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1 Main Classes of Sets (Lecture Notes)

1.1 Jordan Measure

Let A be a subset of R?. How can we define the volume of A? If A is a rectangle:

A= [al,bl] X oo X [ad,bd] = {ac = (xk)Z:l rap Lo < bk, k= 1,...,77,},
then .
V(A) =[]0k — ax).
k=1
What if A is more general as in Figure 1.17
e

SRS

Figure 1.1: A C R?

If lim V(A,) = lim V(A%), then we can say that the volume of A exists and is

n—oo n—o0

V(A) = lim V(AY).

n—oo

Definition 1.1 V(A) is called the Jordan measure of A.

Remark 1.2 The Jordan measure was defined in Mathematics 3, Lecture 2 as
V) =) = [Law)do = [ da.

where I D A is a rectangle and


http://www.math.uni-leipzig.de/~konarovskyi/teaching/2020/Math4/pdf/notes/Math4Note01.pdf

So, we can compute the volume of more general sets, but does this definition satisfy “intuitive” properties

of volume? For example, let A and B be Jordan measurable.
1. AU B is Jordan measurable and V(AUB) =V (A)+V(B)if AnNB =10
2. A\ B is Jordan measurable and V(A\ B) =V (A4) -V (B)if BC A
3. AN B is Jordan measurable

Let A1, Ag,... be Jordan measurable. Then
oo
UAdn={e:3n>1,2¢€A4,}
n=1

is not Jordan measurable in general.

Example 1.3 Take A = [0,1]*> N Q?, which is the set of all points from [0,1]* with rational coefficients.
We know that A is countable, so A = {x1,x2,...}. Moreover, A is not Jordan measurable. However,

one point sets A, = {x,} are Jordan measurable and V(A,) = 0.
We find that V(A4,) =0 but V(A) =V (U,~; A,) does not exist as we cannot define it. Intuitively
V(A) <D V(A) =0=V(4)=0.
n=1

This demonstrates that the Jordan measure is not well-defined for some sets which intuitively should
have volume. Our goal is to define a volume, or measure in general, for a wider class of sets, which would
satisfy the “intuitive” or expected properties. In particular, we expect that if we can define the measure
for sets Ay, Aa, -+~ C R?, then the volume must exist for any set obtained from A;, As, ... by a countable

number of operations like N, U, \, and taking the complement.

1.2 Definitions of Main Classes of Sets

In this section, we will describe the classes of sets for which we can define a measure. Let X be a fixed,

non-empty set. We denote by 2% the family of all subsets of X.
Definition 1.4
o A non-empty class of sets H C 2% is called a semiring if
1. ABeH=ANBE€H,

2. A\BEH=3n€eN,3C,....C, € H,C;NC,=0,j#k: A\B= | Cp.
k=1

o A class H is called a semialgebra if H is a semiring and X € H.
Remark 1.5 A semiring usually contains “simple” sets where a measure can be easily defined.
Example 1.6 Let X = R.

1. Hy ={[a,b): —c0o < a < b<oo}U{D} is a semiring.

2. Hy ={la,b): —00 < a <b< oo}U{D,R}U{(—00,b) : b < oo} U{[a,0) : —o0 < a} is a semialgebra.



Example 1.7 Let X = R

1. Hy ={[a1,b1) X [az,b2) : —00 < a1 < by < 00, —00 < ag < by < oo} U {0} is a semiring.

Ap—-=—-=—=——-—- -~ n
Ch |
4

Cs B |Cs :
I

I

Cy |
I

J

Figure 1.2

In this case A\ B =C; UCyU C3UCy.
2. Hy can be defined in the same way as in Example 1.6 and it would be a semialgebra.
One can see that the measure can be easily defined for sets like H; from Examples 1.6 and 1.7.
Definition 1.8

o A non-empty class H C 2% is called a ring if

1. ABcH=AUBcH,
2. ABeH= A\BeH.
o A class H is said to be an algebra if H is a ring and X € H.
Exercise 1.9 Let H be a ring (algebra). Show that H is a semiring (semialgebra, respectively).
Exercise 1.10 Let H be a ring. Show that

1.0 e H,

2. ABeH=ANBeH,

n n
3. Ar,..., AneH=|JAveH (A eH.
k=1 k=1
Proposition 1.11 A non-empty class H is an algebra if and only if

1. ABeH=AUBeH

2. AcH=A“=X\AcH

Proof: Assume that H is an algebra. Then the first condition is trivially fulfilled by definition. We know
that A, X € H. Then by Definition 1.8 we have the second condition: A° =X\ A € H. Now we assume
the converse. The first condition of Definition 1.8 is immediately satisfied. To check the second, take
A, B € H. We have

A\B=ANB°=(ANB)*“ = (A°UB)".

Since we know that A° € H, then A\ B € H. Remark that X = AU A° € H. O



2 Generated Classes of Sets, The Borel o-Algebra (Lecture Notes)

2.1 o-Rings and o-Algebras
Let X be a fixed set and let 2% denote a class of all subsets of X. We recall that H C 2% is
1. a semiring if for all A, B € H
(a) ANBe H

(b) A\ B = UCk,WhereCjﬂCk:@forj%k:, and Cp, € Hfork=1,...,n
k=1

2. a semialgebra if it is a semiring and if X € H
3. aring if for all A,Be€ H
(a) AUBe H
(b)y A\Be H
(a ring is closed with respect to a finite number of operations N, U, \)
4. an algebra if it is a ring and if X € H (an algebra is also closed with respect to the complement)
Definition 2.1

o A non-empty class of sets H C 2% is called a o-ring if

oo
1. Ay, Ag,---€H= | J A, € H,
n=1

2. ABeH=A\BeH.
o A class H is called a o-algebra if H is a o-ring and X € H.

Proposition 2.2 A non-empty class H is a o-algebra if and only if

1. XeH

2. Ay, Ay, € H= UAneH

n=1

3. Aec H=A°c H
Proof: The proof is similar to the proof of Proposition 1.11. O

Example 2.3 Let X = R? and let H = {A C R? : Ais Jordan measurable and pu(A) < oo}. We know that
if A,B € H, that is, if A, B are Jordan measurable, then AU B and A\ B are also Jordan measurable,
and p(AU B) < oo, u(A\ B) < co. Hence AUB, A\ B € H. This implies that H is a ring. However,
note that H is not a o-ring. Indeed, Q* = UnZ, A, is a countably infinite union of Jordan measurable
single point sets with p(Ay) = 0, but Q? is not Jordan measurable. Additionally, H is neither an algebra
nor o-algebra, since u(R?) ¢ co = R?> ¢ H.

Example 2.4 Let X = [0,1]* and let H = {A C [0,1)* : Ais Jordan measurable}. Then H is an algebra

but not a o-algebra.

[oe)
Exercise 2.5 Let H be a o-ring. Prove that A1, As,--- € H = ﬂ A, € H.

n=1


http://www.math.uni-leipzig.de/~konarovskyi/teaching/2020/Math4/pdf/notes/Math4Note02.pdf

Remark 2.6
o A o-ring is a class closed with respect to a countable number of operations N, U, \.

e A o-algebra is additionally closed with respect to taking the complement.

H: semiring

H: o-ring

e A\B=|JC Cre Hand ChNCy =0,k #j

E k=1

= ()A€ H 0€H ANBE H, AUBc H

n=1

n n
S AnBeH, | JAveH, (AveH 0cH

k=1 k=1

H: semialgebra

H: algebra

H: o-algebra

e AUBeH e ANBeH

e A\B=JC, CheHand CxNCy =0,k #j
k=1

e XcH

e A\BeH

= ()A€ H 0cH ANB e H, AUBc H

e AN\BEH =1 e XeH

= AnNBeH, | JAveH, ((AveH 0 H
k=1 k=1

=A°cH

Figure 2.1

2.2 Generated Classes of Sets

Let H be a class of subsets of X.
Definition 2.7

e The smallest o-algebra which contains the class H is called the (smallest) o-algebra generated by
H and is denoted by o(H).

e The same definition is given for the ring r(H), the algebra a(H), and the o-ring or(H) generated
by H.



Example 2.8 Take X = {a,b,c} and H = {a,b}.

1. Then o(H) = {0, X, {a, b}, {c}}. There are other o-algebras containing H like 2%, but they are not
the smallest. Remark that o(H) = a(H) in this case.

2. Then or(H) ={0,{a,b}} = r(H).
Theorem 2.9 The o-algebra generated by H always exists.

Proof: We construct

o(H)= (] A,

HCA

where A is a o-algebra containing H. In other words, o(H) is the class of all sets A such that A belongs
to every o-algebra containing H. Then o(H) is a o-algebra. Indeed, if Ay, Ag,--- € o(H), then they
belong to every o-algebra containing H. That is, if A is a o-algebra containing H, then A, As,--- € A.
Consequently [ J7; A,, € A for all o-algebra A containing H. Hence |J;2; 4, € o(H). Similarly, we can
show that A € 0(H) = A° € 0(H), and X € o(H). Proposition 2.2 implies that o(H) is a o-algebra and

it is trivial that it is the smallest one. O
Remark 2.10 The same statement is true for a(H), r(H), and or(H).

Theorem 2.11 Let H be a semiring. Then

r(H)—{UAk:Al,...,AneH,n>l}.
k=1

Corollary 2.12 Let H be a semialgebra. Then

a(H):{UAk:Al,...,AnEH,n21}.
k=1
Example 2.13 If H = {[a,b) : —00 < a < b < oo} U {0}, then
T‘(H):{A: U[ak,bk):—oo<ak<bk<oo,kzl,...,n,n)l}.

k=1

Exercise 2.14 Let Hy C Hy C 0(Hy). Show that o(Hy) = o(Ha).

Solution:

We first remark that Hi C Hy = Hy, C o(H3), so o(Hs) is a o-algebra containing Hy. This implies
that o(Hy) C o(Hs), because o(Hy) is the smallest o-algebra which contains Hy. We also know that
Hy C o(Hy), so, similarly o(Hz) C o(Hy). Hence o(Hy) = o(Ha).

2.3 Borel Sets
In this section, we will assume that X = R%. Let
H = {[al,bl) X oo X [ad,bd) oo < ap < by < OO}U {@}

We know from Lecture 1 that H is a semiring.

Definition 2.15 The o-algebra B(RY) := o(H) is called the Borel o-algebra. Sets from B(RY) are called

Borel sets.



Remark 2.16 The Borel o-algebra contains all rectangles as well as all sets which can be obtained from

rectangles by a countable number of operations N,U,\, and taking the complement.
Example 2.17 Let X =R.

1. {a} € B(R),Va e R

o0

5. Any open set G C R belongs to B(R) as G = U (an, bn).
n=1

6. Any closed set F' belongs to B(R) since F is open.

Lemma 2.18 Let H = {A C R?: Aisopen}. Then o(H) = B(R?). In other words, the Borel o-algebra
is generated by all open subsets of R?.

Proof: By Example 2.17, 5), which is true for any dimension d, we have H ¢ B(R?). Hence o(H) C B(R%).

