

Problem sheet 3

Solutions has to be uploaded into Moodle: https://lernen.min.uni-hamburg.de/mod/assign/view.php?id=56488 until 20:00, May 18.

1. [2+2+3+3 points] (Continuous Branching Process) Consider a family of diffusions $X_t(x)$, $t \ge 0, x > 0$ satisfying the SDE¹

$$dX_t(x) = \alpha X_t(x)dt + \sqrt{\beta X_t(x)}dB_t, \quad X_0(x) = x,$$

where $\alpha \in \mathbb{R}$ and $\beta > 0$. Let (\tilde{X}, \tilde{B}) be an independent copy of (X, B) and let $Y_t(x, y) = X_t(x) + \tilde{X}_t(y)$ for $t \ge 0, x, y > 0$.

(a) (Branching) Compute the SDE satisfied by Y and prove that $Y_t(x, y), t \ge 0$, has the same law of $X_t(x+y), t \ge 0$.

 ${\it Hint:}$ Use martingale caracterization of weak solutions.

(b) (Duality) Show that this implies that there exists a function $u : [0, \infty) \times (0, \infty) \to [0, \infty)$ such that

$$\mathbb{E} e^{-\lambda X_t(x)} = e^{-xu(t,\lambda)}, \quad x > 0, \quad \lambda > 0, \tag{1}$$

if we assume that the map $x \mapsto \mathbb{E} e^{-\lambda X_t(x)}$ is continuous.

- (c) Assume that $u: [0, \infty) \times (0, \infty) \to [0, \infty)$ is differentiable with respect to its first parameter. Apply Ito formula to $s \mapsto G_s := e^{-u(t-s,\lambda)X_s(x)}$ and determine which differential equation u should satisfy in order for G to be a local martingale. Prove that in this case equality (1) is satisfied (in particular, if a solution of the equation exists then it is unique).
- (d) *(Extinction probability)* Find the explicit solution u for the differential equation and using equality (1) prove that if $\alpha = 0$ then

$$\mathbb{P} \{X_t(x) = 0\} = e^{-\frac{2x}{\beta t}}, \quad x, t > 0.$$

- 2. [2 points] Let $\{\xi_k, k \ge 1\}$ be a family of random variables in \mathbb{R}^d such that $\sup_{k \in \mathbb{N}} \mathbb{E} \|\xi_k\| < \infty$. Show that this family is tight.
- 3. [3 points] Let $\{(X_n^1, \ldots, X_n^d), n \ge 1\}$ be a family of random vectors in \mathbb{R}^d . Show that it is tight if and only if for each $k \in [d]$ the family $\{X_n^k, n \ge 1\}$ is tight in \mathbb{R} .

¹This equation has a unique (pathwise and in law) strong solution