{-\lambda t}), \quad t \ge 0.$$

(b) Get the same estimate in the case b, σ are locally bounded and f is any function (not necessarily bounded) from $\mathcal{C}^2(\mathbb{R}^n)$.

2. [2+2 points]

- (a) Let $(\Omega, \mathcal{F}, \mathbb{P}) = ([0, 1], \mathcal{B}([0, 1]), \lambda)$, where λ denotes the Lebesgue measure on [0, 1]. Find the regular conditional probability for \mathcal{F} given $\mathcal{S} = \sigma\left(\left\{\left[0, \frac{1}{3}\right), \left[\frac{1}{3}, 1\right]\right\}\right)$.
- (b) Let B_t , $t \ge 0$, be an one-dimensional Brownian motion and ξ a random variable on \mathbb{R} independent of B. We define the Brownian motion

$$X_t := \xi + B_t, \quad t \ge 0,$$

started at ξ . Let $(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{\mathbb{P}}) = (\mathcal{C}([0, \infty), \mathbb{R}), \mathcal{B}(\mathcal{C}([0, \infty), \mathbb{R})), \mathbb{P}^X)$, where \mathbb{P}^X denotes the distribution of X. Find the regular conditional probability of $\tilde{\mathcal{F}}$ given ξ .

Hint: Use the analog of Fubini's theorem for conditional expectations: for two independent random variables η and ξ taking values in complete separable metric spaces E and S, respectively, and any bounded measurable function $f: E \times S \to \mathbb{R}$ one has

$$\mathbb{E}\left(f(\eta,\xi)|\xi\right) = \mathbb{E}\left(f(\eta,y)\right)\Big|_{y=\xi},$$

- 3. [2+3 points] Let $B_t, t \ge 0$, be a one-dimensional Brownian motion defined on the canonical probability space $(\Omega, \mathcal{F}, \mathbb{P}) = (\mathcal{C}([0, 1], \mathbb{R}), \mathcal{B}(\mathcal{C}([0, 1], \mathbb{R})), \mathbb{P}^B)$, where \mathbb{P}^B denotes the distribution of B.
 - (a) Show that for every $y \in \mathbb{R}$, the process

$$B_t^y := B_t - t(B_1 - y), \quad t \in [0, 1],$$

is independent of B_1 .

Hint: Use the fact that two Gaussian vectors are independent if and only if their covariation equals zero

(b) Let $Q(y, \cdot)$ denotes the law of B^y on $\mathcal{C}([0, 1], \mathbb{R})$, i.e.

$$Q(y, A) := \mathbb{P} \{ B^y \in A \}, \quad A \in \mathcal{B}(\mathcal{C}([0, 1], \mathbb{R})).$$

Show that Q is a regular conditional probability for \mathcal{F} given B_1 . In particular, this result implies that

$$\mathbb{P}\left\{(B_t)_{t\in[0,1]}\in A|B_1=y\right\} = \mathbb{P}\left\{(B_t^y)_{t\in[0,1]}\in A\right\}, \quad A\in\mathcal{B}(\mathcal{C}([0,1],\mathbb{R})).$$

4. [3 bonus points] Let $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \geq 0}, \mathbb{P})$ be a filtered probability space and τ be a stopping time. Show that

$$\mathcal{F}_{\tau} := \{ A \in \mathcal{F} : A \cap \{ \tau \le t \} \in \mathcal{F}_t \text{ for all } t \ge 0 \}$$

is a σ -algebra.