Next, we remark that

[al,bl) X oo X [ad,bd) = m ((a1 — %,bl) X oo X (ad— %,bd)) .
n=1
So H C o(H) = o(H) C o(H). Hence B(RY) = o(H). O



3 Properties of Measures (Lecture Notes)

3.1 Definition of a Measure and Basic Properties

Let X be a fundamental set and let H C 2% be a class of sets. The main object of measure theory is to
find functions
pi H s (—o0,0),

which satisfy certain requirements. Length, area, and volume are real examples of such functions. They
lead to a class of functions which satisfy certain properties. For example, the area is nonnegative and
the area of two nonintersecting sets equals the sum of the areas of those sets. We will generalize these
properties to an abstract situation. We will assume that p can take the value co. Moreover, we assume
that

©+o00o=00, a+oco=o00,Va€ER, a<oo.
Definition 3.1 A function p: H — (—00,00] is called
1. nonnegative if u(A) >0,VAe H

2. countably additive or o-additive if VA, € H, n > 1, where AjN A, =0, j # k, we have
K <U An) = Z,U(An)
n=1 n=1

Definition 3.2 A measure is a nonnegative and o-additive function on a semiring.

Remark 3.3 If i is a measure on H then p(0) = 0. Indeed, if we take A1 = A € H with u(A) < oo and
Ay=A3=---=0€ H, then

p(4) = (U An) =" 1(An) = 3 l0) + p(A) = p(0) = 0.
n=1 n=1 n=2

Remark 3.4 A measure is a also an additive function, that is, for all Ay € H, k = 1,...,n, where
AiNA,=0,j+#k, we have

I (U Ak:) = p(Ap).
k=1 k=1

This follows from Remark 3.3 because we can take Api1 = Apio =---=10. Then
1 (U Ak) =y (U Ak) =3 ulAr) =D pu(AR) + plAnpr) + - =Y n(Ap).
k=1 k=1 k=1 k=1 k=1

Example 3.5 Let X =N ={1,2,3,...} and let H = 2%. We set

number of elements of A if A isfinite,
n(A) =

oo if Aisinfinite.

Then, for example, 1({1,7,8,10}) = 4 and p({even numbers}) = co. It is easy to see that p is a measure.


http://www.math.uni-leipzig.de/~konarovskyi/teaching/2020/Math4/pdf/notes/Math4Note03.pdf

oo
Exercise 3.6 Let X = {z1,29,...,2p,...}, H= 2X. Take pp, =0, n > 1 such that an =1, and set

n=1

n(A) = ZE: pn, A € H.

niwy €A
For example, p({x1,x10,z100}) = p1 + P10 + p1oo. Prove that u is a measure on H.
Theorem 3.7 Let R be a ring and let p be a measure on R.
1. w is monotone on R, that is, for all A, B € R such that A C B we have u(A) < pu(B)
2. YA, B € R such that A C B, u(A) < oo we have u(B\ A) = pu(B) — (A)

3. YA,B € R such that p(A) < oo or u(B) < oo we have p(AU B) = u(A) + u(B) — p(AN B)

4.V Bi,...,Bn, A€ R such that A C U By we have
k=1

u(A) <Y n(By)
k=1

o0
5. u is o-semiadditive, that is, V A1, As,--- € R such that U A, € R we have

n=1

I < An> < u(An)
1

n= n=1
(we do not assume that A; N A, =0, j # k)
Proof:

1. Take A, B € R such that A C B. Then B=AU(B\ A) and AN (B\ A) = 0. By Remark 3.4
u(B) = u(A) + u(B\ 4) > u(A). (3.1)

2. If u(A) < oo, then (3.1) implies
u(B\ A) = u(B) — u(A).

3. If u(A) < oo or pu(B) < oo, then by 1) u(AN B) < co. We can write
AUB=(A\(ANnB))UB, (A\(ANB))NnB=40.
Then using Remark 3.4 and 2) we have
u(AUB) = u(A\ (AN B)) + u(B) = u(A) — u(AN B) + pu(B).

4. Remark that

n n—1
UBkZBlU(B2\Bl)U(B3\(BlUB2))U"'U<Bn\ UBk>~
k=1

k=1



Then using Remark 3.4 and 1) we have
n n k—1 n
pu(A) < p (U Bk) = ZM (Bk\ U Bl) < ) w(Br).
k=1 k=1
5. Using o-additivity and 1) we have

n=1
O]

Exercise 3.8 Let i1 be a measure on a o-ring H. Let A, € H be such that ;1(A,) =0, n > 1. Show that
[e.9]
“ (U An) =0.
n=1

Theorem 3.9 Let R be a ring on which i is a measure. Then for any increasing sequence A, € R, n > 1,
where Ay, C Apy1, Y1 =1, such that | J;2 | An € R, one has

p (U An> = lim pi(Ay).
n=1

3.2 Continuity of a Measure

Proof:

I. If there exists ng such that u(A,,) = oo, then for all n > ngy, we have u(4,) > u(A,,) = oo and
U An) > i(Any) = oo Hence (U2, Av) = lim p(A,) = oe.

II. If p(Ay) < 0o, Vn > 1, then

|

1C3

An) = p(A1U (A2 \ A1) U (A3\ A2) U U (A \ Ap1) U

= u(A1) + D p(Ag \ A1)
k=1
= p(Ar) + lim > (AR \ A1)
k=1
= p(Ar) + lim (p(Az) = p(Ar) + p(Az) = p(Az) + -+ + p(An) = p(An-1))
= lim wu(4,).

n—o0

10



Theorem 3.10 Let R be a ring and let u be a measure on R. Then for any decreasing sequence
A, € R, n>1, where A, D Apy1, Vn > 1, such that ;2 A € R and p(A;) < oo, one has

(ﬂ A ) = Ji (o)

Proof: We have
n=2

n(Ar) — p (

Remark 3.11 The condition u(A;) < oo is important in Theorem 3.10. Consider the measure from
Example 3.5. Let

I (Al () An> (U (A1 \ Ay ) = lim p(A1\ An) = lim (u(A1) = p(An))-

Hence

1 ¢

An> = (Al () An) = lim (p(A1) = p(An))-
n=2

O

A, ={n,n+1,...},n>1.

Obviously Ap, D Apy1, V=1, and (o1 A =0, so p((o—y An) = 0. But lim p(A,) = oco.

n—oo

3.3 Examples of Measures

Theorem 3.12 Let R be a ring of all Jordan measurable sets on RY and let u be the Jordan measure on

R. Then the function u is o-additive on R, that is, it is a measure according to Definition 3.2.

Corollary 3.13 Let X = R and take the semiring H = {(a,b] : —00 < a < b < oo} U{0}. Then the
function

M(a, b)) =b—a, A0)=0
18 a measure on H.

Theorem 3.14 Take X =R and H = {(a,b] : —00 < a < b < oc}U{D}. Let F : R — R be a nonnegative

right continuous function on R. Define
Ap((a,b]) = F(b) — F(a), a<b, Ap(0)=0.

Then the function is a measure on the semiring H.

11



4 Extensions of Measures (Lecture Notes)

4.1 Extending a Measure from a Semiring to a Generated Ring

Let X be a universal set and let H C 2. We recall that a nonnegative and o-additive function p defined

on a semiring H is called a measure, that is, a measure i : H — R must satisfy the following properties:

1. u(A)>0,YAe H

2. VA, € H,n>1, where A; N A, =0, j #k, we have p (U An) = ZM(A”)
n=1 n=1

In this section, we will consider the extension of a measure from a semiring H to a ring. Recall that

Theorem 2.11 implies that

T(H):{UAk:Al,...,AnEH,nZl}.
k=1

Example 4.1 Let H = {[a,b) : a < b} U{0}. Then

Y’(H) = {U[ak,bk) cap < bp,n> 1} U{@}

For example, take the set [2,5) U [7,10) U [9,11) = [2,5) U [7,11) € r(H).

Theorem 4.2 Let p be a measure on a semiring H. The measure p can be extended to a measure on

r(H) and this extension is unique. Moreover, if the measure u is finite, then the extension is finite.

Let r(H) 3 A = Up_, Ak, Ax € H. We first remark that there exists C1,Cs,...,Cy, € H such that
CiNnCyr=0,j+#kand

A= UAk: Uok. (4.1)
k=1 k=1

Then the described extension is given by
u(A) == u(Cy).

For example, take A = (J§_; Ay = A1 U (A3 \ A1) U (A3 )\ (41U As)) =C1 U UCs.

Figure 4.1
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4.2 QOuter Measure

Definition 4.3 A function \* : 2% — (=00, 00| is called an outer measure if

1. X*(0) =0, A* > 0 (nonnegativity)

2. VA A, €25 AcC U A, we have \*(A) < Z N (Ap) (o-semiadditivity)
n=1

n=1

Definition 4.4 Let i be a measure on a ring R C 2%. For any A € 2% (A C X) set

0if A =0,
p(A) = ¢ coif cover does not exist,

inf { 300 w(An) : Ap € Ryn > 1, A C Up2, An} otherwise.
Theorem 4.5 u* is an outer measure on R.
Proof: We only need to show that for any A, A, € 2X, n>1, AC U>2, Ay, we have
oo
pH(A) < it (An).
n=1

It is enough to show this only in the case pu*(A,) < oo, n > 1. Take € > 0. According to Definition 4.4,
for all A,, there exists By, € R, k > 1 such that

€

An € | Brns > 1(Brn) < 1 (An) + o

27’L
k=1 k=1
Hence A C ;2 An € U2y Upe Bin- By Definition 4.4
. oo o0 o0 . € oo .
A <0 i(Br) < D0 (W (A + 57) = Do (An) +e
n=1 k=1 n=1 n=1

Making € — 07, we have

o

HEA) <3 (An).
n=1
O]

Definition 4.6 The function p* from Definition 4.4 is the outer measure generated by the measure .

4.3 \*-Measurable Sets, Carathéodory Theorem

Definition 4.7 Let \* be an outer measure on 2~. A set A is called \*-measurable if V B C X we have
AN(B)=X(BNA)+ X (B\A). (4.2)
Remark 4.8 By the definition of an outer measure, the inequality
A(B) < A*(BNA)+ X(B\A)

is always true since B C (BN A)U (B\ A).

13



Theorem 4.9 (Carathéodory Theorem) Let \* be an outer measure on 2% and let S be the class of all

A*-measurable sets. Then S is a o-algebra and \* is a measure on S.

Definition 4.10 A measure u on a o-algebra H is called complete if YA € H such that u(A) = 0 we
have that any subset C' C A also belongs to H (in this case, i(C) = 0 by monotonicity).

Proposition 4.11 Under the assumptions of Theorem 4.9, the measure \* is complete on S.

Proof: Let A € S be such that \*(4) = 0 and C C A. We need to show that C € S. We will check (4.2)
for C. Let B € 2%. By the monotonicity of A*, we have

MN(B) = XN (BNC® =X (BNA®) =\ (BNA)+ X (BnA)=\(B),
since 0 < A" (BN A) < A*(A) = 0. Similarly, 0 < A*(BNC) < A*(A) =0, so

AN (B) = N (BN C®) = \(B\ C) + (BN Q).

4.4 u*-Measurability of Sets from a Ring

Let R be a ring and let u be a measure on R, with u* being the outer measure generated by u. Let S be

the class of all p*-measurable subsets of X. We also denote
(A) = p*(A), AesS.

By Theorem 4.9 § is a o-algebra and @ is a measure on S.
Theorem 4.12 We have R C S and [ is the extension of u from R to S, that is i(A) = u(A), VA € R.

Proof: We first show that VA € R, we have p*(A) = pu(A). Since AC AUQUOU--- = ;_; Ak, then

Now let A C |Jo2 | Ap, Ay € R, n > 1. Then

A={JMAnA,).
n=1
By the monotonicity and o-semiadditivity of u, we have
p(A) <D AN AR) <> p(An).
n=1 n=1
Hence p(A) < p*(A), and consequently p(A) = p*(A). Now we will show that R C S. Take A € R and
e > 0. We consider any set B C X, u*(B) < oo and show that

p(B) Z p (BNA)+p*(B\ A).

