Problem sheet 1

Solutions has to be uploaded into Moodle:
https://lernen. min. uni-hamburg. de/mod/assign/view. php? id=51047
until 20:00, April 20.

1. Let $B_{t}, t \geq 0$, be a one dimensional Brownian motion.
(a) Show that it is a continuous martingale with quadratic variation $\langle B\rangle_{t}=t$.
(b) Show that $\int_{0}^{t} \mathbb{I}_{\left\{B_{s}=0\right\}} d s=0$ a.s.

HW1 [2 points] Let $M_{t}, t \geq 0$, be a continuous local martingale and $S \leq T$ be two stopping times. Prove that $\langle M\rangle_{T}=\langle M\rangle_{S}<\infty$ a.s. implies $M_{t}=M_{S}$ for all $t \in[S, T]$ a.s.
Hint: consider the continuous local martingale $N_{t}=\int_{0}^{t} \mathbb{I}_{(S, T]}(s) d M_{s}$
HW2 [2 points] Let M_{t} be a non-negative continuous $\left(\mathcal{F}_{t}\right)$-local martingale. Define

$$
\tau:=\inf \left\{t \geq 0: M_{t}=0\right\}
$$

Show that $\mathbb{P}\left\{M_{t}=0, t \geq \tau\right\}=1$.
2. Let $B_{t}, t \geq 0$, be a one dimensional Brownian motion. Find the SDEs satisfied by the following processes

HW3 [1 points] $X_{t}=\frac{B_{t}}{1+t}, t \geq 0$;
HW4 [3 points] $X_{t}=x_{0} e^{-a t}+\sigma \int_{0}^{t} e^{-a(t-s)} d B_{s}, t \geq 0$, where $x_{0} \in \mathbb{R}, a>0$ and $\sigma>0$ are fixed constants.
(a) $\left(X_{t}, Y_{t}\right)=\left(a \cos B_{t}, b \sin B_{t}\right), t \geq 0$, where $a, b \in \mathbb{R}$ with $a b \neq 0$.
3. Consider the following SDE

$$
d X_{t}=b\left(t, X_{t}\right) d t+\sigma X_{t} d B_{t}, \quad X_{0}=x_{0}
$$

where b is a continuous deterministic function and $\sigma>0$.
(a) Find an explicit solution Z in the case $b=0$ and $x_{0}=1$.

HW5 [3 points] Use the Ansatz $X_{t}=C_{t} Z_{t}$ to show that X solves the SDE provided C solves an ODE with random coefficients.
HW6 [3 points] Apply this method to solve the SDE

$$
d X_{t}=\frac{1}{X_{t}} d t+\sigma X_{t} d B_{t}, \quad X_{0}=x
$$

where $\sigma>0$ is a constant.
4. [4 bonus points] Show that the equation

$$
d X_{t}=\mathbb{I}_{\left\{X_{t} \neq 0\right\}} d B_{t}, \quad X_{0}=0
$$

has a strong solution and a weak solution (which is not a strong solution). Show that the uniqueness in law and the pathwise uniqueness fail.

