Problem sheet 4

Solutions has to be uploaded into Moodle:
https://lernen. min. uni-hamburg. de/mod/assign/view. php? id=58192
until 20:00, June 1.

1. (a) $[\mathbf{3 + 2}$ points $]$ Let the coefficients b, σ be bounded on \mathbb{R}^{n} and assume that the martingale problem associated with a second order differential operator \mathcal{A} is well posed. Suppose that there exists a bounded function $f: \mathbb{R}^{n} \rightarrow[0, \infty)$ from $\mathcal{C}^{2}\left(\mathbb{R}^{n}\right)$ such that

$$
\mathcal{A} f(x)+\lambda f(x) \leq c, \quad x \in \mathbb{R}^{n},
$$

holds for some $\lambda>0$ and $c \geq 0$. Show that for any solution $X_{t}, t \geq 0$, to the corresponding martingale problem started at $x_{0} \in \mathbb{R}^{n}$ one has

$$
\mathbb{E} f\left(X_{t}\right) \leq f\left(x_{0}\right) e^{-\lambda t}+\frac{c}{\lambda}\left(1-e^{-\lambda t}\right), \quad t \geq 0
$$

(b) Get the same estimate in the case b, σ are locally bounded and f is any function (not necessarily bounded) from $\mathcal{C}^{2}\left(\mathbb{R}^{n}\right)$.

2. [2+2 points]

(a) Let $(\Omega, \mathcal{F}, \mathbb{P})=([0,1], \mathcal{B}([0,1]), \lambda)$, where λ denotes the Lebesgue measure on $[0,1]$. Find the regular conditional probability for \mathcal{F} given $\mathcal{S}=\sigma\left(\left\{\left[0, \frac{1}{3}\right),\left[\frac{1}{3}, 1\right]\right\}\right)$.
(b) Let $B_{t}, t \geq 0$, be an one-dimensional Brownian motion and ξ a random variable on \mathbb{R} independent of B. We define the Brownian motion

$$
X_{t}:=\xi+B_{t}, \quad t \geq 0,
$$

started at ξ. Let $(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{\mathbb{P}})=\left(\mathcal{C}([0, \infty), \mathbb{R}), \mathcal{B}(\mathcal{C}([0, \infty), \mathbb{R})), \mathbb{P}^{X}\right)$, where \mathbb{P}^{X} denotes the distribution of X. Find the regular conditional probability of $\tilde{\mathcal{F}}$ given ξ.

Hint: Use the analog of Fubini's theorem for conditional expectations: for two independent random variables η and ξ taking values in complete separable metric spaces E and S, respectively, and any bounded measurable function $f: E \times S \rightarrow \mathbb{R}$ one has

$$
\mathbb{E}(f(\eta, \xi) \mid \xi)=\left.\mathbb{E}(f(\eta, y))\right|_{y=\xi}
$$

3. $[\mathbf{2}+\mathbf{3}$ points $]$ Let $B_{t}, t \geq 0$, be a one-dimensional Brownian motion defined on the canonical probability space $(\Omega, \mathcal{F}, \mathbb{P})=\left(\mathcal{C}([0,1], \mathbb{R}), \mathcal{B}(\mathcal{C}([0,1], \mathbb{R})), \mathbb{P}^{B}\right)$, where \mathbb{P}^{B} denotes the distribution of B.
(a) Show that for every $y \in \mathbb{R}$, the process

$$
B_{t}^{y}:=B_{t}-t\left(B_{1}-y\right), \quad t \in[0,1],
$$

is independent of B_{1}.
Hint: Use the fact that two Gaussian vectors are independent if and only if their covariation equals zero
(b) Let $Q(y, \cdot)$ denotes the law of B^{y} on $\mathcal{C}([0,1], \mathbb{R})$, i.e.

$$
Q(y, A):=\mathbb{P}\left\{B^{y} \in A\right\}, \quad A \in \mathcal{B}(\mathcal{C}([0,1], \mathbb{R}))
$$

Show that Q is a regular conditional probability for \mathcal{F} given B_{1}. In particular, this result implies that

$$
\mathbb{P}\left\{\left(B_{t}\right)_{t \in[0,1]} \in A \mid B_{1}=y\right\}=\mathbb{P}\left\{\left(B_{t}^{y}\right)_{t \in[0,1]} \in A\right\}, \quad A \in \mathcal{B}(\mathcal{C}([0,1], \mathbb{R})) .
$$

4. [3 bonus points] Let $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right)_{t \geq 0}, \mathbb{P}\right)$ be a filtered probability space and τ be a stopping time. Show that

$$
\mathcal{F}_{\tau}:=\left\{A \in \mathcal{F}: A \cap\{\tau \leq t\} \in \mathcal{F}_{t} \text { for all } t \geq 0\right\}
$$

is a σ-algebra.