14



According to Definition 4.4, 34, € R, n > 1 such that B C |J;2; A, and pu*(B) +¢> > 7 | 1(Ay). So
o o
B)+e> > p(An) =Y (1(An N A) + p(An\ A)) = (BN A) + p*(B\ A),
= n=1

since BNAC U, A,NAand B\ AC J,2; An \ A. This along with Remark 4.8 implies that

iw(B) = p*(BNA) + ' (B\ A).

4.5 Lebesgue Measure

Let X =R and take the semiring H = {(a,b] : a < b} U {0}. Define
M0)=0, X((a,b]):=b—a,a<b.

Then, by Corollary 3.13, A is a measure on H. Additionally, by Theorem 4.2 there exists an extension
of A to the ring r(H) generated by H. Next, let S be the class of all A*-measurable subsets of X = R.
Theorem 4.9 implies that S is a o-algebra and \* is a measure on S. Moreover, Theorem 4.12 implies
that H C r(H) C S. Since B(R) is the smallest o-algebra which contains all sets from H, we have
B(R) C S. Hence, H C r(H) C B(R) C S. We also remark that A* is the extension of A from r(H) to S
by Theorem 4.12.

Definition 4.13

o Sets from S are called Lebesque measurable sets.

e The measure \* defined on S is called the Lebesgue measure on R.
Remark 4.14 The extension of A to B(R) is unique.

Remark 4.15 We can define the Lebesgue measure on RY by taking
H= {(al,bl] X o-e X (ad,bd] tap < bk, k= 1,...,d}U{@}

and

Example 4.16
1. Let x € R. Then since {z} = (o, (z — L, 2], by Theorem 3.10 we have

A({a}) = lim A((w— La]) = lim * =0,

n—oo n

2. MQ) = MU {rn}) =02  AM{rn}) =202, 0 =0, where Q = {r1,72,...} is the set of rational

numbers.
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5 Measurable Functions (Lecture Notes)

5.1 Motivation of the Definition, Introduction to Lebesgue Integrals

Let f: X +— R be a function, where X = [0, 1]. Let us recall the definition of the Riemann integral. We

define the Riemann sums

n
Sn =Y f(&) Ay, Az =z — w41,
k=1

and say that f is Riemann integrable if the limit

Aim O;ﬂshmxk, Az := max|Ay|

exists and does not depend on the choice of {{x}. This limit is called the Riemann integral of f and is

denoted by
1
0

1. If f 4s a continuous function, then f is Riemann integrable.

Example 5.1

2. Take
1,z€eQnNJo0,1],

0, z€[0,1]\ Q.
This function is not Riemann integrable since the limit depends on the choice of {&}. Indeed, if

& € |zp—1,zx), k = 1,...,n are rational, then >} _, f(&)Axy = Y 1y 1Az, = 1, but if they are
irrational, then > p_y f(&k)Axy =Y 1 0 Az = 0.

fz) =

Let us consider another approach to defining the integral.

Y

Yn f_l([y3,y4))
(78 7))
(s ve))

Ys

Y4

Y3

Y2

Y1

Figure 5.1
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We can define the integral as

b
i 3 gd (g wes))) = / f(2) A(de).
1 a

Remark that fab f(z)dx = fab f(z) A(dx) if f is continuous, but this new definition is better.

Example 5.2 We take
1, zeQnNIo,1],

0, z€[0,1]\ Q,

fz) =

k
and yr = —. Note that
n

Hence

AFHLE EE)) = 0-A(10,1\ Q) + %A((ZJ) ot nT_lA((ZJ) + %A(@ﬂ [0,1]) =0,

k=

o

and consequently

n—o0

1
/f(ac)dx: lim 0 =0.
0

With this approach to defining the integral, we need to be sure that we can compute the Lebesgue

measure of sets

Ay = " (ks vet1)),
that is, the sets Ag, k =1,...,n have to be Lebesgue (or Borel) measurable sets.

Remark 5.3 Not all subsets of R? are Lebesgue measurable.

Consider the Banach-Tarski paradox. Given a solid ball in 3-dimensional space, there exists a decompo-
sition of the ball into a finite number of disjoint subsets that can be put back together in a different way
to yield two identical copies of the original ball. The Banach-Tarski paradox is a strong mathematical

fact. However, we do not have any contradictions here since the pieces are not Lebesgue measurable:

V(B) =) V(A)=2V(B),

k=1

because V(Ay) do not exist.
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5.2 Definition of Measurable Functions
Let X, X' be some sets and let f: X — X’ be a map.
Definition 5.4
1. For A C X the set f(A) ={f(z) :x € A} is called the image of A.
2. For a set A" C X' the set f~1(A')={x € X : f(x) € A’} is called the preimage of A'.

Exercise 5.5 Show that

1. 1 (U Az> = U FHAL,
k=1 k=1

2. f! (ﬂ Az) =) (4},
k=1 k=1

3. fTHBNA) = fTHB)\ FHA),

where A}, C X', B’y A" C X’ and n € NU {o0}.
Solution to 1):

P (Ua) = {rswre U= Ut e s = U
k=1 k=1 k=1 k=1
Definition 5.6 If X is a set and F is a o-algebra on X, then (X, F) is called a measurable space.

Definition 5.7

1. Let (X, F) and (X', F') be measurable spaces and take f : X — X'. The function f is called
(F, F')-measurable if f1(A") € F,VA € F.

2. In the case X' =R, F' = B(R), f is called F-measurable.

3. If additionally X = R, F = B(R), that is, f : R — R and f~1(A4’) € B(R), VA" € B(R), then f is

called Borel measurable.
Example 5.8 If X = [0,1], F = {0, X} and X' = R, F' = B(R), then only constant functions are
F-measurable. Indeed, we know that A’ = {y} € F' = B(R). So f~'(A’) € F means that
F ) ={a: fl@) =y} =0or[0,1].
Therefore f(x) = ¢, Va € [0,1], where c is a constant.

Example 5.9 Take X = X' =R and F = F' = B(R) with f(z) = x. Then f is Borel measurable since
if A" € B(R), then f~1(A") = A’ € B(R).

Remark 5.10 The definition of measurability is very similar to that of continuity. Indeed, f is continuous
if and only if the preimage of every open set is an open set, and for measurability we require that the

preimage of any measurable set is measurable.
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6 Properties of Measurable Functions (Lecture Notes)

6.1 One Condition of Measurability

Let (X, F) and (X, F’) be measurable spaces. We recall that f is (F, F')-measurable if
VA eF fl{A)y={zecX: flx)c A} e F. (6.1)

In general, property (6.1) is complicated to check, since the class F' can be too large. Theorem 6.1 says
that it is enough to check (6.1) only for some subclass of F in the case F' = o(H).

Theorem 6.1 Let (X, F) and (X,F') be measurable spaces, where F' = o(H), H C 2X. A map
f: X~ X' is (F,F)-measurable if and only if VA € H, f~Y(A) € F.

Proof: In the forward direction, the statement follows from the definition of measurability since
AcH=AcF =f1A)erF.

To prove the converse, we set Q := {A' € F': f~1(A") € F}. Then H C Q C F' = o(H). Let us show
that @ is a o-algebra.

1. § € Q because f~1(0) =0 € F.

2. If A, A}, € Q, then f~'(A}) € F. Consider | | A} = A’. Then
k=1

Ay =51 ( A;) =J a4y er,
k=1 k=1

because F is a o-algebra.

3. If A/, B’ € Q, then
JTUBN\NA) = fUB)\ (A e F=B\AecqQ.

Hence o(H) C Q = F =0o(H) = Q. O
Corollary 6.2 Given f : X — R, the following statements are equivalent.

1. f is F-measurable

2.VaeR, f1((—o00,a0)) ={zeX: flz)<a}eF

3. VaeR, f((—oo,a)) ={z€X: flz)<a}eF
4. Va€eR, f1((a,00) ={zeX:f(x)>a}eF
5. VaeR, fH(a,00))={z€X: f(z)>a}eF

Proof: We will only show that 1) and 2) are equivalent. We remark that for H := {(—o0,a),a € R}, we
have B(R) = o(H). 2) implies VA’ € H, f~'(A") € F. Hence, by Theorem 6.1, f is F-measurable (i.e.
fis (F, B(R))-measurable) if and only if it satisfies 2). O
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Application of Corollary 6.2 (X = X' =R, F = F = B(R))
1. Every monotone function f : R — R is Borel measurable.
2. Every continuous function f : R — R is Borel measurable.
Proof:

1. Let f increase monotonically. Note that fﬁl((—oo,a)) is always an interval for all a, because f

increase monotonically. This implies f ((—o0,a)) € B(R).

2. We know that f is continuous if and only if the preimage f~!(G) of every open set G in R is
open. Consequently, f~* ((—oo, a)) is open. Since every open set is Borel measurable, f is a Borel

measurable function.

Corollary 6.3 If f : R — R™ is continuous, then f is Borel measurable.

Proof: Let H := {G C R™ : Gisopen}. Then B(R™) = ¢(H). Take G € H. Then f~*(G) is open in R?
because it is continuous. Hence f~1(G) € B(R?) and, by Theorem 6.1, f is Borel measurable. O

Exercise 6.4 Let fr, : X — R, k=1,...,m be F-measurable functions. We consider the function
=01, fm): X —R™.
Show that f is F-measurable, that is, ¥ A € BR™), f~1(A') € F. Take
H ={la1,b1) X -+ X [am,bm) : ar, < br}
and use Theorem 6.1.

6.2 Composition of Measurable Maps

Theorem 6.5 Let (X, F), (X', F"), (X", F") be measurable spaces. Let f: X v X' and g: X'+ X" be
(F,F)-measurable and (F', F")-measurable respectively. Then f o g is (F,F")-measurable.

Proof: Take A” € F”. Then A’ := g7 (A") = {y € X" : g(y) € A"} because g is (F', F")-measurable.
Then
(go ) (A ={reX g(f(x)) €Ay ={reX: flz) e A} =f(A) e F,

where g(f(z)) € A" & f(z) € A" O

Corollary 6.6 Let (X,F) be a measurable space, fr, : X — R, k = 1,...,m F-measurable functions,
and F : R™ +— R a Borel measurable function. Then F(f1,..., fm): X — R is F-measurable.
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6.3 Properties of Measurable Functions

Theorem 6.7 Let (X, F) be a measurable space and let fi1, fo : X — R be F-measurable functions. Then

o cfi
e it fo

o fi-fo

o N fo(x) #0,z€ X

f2’
e min{fy, fa}

[ ] nnax{jﬁ7f§}
are F-measurable.

Proof: The statements follows from Corollary 6.6. For example, f; + fo is F-measurable since we can

take f1 + fo = F(f1, f2), where F(u,v) = u + v is Borel measurable as a continuous function. O

Theorem 6.8 Let (X, F) be a measurable space and let f, : X — R, n > 1 be a sequence of F-measurable

functions. Then

o g1(x) == sup fo()

n=1

e go(z) := inf f,(z)

n=1

e g3(z) := lim f,()

n—oo

o gi(x):= lim fp(x)

n—o0
are F-measurable. In particular, the function f(x) := H_)m fa(x), © € X, if the limit exists for all x, is
n o0

also F-measurable. The set C := {z € X : { fn(2)}n>1 convergesinR} belongs to F.

Proof:

1. Ya €R, g; ' ((—00,a]) = {z: g1(2) < a} = {z: Slllifn(l’) <a} = ﬂ{fn(a:) <a}l eF
nz n=1

2. Va€R, gy ([a,00)) = {z: g2(a) > a} = {w: inf fo(w) > a} = (({ful2) > a} € F
"z n=1
3. g3(x) = inf,,>1 supy,, fe(x) is F-measurable because supy,, fx(z) is F-measurable by 1) and thus
inf,,>1 supy,, fr(z) is F-measurable by 2)

4. Similarly g4(x) = sup inf fi(x)

n>1k=n

Finally
C={z:gs(z) = ga(@)} = {w : g3(2) — gu(x) = 0} = (g3(2) — gu(@)) " ({0}) € F

because {0} € B(R). O

21



7 Lebesgue Integrals (Lecture Notes)
7.1 Approximation by Simple Functions
Let (X, F) be a measurable space and let A be a measure on F.

Definition 7.1 A function f : X — R is called simple if the set f(X) consists of a finite number of

elements, that is, there exists distinct a1, ..., an € R such that
m
f@) =" axlla,(x), (7.1)
k=1

where A, = {x € X : f(z) = ar} = f({ax}) and

0, x & Ay,
L (o) = l,ze A
y L k-

Remark 7.2 The sets A1,...,An € F if and only if the function f is measurable.

Exercise 7.3 Prove that the sum and product of two simple functions are simple functions.

Theorem 7.4 Let f be a monnegative function. The function f is F-measurable if and only if there

exists a sequence {fn}n>1 of simple F-measurable functions such that Vo € X, n > 1, fo(x) < foy1(2)
and f(x) = li_}m fn(x).

Proof: f is F-measurable as a limit of F-measurable functions by Theorem 6.8. Conversely, take an

F-measurable function f. For n € N we consider numbers 2%, k=0,...,n2" — 1 and define
Ak :{xeXzﬁgf(w)g%}e}',

B, ={xe€X: f(x) =2n}eF.

Remark that AF = FH([£, 58L)) and B, = f~!([n,00)). Now take

2717 271/
n2™—1 k
fa(z) = kz_o o Lag (@) + nlp, ().

7.2 Definition of the Integral

Definition 7.5

L Let f be a nonnegative F-measurable simple function defined by (7.1) and take A € F. The value

/fd)\ ::/f(ac))\(d:v) =3 wA (AN 4y)
A A

k=1

is called the Lebesgue integral of f over A. We assume axrA(ANAg) =0 if ap =0, A(ANAg) = 0.
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1. Take A € F and let f: X — R be a nonnegative F-measurable function. The value

!fw:iZﬂwmmwzgg%ZM@Mm»

is called the Lebesque integral of f over A, where K(f) is the set of all simple functions p: X — R
such that 0 < p(z) < f(z), z € X.

Remark 7.6 (Alternate Definition to II) Let f > 0 be F-measurable and take A € F. Let {f,} be as

described in Theorem 7.4. Then
[ f@ao: hm/m
A

These two approaches define the same object.

Let f: X — R be any function. We consider its parts
fi(@) = max{f(2),0}, z € X, f-(x) = —min{f(2),0}, z € X.

Then trivially
f@) = fr(x) = f-(x), ze X, [f(z)| = fr(x) + f-(2), e X

HI. Take A€ F and let f : X — R be an F-measurable function. If one of the integrals

!hM,ZﬁM (7.2)
/fd/\ ::/f(x)da: ::/f(a:))\(dx) ::/f+d/\—/f_ i
A A A A A

1s called the Lebesque integral of f over A.

s finite, then

e [f both integrals in (7.2) are finite, then the function f is called Lebesgue integrable on A.

e The class of all Lebesgue integrable functions on A is denoted by L(A,\).
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8 Properties of Lebesgue Integrals (Lecture Notes)

8.1 Basic Properties

We assume that f,g: X — R are F-measurable functions and A € F.

]“HMMZOJMn/fwzo
A

2. If M(A) < oo and f(z) =c¢, x € A, then f € L(A,\) and /cd/\ = cA(4).
A

3. Let 0< f(z) < g(z),z€ A. If g € L(A,\), then f € L(A,\) and /fd)\< /gd)\.
A A

Proof: This follows from Definition 7.5 IT and the fact that K(f) C K(g). So

sup /pd)\< sup /pd)\ < 00.
peK(f)A pEK(g)A

4. If A# 0, AM(A) < oo and f is bounded on A, then f € L(A,\) and

iI}‘ff~)\(A) < /fd)\ <sgpf~A(A).
A

5. If f € L(A,\), ¢c € R, then ¢f € L(A,\) and/cfd)\:c/fd)\.
A A

6. If f,g € L(A,\) and f(x) < g(z), Vz € A, then /fd)\ < /gd)\.
A A

7. A BeF,BCAand f € L(A,\), then f € L(B,\). If additionally f > 0, then

/fwg/fw.

B A

8. A, BeF,AnNB=0and f € L(A,\), f € L(B,\), then f € L(AU B, \) and

/ fd)\:A/fdAJrB/fd)\.

AUB

9. fe L(A,\) if and only if |f| € L(A, ).

Proof: We write f = fi — f—, |f| = f+ + f—. Remark that f € L(A,\) if and only if

/h&<m,/ﬁ&<m
A A
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Consider the sets
A_={zxecA:fr)<0}eF, Ap={zrecA: f(x)>0}eF.

Then A_ N A, = (. Hence

[inioa= [inans [inar= [ o [ras [fas [ o<
A A Ap A Ay A A

This implies |f| € L(A,\). Now assume |f| € L(A,\). Since on A we have 0 < f_ < |f] and
0 < f+ <|fl, by 3) we also have

/f_d)\<oo, /f+d)\<oo.
A A

10. If f € L(A,\) and |g(x)| < f(z), Vo € A, then g € L(A, \) and /gd)\ < / | f] dA.
A A

11. If f,g € L(A,\), then f+g € L(A,\) and/(f—i—g)d/\:/fd)\—i—/gd)\.
A A A

12. If f € L(X, \), then the function

w(A) = [ fd\, Ae F
/

is o-additive. In particular, if f > 0, then p is a measure on F.
Definition 8.1 We say that f = g A—a.e. (almost everywhere) on A if X\({z € A: f(z) # g(z)}) = 0.
Example 8.2 The functions f(z) = Ig(z), x € R and g(z) =0, z € R are equal A\—a.e.
Remark that the set {x € A: f(x) # g(z)} € F since

{reA:fla)#g@)}={reA: f(z)-glx) #0} = (f—g)"(R\{0}) € F

and f — g is F-measurable as the difference of two measurable functions.

13. If g= fA—a.e. on A and f € L(A, \), then g € L(A,\) and /fd)\ = /gdA.
A A

14. If f € L(A,\), f}Oand/fdAzO, then f =0A—a.e. on A.
A

8.2 Convergence of Functions

Definition 8.3 Let f, f, : X — R, n > 1 be F-measurable functions. The sequence {fn}n>1 converges
to f A—a.e. (a. e. with respect to \) if there exists ® € F, \(®) = 0 such that

lim f,(z) = f(z), Vo e X\ ®.

n—oo

In this case we write f, — f A—a.e.

Exercise 8.4 Let f, — fA—a.e. and f, — g A—a.e. Show that f = g A—a.e.
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9 Limit Theorems for Lebesgue Integrals (Lecture Notes)

9.1 Convergence of Functions

Let (X,F) be a fixed measurable space and let A be a measure on F. We take functions f, f,, n > 1

from X to R that are F-measurable.

Definition 9.1 The sequence { fn}n>1 converges to f A—a.e. if there exists ® € F, A(®) = 0 such that

lim f,(x) = f(x),Ve e X\ ®.

n—oo

In this case we write f, — f A—a.e.
Exercise 9.2 Let f, — fA—a.e. and f, — g A—a.e. Show that f = g A\—a.e.

Definition 9.3 The sequence { f,}n>1 converges to f in measure if
Ve> 0, \({z € X : [fa(z) — f(x)| = €}) = 0,n — 00

In this case we write fy, N f-
Theorem 9.4 If f, 2> f and f, > g, then f = g \—a.e.

Proof: We first remark that

{z:1f(@) = ful@) + ful2) —g(@)| > ¢} C {a:|f fa(@)l 2 5} U{z [ fal2) — g(2)| = 5}

Hence Ve > 0

A{z: [f(2) = g(@)] = }) = A{z : f(2) = ful2) + fulz) = g(x)] > €})
< )\({x: |f(x) — fu(x)] > 5}) + ({a: | fn(z) —g(x)| > %}) —0,n— 00

Thus Ve > 0, A({z : |f(z) — g(z)| > €}) = 0. Next
{w: f2) # 9(@)} = | {z: f(@) = g(2)| = 4}
k=1

By the o-semiadditivity of the measure A\, A({z : f(z) # g(z)}) = 0. O

Note that convergence in measure does not imply convergence A—a. e. It does not even imply convergence

for some fixed point x. Likewise, convergence A\—a.e. does not imply convergence in measure.

Example 9.5 Take the following sequence with the Lebesgue measure as A, and X = [0,1], F = B([O, 1])

i £ fs A fs

05 1 05 1 0.25 05 07 1 025 05 075 1 025 05 0.75 1

Figure 9.1
Then fn LN f but fn, /4 f A—a.e. Moreover, Vx € [0,1], fn(z) A~ f(z).
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Example 9.6 We take X = R, F = B(R) and the Lebesgue measure as X. Take fn(v) = Ijj, o) (2), z € R,

fn

n

Figure 9.2
ThenVzx € R, fp(x) - 0= f — 0\—a.e. But f, %é f since fore < 1
A 1) = 1@)] > ) = Afn, o0)) = o0.

Theorem 9.7 (Lebesgue) If A(X) < oo, then f, — fA—a.e. = f, LN f-
Proof: Let € > 0 be fixed. We set
Ay i=A{x: |fu(x) — f(x)| =2 €} €F, By:= G A, € F.
k=n
We remark that B, n > 1 decreases. Set
B:= ﬁ B, = n@o A, = {x : for an infinite number of indicesn, |f,(x) — f(x)| > €}.
n=1
Then B C {z : fu(x) 4 f(x)} and consequently A(B) = 0 by the convergence f,, — f A—a.e. Moreover

A(B1) < A(X) < co. Then by the continuity of the measure A, 0 = A\(B) = ILm A(Bp). So

lim A(4,) < lim A(B,) =0.

n—0o0 n—oo

O

Theorem 9.8 (Riesz) If f, LN [, then there exists a subsequence {fn, }k>1 such that f,, — fA—a.e.
Theorem 9.9 (Subsequence Criterion) Let A(X) < oco. Then f, LN f if and only if every subsequence
{fny k=1 has a subsubsequence {fnkj }iz1 such that fnkj — fA—a.e.
9.2 Monotone Convergence Theorem
Theorem 9.10 (Monotone Convergence Theorem) Let A € F, f, fn, n > 1 satisfy

1. 0< fu(o) € fos1(x),Vn>1,2€ A

2. fn— fA—a.e. on A

Then
lim [ fod\= /fd)\.
n—oo
A A

27



Proof: We first remark that by the monotonicity of f,, we have

/fld)\g/fgd)\é-‘-</fnd)\<~-/fd>\. (9.1)
A A A A

Since we have an increasing sequence of numbers, there exists
a:= lim | f,d\ < oco.
n—oo
A

We can assume that a < co. Otherwise the equality

/fdAle_}rgo/fnd)\
A A

trivially follows from (9.1). Since o < oo, then [ A JndX < o0, Vn > 1. We take a simple F-measurable
function p € K(f) and ¢ € (0,1), and set Ay, :={x € A: fo(x) = cp(z)} € F. We know that

1. A, C Apir, 2. U A, = A.
n=1
Take z € A, = fu(z) = ep(x) = foyi(z) = fu(z) = ep(x) = x € Apsq. This proves 1). Now since
A, C A, we have J77 | A, C A. Next take z € A. Remark that ¢p(z) < p(z) < f(z). Since fn(z) = f(z),
there exists n such that ep(z) < fn(z) < f(x). This implies € A, and hence A C |J;2; Ay. This proves
2). By properties 3), 5), and 7) of the Lebesgue integral

/fnd/\>/fnd)\>c/pd>\.
A Ap An

c/pd)\é/fnd)\éa.
A

An

Hence

By the o-additivity of the integral and the continuity of the measure A
c/pd)\: lim c/pd)\ga.
n—oo
A An

Since cprd)\ < a,Vpe K(f), we have

c/fd)\:c sup /pd)\: sup c/pd)\ga.
4 peK(f) 4 peK(f) 4

So ¢ [, fd\ < a, where ¢ € (0,1). Sending ¢ — 17, we get

/fd)\ga.

A
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10 Limit Theorems, Change of Variables (Lecture Notes)

10.1 Monotone Convergence Theorem

Let X be a fundamental set with F being a o-algebra on X. We take A as a measure on X. We recall
that

1. fo—= fA—a.e. &3P e F, \(D) :0:nli_>n;ofn(m) = f(z),Vz e X\ ®

2 o feves0, A{ze X :|fulx)— f(z)] = €}) = 0,n— o0

We also recall the Monotone Convergence Theorem.

Theorem 9.10 (Monotone Convergence Theorem) Let A € F and f, f,, n > 1 satisfy

0< fu(z) < fasi(z),Vn=1,2€ A, folr) = f(z) A—a.e.on A.

Then

Tl—)OO

lim [ f,d\= / fdA.

10.2 Fatou’s Lemma

Lemma 10.1 (Fatou’s Lemma) Let A € F and functions fn, n > 1 satisfy fn(x) >0,V € A. Then

/ lim fu(2)A(dz) < lim | fudA.

n—o0 n—o0

Proof: Consider g, (x) := Igf fe(z), x € A;n>1. Then 0 < g,(z) < gnt1(x), Vo € A, n > 1. Moreover

lim gn( ) lim inf fk( ) him fn(x)

n—o00 n—oo k>=n Nn—00

We also have g,(x) < fp(z), Vo € A, n > 1. Thus

[ < [ o

A A

By Theorem 9.10
lim gnd)\:/ ILm gnd)\:/ lim f, dA.

n—00 N—00
A A

ES

Hence

n—oo TL%OO n—oo

lim [ fod\> lim [ gnd\= /lim fo d.
A

O]

Remark 10.2 Fatou’s lemma implies that if fn=0o0nA, fp = fi—a.e. on A, and [, frnd\ < C for
alln > 1, then f € L(A,\) and [, fdX\ <

To see this, just apply Fatou’s lemma for the set A\ ®, where ® = {x : f,(x) 4 f(z)}, and use properties
1) and 8) of the integral.
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10.3 The Dominated Convergence Theorem

Theorem 10.3 (Dominated Convergence Theorem) Let A € F and a sequence f, satisfy
1. fr,— fA—a.e.on A

2. dge L(AN) : |fo(z)| < g(z),Vz e A, n>1
Then f, fn, € L(A,\),n>1 and
im fndA:/fd)\.

n—oo
A A
Proof: We remark that —g(x) < fu(z) < g(z),Vz € A,n>1. Theng+ f, >0and g— f, >0,Vn > 1.

We can apply Fatou’s lemma:

lim (ngfn)dA>/(g+f)dA

n—oo

A
lim [(9—fa)d /

Hence

/gd)\—i- m [ fodA 2> /gd/\—i—/fd)\

A n%oo A
and

/gcl)\—nh%r{)lo fnd\ > /gd)\—/fd/\.

A A
Hence

/fd)\ nlgrolo FodX < / fodX < /fdA

Corollary 10.4 The clam of Theorem 10.3 remains true if condition 1) is replaced by
V) fo 2> fonAie Ve>0, N{z € A: [fulz) — f(z)| = €}) = 0, n — o,
Exercise 10.5 Using Theorem 9.8, prove Corollary 10.4.

10.4 Change of Variables

We consider two measurable spaces (X, F) and (X', F’). Let A be a measure on X and let T be an

(F, F')-measurable map. We define a new measure on X’ which is a push forward of the measure A:
TuA(A) = NT Y A)) =A{z € X : T(z) € A'}),VA € F.

We will also use the notation Ao 77! := TuA.

F

Figure 10.1
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Exercise 10.6 Check that Tu) is a measure on F.

Example 10.7 Take X = R and X' = [0,00). Let X\ be the Lebesque measure on X = R. Take
T(z) = ||

X/
T(xz) = |z|
,,,,,,,,,,,,,, 20 /.
A/
,,,,,,,,,,,,,,, L
2 -1 1 2 X
Figure 10.2

Then Ao T 1([1,2]) = A([1,2]U[—2, —1]) = 2X([1,2]) = 2. It is easy to check that Ao T~'(A’) = 2X(4’).

Theorem 10.8 (Change of Variables) Let f: X' +— R be F'-measurable. Then

/ F (T (@) A(dz) = / )N o TY)(dy)
X X/

holds if at least one of the integrals exists.

10.5 Comparison of Lebesgue and Riemann Integrals

Take X = [a,b] and F = B([a,b]) = B(R) N [a,b], and let A be the Lebesgue measure on [a,b]. We will

denote the Lebesgue integral over A as
b b
/fd)\ = /f(:r)dx = / fdA.
a a [mb]

We denote by R([a,b]) the set of all Riemann integrable functions f : [a,b] — R on [a, b].
Theorem 10.9 If f € R([a,b]), then f € L([a,b],\) and

b b
/f(x)dw—/fd)\.

10.6 Lebesgue-Stieltjes Integral

Take X =R and H = {(a,b] : —00o < a <b < oo} U{0}. Let F: R+ R be a non-decreasing and right

continuous function. We set
Ar(0) =0, )\F((a, b]) = F(b) — F(a), (a,b] € H.
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Theorem 10.10 Ag s a measure on H.

Consequently A\p can be extended to a measure on r(H). We will denote this extension also by Ap. Next
let \i be the outer measure on 2% generated by Ap. Consider the class Sp of all Ny-measurable sets
from 2%. By Theorem 4.9 Sp is a o-algebra and A} is a measure on Sy. We denote this measure by
Ar. Next, by Theorem 4.12, H C r(H) C Sp. We can conclude that B(R) = o(H) C Sp. Hence A\p is
defined on B(R).

Definition 10.11 The integral

[ rax

A

is called the Lebesque-Stieltjes integral on R and is denoted by

! f(2) dF () = ! .

If A = [a,b], then we write
b

/ F(2) dF (2).

a

Exercise 10.12

1. Let F be a continuously differentiable function and F'(x) = f(x), x € R. Show that

o0 o0
[ s@ @) = [ g f@ s
-0 — o0
2. Let x1 < -+- < xp and mq,...,my = 0. Define
My, |
mo :
m1 :

.’17‘1 x‘g 27‘3 ce xn‘_l LE‘n

Figure 10.3

Show that

/ng = glax)m.
k=1

—00
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11

Metric Spaces (Lecture Notes)

11.1 Definition and Examples

Definition 11.1 A metric space is a pair (X,d), where X is a set and d is a metric or distance function

on X, that is, d is a function d : X X X — R such thatVzx,y,z € X

(M1) d(z,y) >0

(M2) d(z,y) =0 x=y

(M3) d(z,y) = d(y,z) (symmetry)

(M4) d(z,y) < d(z,2) +d(z,y) (triangle inequality)

Examples of Metric Spaces

1.

Real line R
X :Ru d(xay) = |x_y|a z,y eR

Euclidean space R"

X =R"d \/Zkl — )% w= (&, 6n), = (-, 70)

Sequence space [*°
X =17 :={z = (&)p21 : & € R, xis bounded}, d(z,y) = sup &k — nils = (€k)Rz1, ¥ = (k) e=1
€

Space ¢
X =c={z= ()52 : & € R, xis convergent}, d(x,y) = 2u§ 1€k — Nk
€
We can say that ¢ is a metric subspace of [*° because it is a subset of [*° and its metric is just a

restriction of the metric on [*°.

. Space B(A)

X = B(A) is the set of all bounded functions z : A +— R, A C R. We define

d(z,y) = Sup |(t) = y(®)|, z,y € B(A).

Let us check that (B(A),d) is a metric space.

(M1) d(z,y) > 0 is trivial
(M2) d(z,y) =0 < sup|z(t) —y(t)] =0 < z(t) = y(t), Vt € [a,b]

teA
(M3) d(z,y) = sup lz(t) — y(t)| = sup ly(t) —z(t)| = d(y,z)
(M4) d(z,y) = sup lz(t) — 2(t) + 2(t) —y(t)| < sup lz(t) — 2(t)| + sup |2(t) —y(t)| = d(x, 2) + d(2,y)

6. Functional space Cfa, b]

X = Cla,b] is the set of all continuous functions from [a, b] to R. We define

d(.y) = max 2(t) ~ y(0).

Again we can say that (C [a, b], d) is a metric subspace of (B [a, b], d).
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7. Space I, p>1
X =[P is the set of all sequences = = (§)5—; in R such that Y27, [£x[P < co. We define

y) = (Z & - mp) y (11.1)
k=1

where z = (§)7~; and y = (nk)i—;. Let us check that (I”,d) is a metric space. For this we need
the following inequalities. We start from the Holder inequality:

Z\fknﬂ < (Z ’fk\p> <Z !nk\q> ; ;—F ; =1,p>1.
k=1

In particular, if p = 2, then ¢ = 2 and we have the Cauchy-Schwarz inequality:

1 1
[e'e} [ee} 2 o) 2
D 1kl < (Z "fk’2> (Z |77k2>
k=1 k=1 k=1
We also need the Minkowski inequality:
<Z |€k+77k|p) < <Z !€k|p> + (Z |77k|p) :
k=1 k=1 k=1

Let us now show that d defined by (11.1) is a distance. Conditions (M1)-(M3) are trivial, so we
will show (M4):

|§k—77k!p> = (Z |€/<:—Ck+§k—77k|p>

k=1

S =

(1€ — Gl + Ik — 77k|)p>

where z = (Cx)p2q, and = and y are as before.

8. Space 2, p>1
1
=l =R", d(z,y) = (X5 & — mel?)?
9. Space LP[a,b], p >
Let A be the Lebesgue measure on [a, b]. We assume that two measurable functions z,y : [a,b] — R

are equal to each other if x = y A—a.e. Then X = LP[a,b] is the space of all measurable functions

x on [a,b] (more precisely classes of equivalence) such that f; |z(t)|P dt < co. We define

1
b P

d(z,y) = / 2(t) — y(t)P dt

a
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10. Discrete metric space
Let X be a set. We define

1,z #£y.

(X, d) is called a discrete metric space.

11.2 Open and Closed Sets
Let (X, d) be a metric space.
Definition 11.2
o B.(z9) ={xr € X :d(x,z9) <r} is called an open ball with center xo and radius r
o B.(z0) ={z € X :d(z,70) <1} is called a closed ball with center o and radius r
Definition 11.3
o A set G is called open (in X ) if Ve € G, 3r >0: By(x) C G.
o A set F is called closed (in X) if F¢ = X \ F is open.
Exercise 11.4
1. Prove that the union of any family of open sets is open.
2. Prove that the intersection of any finite family of open sets is open.

Exercise 11.5 Show that the set G = {z € C[0,1] : |f(3)| < 1} is open in C[0,1].
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12 Convergence in Metric Spaces (Lecture Notes)

12.1 Continuous Maps

Definition 12.1

o Let (X,dx) and (Y,dy) be metric spaces. A map T : X — Y is said to be continuous at xo if

Ve>0,36>0:Vze X, dx(x,z9) < 0= dy(Txo,Tx) < €.

e A function T is continuous on X if it is continuous at every point of X.

Example 12.2 The function T : I — R? defined as

Tx = (£1,8), v = (&)=

is continuous. Indeed take v = (&k)pey € [°° and € > 0. Then for all y = (nk)iey € I°° such that
di (z,y) = Sup [Sk — | <6,

where § will be chosen later, we have

dg2 (T, Ty) = dg2 ((1,€2), (m1,m2)) = V(& —m)2 + (&2 —m2)? < V2462 = V25 =

Hence § = =. So T is continuous at all x € I*° and is thus continuous on [*°.

V2
Theorem 12.3 A map T : X — Y 1is continuous on X if and only if for all sets G open in'Y the set

fHG) ={zeX: f(x) € G}

is open i X.
Definition 12.4

o A point xq is called a limit point of a set M C X if

Ve>0,3xz € M, x#xp:x € Be(xp).

e The set M which contains all points of M and all limit points of M is called the closure of M.

Example 12.5 Take X = R? and M = Q? = {(£1,&) € R? : &1,& € Q}. Then Q2 = R? since every
point of R? is a limit point of Q?:

Ve>0,3zeQ? x#x0:x € Be(xg), Vao € R2.
Exercise 12.6 Propose a metric space X and a ball B.(x¢) € X such that

By (z0) # Br(x0) ={z € X : d(z,z0) < r}.
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Definition 12.7

o A subset M of X is called dense in X if M = X.

o X is called separable if there exists a countable subset M C X which is dense in X.
Example 12.8 According to Example 12.5 the metric space R? is separable.

Remark 12.9 A metric space is separable if there exists a countable set M C X such that every ball
B.(x), r >0, x € X contains points from M, that is,

VeeX,r>0,B(x) "M #0.

Remark 12.10 The spaces R, R", ¢, Cla,b], P, I[P, LP are separable while the spaces Bla,b] and [°° are

y 'no

not.

Example 12.11 [P is separable. To show this, take
M={zell:z=(&,...,6,0,0,...), & €Q, k=1,...,n,n > 1}.
Remark that M is countable. Indeed, we can identify
M,={zelP:z=(&,...,£,0,0,...), & € Q}

with Q" that is countable. Consequently M = \J,2 | M, is countable. Let us show that M = X. By
Remark 12.9 we need to take arbitrary x € I’ and r > 0, and find y € M : y € By(z) & d(z,y) < r.

(o9}
D1kl < oo
k=1

Since x € [*°

There exists n > 1 such that

o

D

> el <=7
k=n+1

Next we choose n, € Q, k=1,...,n such that

& — el < 0= ——, k=1,...,n.

Take y = (N1, .,Mn,0,0,...) € M. Then

oo n oo
d’(z,y) = E &k — mi|P = E [ § : ’§k1p<n5§+51:§+5:€p_
k=1 k=1 k=n+1

12.2 Convergence, Cauchy Sequences, Completeness

Definition 12.12

o A sequence {xy}n>1 in a metric space (X,d) is said to be convergent if there exists x € X such that

lim d(z,,z) =0.

n—oo

e x is called the limit of {xy}n>1 and we write lim =, = x or x, — x.
n—o0
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Remark 12.13 z,, — x if and only if Ve > 0, AN : d(zp,x) <€, Vn > N.
A set M is bounded if it is contained in a ball B, (xg), that is, 3xg € X, r > 0: M C B,(x9).
Lemma 12.14 Let (X,d) be a metric space.

1. A convergent sequence in X is bounded and its limit is unique.

2. If &y, > x and y, — y in X, then d(xn,yn) — d(z,y).
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13 Completeness of Metric Spaces (Lecture Notes)

13.1 Cauchy Sequences

Recall the definition of convergence in a metric space.

Theorem 12.12

o A sequence {Tn}n>1 in a metric space (X,d) is said to be convergent if there exists x € X such that

lim d(z,,z) =0.

n—oQ

e x is called the limit of {xyp}n>1 and we write lim =, = x or z, — x.
n—oo

Definition 13.1

o A sequence {xy}n>1 is said to be a Cauchy sequence if d(xy, Tm) — 0, n,m — 00, i.e.

Ve>0,3IN :d(zy,zm) <€, Vn,m>= N.

o The space X is said to be complete if every Cauchy sequence in X converges, that is, it has a limit

which is an element of X.
Example 13.2
1. Spaces 1) - 9) from Lecture 11 are complete.

2. The metric space (X,d) where X = Q and d(x,y) = |z —y|, x,y € Q is incomplete. Take

n

1
k=0
We know that Y5> 4 = € & Q. The sequence {xy}n>1 is a Cauchy sequence. Indeed, for n < m
1 — 1
d(xn, Tm) = |Tn — Tm| = Z 7 < Z 7 — 0, n,m — oo.

k=n+1 "~ k=n+1

But {xy}n>1 is not convergent in X = Q because there exists no x € Q such that z, — = in X = Q.

3. Take X = (0,1)% = {(£1,&) : &1,& € (0,1)} and d(z,y) = /(&1 —m)2 + (€2 — m2)2. This metric
space s incomplete. Indeed, take x,, = (%, %) e X, n=>=2. Then

tonrn = [(i2) ¢ (o) -

Hence {xy, }n>2 is a Cauchy sequence but Az e X :x, — x, because x, — (0,0) € X.

1 1
—— —| —=0,n,m — oo.
n o m

4. Let X = C[0,1] and take
1

d(z,y) = / 2(t) — ()] dt.

0

(X,d) is a metric space but it is not complete.
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Take

11 DB 0 2 % 1]

S=
[N}
N[
+ |
3=
—_
N
|
3=

N[

Figure 13.1

Hence {xy}n>1 is a Cauchy sequence but it does not converge in C|0, 1]:

¢ Co,1].

NI N

13.2 Some Properties

Theorem 13.3 FEvery convergent sequence in a metric space is a Cauchy sequence.

Proof: Let {,}n>1 converge to x. Then
0 < d(xn,xm) < d(zp,x) + d(@m,x) = 0, n,m — oo.

This implies that {x,},>1 is a Cauchy sequence. O

Exercise 13.4 Show that a Cauchy sequence is bounded, that is, {xn}n>1 is bounded if 3y € X, r > 0
such that z,, € By (y).

Example 13.5 Let us prove that I? is a complete metric space. Recall that for [P

X:{x:(gk)z;:kayuoo}, d(:c,y)=<2|§k—nk\”> :
k=1 k=1

Take a Cauchy sequence xy, = (§f)5e; € IP.

1. First we need to show that {&'}n>1 is a Cauchy sequence in R for all l. Indeed

- z
& = &"l = (1&" —&"P)P < <Z|€Z—§z§"!p> =d(z",2™) = 0, n,m — oo.
k=1

So {&'}n>1 s a Cauchy sequence in R, and since R is complete, there exists § € R such that

& — &, n— 0.
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2. Next we need to show that x = ()5~ € I’ and x, — x inIP. Take ¢ > 0. By the fact that {zy}n>1
is a Cauchy sequence, AN > 1: d(zpn, Tm) < §,Vn,m > N. So

RS

oo

Gp

<§:>§ |§Z—§1T|p<27-
k=1

(Z &p — 5;"\?)
k=1

By Fatou’s lemma
1 n__ ¢em|p n __ p © D
> lim e — g = Y I -Gl < o < e
k=1 k=1
So

1
0 P
<Z &p — 5,4?) <e,¥Yn>=N.
k=1

We need only to show that v = (§)3=, € I’. By Fatou’s lemma

o0 o o
p: 1 ’I’Lp< 3 TLp: :
;’fk’ ;gggo\ﬁk < nhjgog\ﬁk\ lim d(0, z,,) < o,

n—oo

because {xp}n>1 is bounded.
Theorem 13.6 Let M C X be non-empty.
l.xeéM &3z, e M, n>1: 2, = x.
2. M is closed if and only if for all {xp}n>1 € M such that x,, — x in X we have that x € M.

Theorem 13.7 Let (X,d) be a complete metric space and take M C X. The metric subspace (M,d) is
complete if and only if M is a closed subset of X.

Proof: Let (M, d) be complete. We will prove that M is closed in X by using Theorem 13.6 2). Take a
sequence {x,}n>1 € M such that x,, — x in X. Then by Theorem 13.3 {x,},>1 is a Cauchy sequence
in X, that is d(zy,zm) — 0, n,m — oco. Then {z,},>1 is a Cauchy sequence in (M,d). Since M is
complete, there exists y € M such that x,, — y in M, that is, d(z,,y) — 0, n — oco. Then z,, — y in
X. Since the limit is unique by Lemma 12.14, x = y € M. Now let M be closed in X and let (X, d)
be complete. Take a Cauchy sequence {zy}n>1 in M. {z,},>1 is also a Cauchy sequence in X, so by
the completeness of X, there exists x € X such that x,, — x, n — oo in X. Then by Theorem 13.6 2)
re M. Sox, — xin M, n — oo. O

Definition 13.8 (Isometric Spaces)

1. Amap T : X — X is said to be isometric if T preserves distances, that is, J(Taszy) =d(z,y) for
all z,y € X.

2. The space X is said to be isometric with the space X if there exists a bijective isometry of X onto

X. X, X are called isometric spaces.

Definition 13.9 For a metric space (X,d) there exists a complete metric space (X,CZ) which has a

subspace W that is isometric with X and dense in X. This metric space X is unique except for isometries.
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14 Normed and Banach Spaces (Lecture Notes)
14.1 Vector Spaces
Let K =R or K = C be a fixed field of scalars.

Definition 14.1 A vector space over a field of scalars K is a non-empty set X of elements called vectors,

“@ o»

together with the operations of addition “+” and multiplication “”, satisfying the following conditions

forany o, B € K and x,y,z € X:
lL.z+y=y+=x
2. (z4+y)+z=x+(y+2)
3. There exists a vector 0 € X such thatVz € X,0+x==x
4. Ve e X, dy € X denoted by —x such that x +y =10
5. 1-z==x
6. a(z+y) =ax+ ay, (o + )z =azx+ Bz

Recall that Y C X is called a vector subspace of X if Y is closed with respect to “4+” and *“”, that is,
Ve,yeY,Va,0 € K,ax+ Py €Y.

Example 14.2 The following sets together with “+” and “” are vector spaces.

1K "={(&,....&) & e K, k=1,...,n}
& &) ) = G+, bt mn), alll, . 6n) = (ah, . ad)
2. Cla,b] = {z : [a,b] — R : 2is continuous on [a, b] }
(x+y)t) =2(t) +y), (az)(t)=ax(t)
3. 1P ={o=(&,82...) 1 & €R, 205 [&lP < oo}, 1% ={z=(&,&,...) 1 & € R, supy [&] < oo}
c+y=(E+m,l+m,...), ar=(af,ay,...)
4. LP[a,b] = {x : [a,b] = R : zismeasurableand [ |z(t)|P dt < oo}

(z +y)(t) = z(t) +y(t), (ax)(t) = ax(t)

We identify x,y € L? if t = y A—a.e., where X\ is the Lebesque measure on [a,b).
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14.2 Normed and Banach Spaces
Definition 14.3

e A norm on a vector space X is a real-valued function on X whose value at x € X is denoted by

l|z|| and which satisfies the following properties:

(N1) ||z|| 20,Vx e X
(N2) |z| =0 2=0
(N3) |lazx|| = |a|||z||, Ve € K, z € X
(N4) llz+yll < [lzll + llyll, Va,y € X

e A normed space X is a vector space with a norm defined on it.

Let (X, || - ||) be a normed vector space. The norm || - || defines the metric d on X given by
d(l’,y) = ||$ - y”a T,y € X.

The metric d is called the metric induced by the norm || - ||. We will also consider every normed space

(X, ]| -]|) as a metric space with the metric induced by the norm. So {z,},>1 converges in X if
|z — z|| = 0, n — oo.
Similarly {zy}n>1 is a Cauchy sequence if
|xn — zm|| = 0, n,m — oo.

Definition 14.4 A normed space (X, || -||) is called a Banach space if it is complete with respect to the

metric induced by the norm || - ||.

Exercise 14.5 Show that a norm satisfies the inequality

[zl = liyll] < llz = yll.

This inequality implies that the map X 3 x — ||z| € R is continuous.
Example 14.6 The following sets are Banach spaces.

1. Euclidean space R"™ and unitary space C"

]l = (Z |§kl2>
k=1

2. Sequence spaces [*° and [P

1
0 P
2]l = sup |&|, z € 1, ol = (D& | szl
k=1 k=1

3. Space ¢
]| = sup [&|
E>1

Remark that ¢ is a subspace of [™°.

43



4. Space B(A)

]| = sup [z(t)|
teA
5. Space Cla, b
== t
ol = ma [a()

6. Spaces b, p>1 and 1}’

1
n P
Izl = (} j\@\p) ol ol = max |6,z el

7. Space LPla,b], p > 1
. L
] = / () dt

a

Example 14.7 (C[a,b], | - ||) with norm
b
o] = / a(8)] dt

is incomplete because the metric space Cla, bl with d(x —[? z(t) — y(t)| dt is not complete.
p D , )=/ y »

14.3 Finite Dimensional Normed Spaces

Definition 14.8

e Vectors x1,...,xn € X are called linearly independent if the equality
oa1x1+ -+ apr, =0

only holds if oy = -+ = a,, = 0.

M C X is linearly independent if every non-empty finite subset of M 1is linearly independent.

A wvector space X is finite dimensional if 3n > 1 such that X contains a linearly independent set of
vectors and every set containing more than n vectors is linearly dependent. The number n = dim X

1s called the dimension of X. If n does not exist, then X 1is infinite-dimensional.

e Ifn=dim X, then any family of vectors {ei,...,en} that is linearly independent is called a basis
for X. If{e1,...,en} is a basis, then for every vector x € X there exists a unique set of scalars
Qai,...,aq such that

n
T = E AEEL.
k=1

o We say that Y C X is a subspace of a normed space X if Y is a vector subspace of X and the norm
on 'Y 1is a restriction of the norm on X. Y is a closed subspace of X if additionally Y is a closed
subset of X.
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14.4 Schauder Basis

In a normed space we can use series. Take z,, € X, n > 1. We define the partial sum

n
k=1

We say that the series > 7, @, converges if {Sy,},>1 is convergent, that is, there exists S € X such that
Sp — S, n— oo. The element S is called the sum of the series > 2 | x,. A series Y -z, is absolutely

convergent if Y > | ||y|| converges in R.

Exercise 14.9 Show that absolute convergence implies convergence in X if and only if X is a Banach

space.

Definition 14.10 If a normed space X contains a sequence {ey}n>1 with the property that for every

x € X there exists a unique sequence of scalars {om tn>1 such that

e
Tr = E aLeL,
k=1

then {en}n>1 is called a Schauder basis for X .

Exercise 14.11 Show that if a normed space has a Schauder basis then X is separable. The inverse

statement is not true in general.

Example 14.12 {e¢,, = (0,0,...,0,1,0,...), n > 1}, where 1 is in the nth position is a Schauder basis
for?, p>1.

45



15 Linear Operators (Lecture Notes)
15.1 Basic Definition
Let X, Y be vector spaces over the same scalar field K.
Definition 15.1
e A linear operator T is a map from D(T) C X to'Y such that

1. the domain D(T) is a vector subspace of X,
2. Yx,y € D(T) and for any scalar o, T(z +y) = Tz + Ty and T(ax) = oT'(x).

o IfY =K, then T is called a linear functional.
Example 15.2

1. Consider X =R" and Y =R™. Let A = (ajj);;Z, be an m x n matriz. We define
Tr= Az, x € R",
that is, for x = (&1,...,&,) we have

ai; ... Qg &1 m
re=|: i o ||:]=
aml --- OGmn gn TIm

Then D(T) =R"™ and T is a linear operator.

2. Consider X = Cla,b] and Y = Cla,b]. We define

x(s)ds, t € [a,b].

Q\“

Then D(T) = Cla, b].

3. Consider X = Cla,b] and Y = Cla,b]. We define
(Tz)(t) = 2'(t), t € [a,b].

Then Cla,b] D D(T) = C'[a, b], the set of all continuously differentiable functions on [a,b].

4. Consider X = LP[a,b] and Y = Lia,b]. Fiz ¢ : [a,b] — R that is Lebesque measurable. We define

(Tz)(t) = (t)z(t).
Then D(T) = {z € LP : [ |p(t)x(t)|? dt < oo}

5. Consider X =1 and Y = R. Take
Tz = lim &, v = (§)hey
k—oo
Then D(T) = ¢ C I and T is a linear functional.
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15.2 Bounded and Continuous Linear Operators

Let X and Y be normed spaces over the same scalar field.
Definition 15.3

o A linear operator T : D(T) — Y, D(T) C X is said to be bounded if there exists C > 0 such that

|Tz]| < C|lzl|- (15.1)
o The number T
1T = sup 122
zeD(T) |zl
x#0

is called the norm of T.
Exercise 15.4

1. Show that ||T|| is the smallest constant C' satisfying (15.1), that is,

T[] = min{C': [|Tz| < Cljz[|, V2 € D(T)}-

2. Show that |T|| = sup |Tx|.
z€D(T)
llefl=1

Example 15.5

1. Consider X =Y = C|0,1]. We define
t
(T2)(t) = /:L‘(s) ds, z € C[0,1] = D(T).
0

We claim that T is bounded. To show this we compute

¢ ¢
|Tz|| = max /x(s)ds < max/|:c(s)ds
te[0,1] t€[0,1]
0 0
t

t

< max [ max |z(s)|ds = ||z| max /ds = ||z|| max ¢t = ||zl
te[0,1] J s€[0,1] t€[0,1] t€[0,1]
0 0

where we use m[ax] lz(s)| = ||z||, x € C[0,1]. So ||T|| < 1. Let us show that | T|| = 1. Take z = 1.
s€(0,1
Then ||z|| =1 and moreover, (Tx)(t) = fg lds=t. So

|7z _
El

[Tzl =1 =T >

This implies ||T| = 1.
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2. Take again X =Y = C[0,1]. We consider
(T2)(t) = 2'(t), D(T) = C'[0, 1],

We claim that T is unbounded. Take xn(t) =t", t € [0,1], n > 1. We compute

|xn|| = max |t"| =1, | Tx,| = max |nt”_1| =n.
t€[0,1] t€[0,1]
Then T
) el s
[nll

We see that there does not exist C' such that for all n we have n < C, so T is unbounded.

Theorem 15.6 Let X be a finite-dimensional normed space and T a linear operator on X. Then T is
bounded.

Let us recall that T': D(T) +— Y is continuous at xg € D(T) if
Ve>0,36>0:Vz e D), ||xr —xo|| < 0= ||Tx — Txo|| < e

Theorem 15.7 Let T : D(T) — Y be a linear operator.
1. T is continuous if and only if T is bounded.
2. If T is continuous at a single point, then it is continuous at every point.

Proof: We prove the first statement. For T' = 0, the statement is trivial. So we take T' # 0 = ||T|| # 0.
Let the boundedness of T be given. Take zg € D(T") and show that T" is continuous:

Ve>0,36>0:Voze D), |r —xo|| <0 = ||Tx — Tzl <e.

Let € > 0 be given. We take § = 7 and x € D(T) : ||l — zo|| < . Then

Since x was arbitrary, T is continuous. Now let T be continuous at zo € D(T'). Then if we choose € = 1,
we can find § such that
|z —xol] <6 = |[|[Tx — Txol| <e=1.

Now take any y # 0 from D(T) and set x = o + ﬁy. Then

0
|z — xol| = 3 <0=|Tx —Txol| <e=1.
Then we also have

) )
1> [T - Taol| = | Tz — 20)]| = H(Ty)H Iyl
2m1%) | = 2l

Thus
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Since y € D(T') was arbitrary, this implies that 7" is bounded, as we can take C' = %. Remark that we
only used the continuity of T" at zy. So we conclude that if T" is continuous at zg, it must be bounded,

and if it is bounded, it must then be continuous on D(T'), proving the second statement. O
Corollary 15.8 Let T be a bounded linear operator.

1. For x,,z € D(T), we have z,, — © = Tx, — Tz.

2. The null set ker(T) = {z : Tx = 0} is closed in X.
Exercise 15.9 Prove Corollary 15.8.

Theorem 15.10 Let T : D(T) — Y be a bounded linear operator and Y a Banach space. Then T has
an extension T : D(T) — Y, where T is a bounded linear operator and ||T|| = ||T)|.

Proof: We only show how T can be constructed. Take z € D(T). Then there exists a sequence z,, € D(T)

such that z,, — x. Since T is linear and bounded, then
|7 = Tl < 1T (@0 = )| < 1 T]20 = @l| = 0, nym — oc.

So {Tx,}n>1 is a Cauchy sequence in Y. Since Y is a Banach space, there exists y € Y such that
Ty — y, n — 00. Set Tz :=y. Now we show that Tz is well-defined. If z,, n > 1 is another sequence
from D(T) converging to x, then Tz, — 3. Consider the sequence v, : x1, 21, T2, 22, T3, 23,.... This

sequence converges to x and Tv, — y”. But Tvgryy — y = 9" and Ty, — ' = y”. This implies
/
y=v. ]
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16 Dual Spaces (Lecture Notes)

16.1 Normed Spaces of Operators

Let X and Y be normed spaces. Consider bounded linear operators T': X +— Y such that ||Tz|| < C|z]|.
Denote B(X,Y") the set of all such bounded linear operators. B(X,Y) is a vector space if we define

(Th + To)(x) = Thx + Tox, (aT)(z)=aTlx,

where 177,75, T € B(X,Y), o € K, and x € X.

Theorem 16.1 The vector space B(X,Y) is a normed space with norm defined by

” [
o Nl lzll=1

1T =
Exercise 16.2 Prove Theorem 16.1, that is, show that || - | : B(X,Y) — R is a norm on B(X,Y).
Theorem 16.3 IfY is a Banach space, then B(X,Y) is a Banach space.

Proof: Let T,, € B(X,Y), n > 1 be a Cauchy sequence in B(X,Y). We want to show that there exists
T € B(X,Y) such that 7,, — T in B(X,Y). Take z € X and define T = lim T,z. Consider the
n—o0

sequence Tz, n > 1in Y. Claim that T,,z, n > 1 is a Cauchy sequence in Y:
[Tz — Tl = [[(Tn — Ton)z|| = T — T lll]| = 0, 72, m — oo.

Since Y is complete, there exists y € Y such that T,x — y := Tz. We have obtained the map T': X — Y.

Now we show that 7' is linear:
T(azx+ fz) = lim T,(ax + fz) = lim (aTpxr + f1n2) = a lim Thz + f lim T,z = oTz + ST z.

Take € > 0. Then there exists N : Vn,m > N, [|[T,, = Tpn|| < §. Forn > N

: . €
Tz - || = I ||Toz = Tzl < lim_ T = Tullle]l < 5 llall < el
%) m—00 m—00 2
Thus T is bounded so T' € B(X,Y’). Furthermore, this implies |7, — T'|| < § <€, Vn > N, which means
that T,, — T, n — oo, that is, it converges in B(X,Y). Therefore B(X,Y) is a Banach space. O

16.2 Dual Spaces

Let X be a normed space and take Y = K.

Definition 16.4 The set of all bounded linear functionals on X with norm

‘f"z b |f()

I7=sup T = S,

is called the dual space of X and is denoted by X' = B(X, K).

Theorem 16.5 The dual space X' of a normed space X is a Banach space, whether or not X is.
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Definition 16.6

e An isomorphism of a normed space X onto another normed space X isa bijective linear operator
T : X — X that preserves the norm, that is, |Tz|| = ||z|| for all x € X.

o [f there exists an isomorphism of X onto X, then X and X are called isomorphic normed spaces.

Example 16.7

1

1. We have (I2) =12 % s=L1<p<oc. Letfe (I2Y be a bounded linear functional. Take a

basis e; = (1,0,...,0),...,e, = (0,...,0,1) € IP. Then
= Gerelh, f(a)=f <Z §kekz) ka:f ex) Z’kak: = (u, ),
k=1 k=1 k=1

where w = (Y1, ...,n)s Y& = f(ek), k=1,...,n. Next we compute the norm of f using the Holder

mequality:

Q=

1
n v
)| = <Z |€k|”> = llullgllzllp, V2 € 15,
k=1

n
> wén
k=1

n n
<Y Il < (Z |7k\q>
k=1 k=1

This implies || f]| < ||ullq. Now take x = ( + |77 |7, where we take + if v > 0 and
— if v, < 0. Then

n n
o) = () =D el
k=1

k=1

and
n ) n 1_1
uxwz(zwnp) ~(Shr)
k=1 k=1
So
n n % n —q
=3t = (Y] (Sbur) = e
k=1 k=1 k=1
Hence ||f|| = ||u||. Consequently, the map f (f(ek))zzl =: u is an isomorphism of (I?) onto 1%
and || f|| = ||ullq- In other words, any bounded linear functional f can be written in the form
=S b = (),
k=1
where u = (y)g=1 € b and || f[| = [lullq-
2. (1Y =1°° and (I°) =1}.

! 1 1 _
3. (7)Y =1, sty =1L1<p<oo
4o (1 =1
5. =(c) =1
6. (LPla,b)) = L%a,b] and (L'a,b)) = L*®][a,b].

7. (Cla, b)) = “functions of bounded variation”
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16.3 Dual Space to Cla, b

Definition 16.8 A function w : [a,b] — R is said to be of bounded variation on [a,b] if its total variation
Var(w —supZ]w (tj—1)]

is finite, where the supremum is taken over all partitions a = tg < t1 < --- <t, =b.

Example 16.9 If w is non-decreasing, then w has bounded variation. Indeed
n
Var(w) = supz lw(t;) —w(tj—1) Z w(t;) —w(tj—1)) = w(b) — w(a).

Remark 16.10 A function w has bounded variation if it can be written as a difference of two non-

decreasing functions, that is Jwy,ws : [a,b] — R that are non-decreasing such that w = wy — wa.

Let BV[a,b] be the set of all functions on [a,b] of bounded variation. It is obvious that BV]a,b] is a

vector space over K = R. Define the norm on this space as ||w|| = |w(a)| + Var(w).
Lemma 16.11 BV{a,b] is a Banach space.

If z € Cla,b] and w € BV [a, b], then one can check that the Riemann-Stieltjes integral

b

[ ety dute) = tim S () (wite) — wite-)
k=1

a

exists, where \ = m,?X’tk — tg—1|, & € [tk—1,tk] and a = tg < t1 < -+ < t, = b. Remark that if
w € Ca,b], then w € BV |[a,b] and

/b (1) dw(t) = / 2()w' (£) dt.

Theorem 16.12 Every f € (Cla,b])’ can be expressed as a Riemann-Stieltjes integral:

b
x) = /a:(t) dw(t)

with || f|| = Var(w).

In Theorem 16.12 the function can be made unique if we additionally require that w is right continuous
and w(0) = 0. So (Cla,b])’ = BVy|a, b], where BVj|a,b] C BV |a, b] contains all right continuous functions

of bounded variation.
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17 Hilbert Spaces (Lecture Notes)

17.1 Definitions of Inner Product and Hilbert Spaces

Let X be a vector space over the field K =R or K = C.

Definition 17.1
e An inner product on X is a map (-,-) : X x X — K such that for all x,y,z € X and o € K
(IP1) (x +y,2) = (x,2) + (y,2)
(IP2) (ax,y) = a(z,y)

(ax
(IP3) (x,y) = (y, )
(IP4}) (xz,x) 20, (z,z) =0 2 =0

o A wvector space X with an inner product on it is called an inner product space.

Remark that (z,y+2) = (y + z,2) = (y,2) + (z,2) = (y,2) +(z,2) = (z,y) + (2, 2) and (z, ay) = a(z,y).
Example 17.2

1. Euclidean space R"
<x,y> =&+ -+ &

2. Unitary space C™

3. Space I = {x = (&)721 : &k € K, k> 1, 332 [&[* < oo}
y) = Zflﬁk
k=1

4. Space L?[a,b] = {x : [a,b] — K : f |z(t)]? dt < oo}

5. Space L*(R) = {z: R +— K : f ()2 dt < oo}
(z,y) = / z(t)y(t), dt
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17.2 Properties of Inner Product Spaces

Define ||z|| = v/(z,x), z € X. || - || satisfies properties (N1) - (N3) of Definition 14.3. The space X with
norm || - || induced by the inner product is a normed space.

Lemma 17.3 (Cauchy-Schwarz and Triangle Inequalities)

1. For all z,y € X we have |(z,y)| < ||z|/||ly||, and equality holds if and only if x and y are linearly
dependent.

2. For all z,y € X we have |z + y|| < ||z| + ||y]|-

Exercise 17.4 Check that a norm ||z|| = \/(x,x) on an inner product space satisfies the parallelogram
equality:
lz +yl* + 2 = yll* = 2(|«|* + ly]*)-

Remark 17.5 Ezxercise 17.4 implies that [P, LP[a,b], p # 2 and Cl[a,b] are not inner product spaces. Let
us show this explicitly for IP. Take in [P

=(1,1,0,0,...), y=(1,-1,0,0,...).
Then |lz]) = [lyll = 27 and [l + yl| = |z =yl = 2. Thus
o+l + e = yll? = 22+ 22 £ 2 (20 + 20 ) = 22> + 1ylI?)
unless p = 2.

Lemma 17.6 Let x, — x and y, — y in X. Then (z,,yn) — (x,y).

Proof:

@y yn) = @) = [(@nsyn) = (@ns 1)) + (2, 9) — (2,0)) ]
(@ yn) — (@n, )| + (@0, y) — (2, 9)]
= [{Zn, yn — Y| + (20 — 2, )|

< lzallllyn — yll + llzn — 2|yl — 0

N

O]

Definition 17.7 An inner product space X that is complete in norm generated by the inner product is

said to be a Hilbert space.

A Hilbert space is a Banach space. A subspace Y of an inner product space X is defined to be a vector

subspace of X take with the inner product on X restricted to Y x Y.
Theorem 17.8 Let Y be a subspace of a Hilbert space H.

1. 'Y is complete if and only if Y is closed in H.

2. If Y is finite-dimensional, then Y is complete.

3. If H is separable, then Y is also separable.

Proof: 1) is a direct consequence of Theorem 13.7. 2) follows from the fact that every finite-dimensional

space is closed. ]
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17.3 Orthogonality

Definition 17.9 An element x of an inner product space X is said to be orthogonal to an element y € X
if (x,y) = 0. We also say that x and y are orthogonal and write x L y. Similarly, for subsets A, B C X,
L Aifzrla,VaeAand AL BifalbVaeA be B.

Now we are interested in finding a perpendicular from x to a subspace Y. Let M be a non-empty subset

of X and let us define the distance from = to M as
0 = inf — .
glgp i lz — 7l

We want to know if there exists a unique y € M such that § = ||z — y||.

Example 17.10 Take X = R2.

x x x
\\ * R
X ; 5 s
\ ; TR
Y Y
y does not exist in M exists unique y exists infinitely many y

Figure 17.1

A subset M of X is convex if Va,y € M we have ax + (1 — )y € M, Vo € [0,1].

Theorem 17.11 Let X be an inner product space and M # () a complete convex subset of X. Then for

every given x € X there exists a unique y € M such that
0= inf ||z —g| =]z -yl
nf llz =gl = llz — vl

Proof Idea: We need to take a sequence y,, € M such that 6, = ||z — yn|| = 0, n — oo and show that it
is a Cauchy sequence in M. Then there exists y € M such that y, — y. O

Lemma 17.12 If in Theorem 17.11 M =Y, where Y is a complete subspace of X, and x € X is fized,

then z = x — y 1s orthogonal to Y .

Let H be a Hilbert space and Y a closed subspace of H. We define the orthogonal complement as
Yt={2€H:2 1Y},

which is a vector subspace of H.
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18 Orthonormal Sets (Lecture Notes)

18.1 Direct Sums

Let X be an inner product space over K. Assume that ¥ C X is a complete subspace of X. Then we

know that z =2z —y L Y, where ||z — y|| = jn£ |z — g||. We define the following subspace of X:
g€

Yit={zeX:2LlY}

Theorem 18.1 Let Y be any complete subspace of X. Then for every z € X uniquey €Y and z € Y+
exist such that x =y + 2.

Proof: The existence of y and z follows from Theorem 17.11 and Lemma 17.12. Indeed, take y € Y such
that

el = e —
dnf lle =gl = fl= = vl

and z=x—y. Thenz€ Y+, sox =y +x —y=y+ 2 To prove the uniqueness of y and z, we assume

that z =y +2z =y, + 2, where y,y1 € Y and 2,21 € Y. Then Y 3y —y =2 —z € Y+ and

=y, -2 =@W—y,y—y1) =0
since Y L Y*. This implies y1 = y and hence z; = z. O

Definition 18.2 A wvector space X is said to be a direct sum of two subspaces Y and Z of X, written
X=YeaZ ifVeeX,AyeY, zeZ . 2 =y+z.

Remark 18.3 Let Y be a closed subspace. Then X =Y @Y+,

18.2 Orthonormal Sets
Definition 18.4

e An orthogonal set M in X is a subset of X whose elements are pairwise orthogonal:

(x,y) =0,Vaz,y e M, x #y.

e An orthogonal set M is called orthonormal if

l,x=y
0, x #y.

<Hf,y> -

Exercise 18.5
1. Show that for every x,y € X, x L y we have ||z + y||* = ||lz||* + ||y|*.

2. Prove that an orthonormal set is linearly independent.
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Example 18.6

1. M = {(1,0,0),(0,1,0),(0,0,1)} and M = {(% !

,0) , (0,0, 1)} are orthonormal
sets in X = R3,

5
|
=g

2. Take X = 1%, The set M = {en, n = 1, ey}, where e; = (1,0,0,...), ea = (0,1,0,...) and so on,
s an orthonormal set.

3. Take X = L*0,2n]. The sets M = {e,, n > 0}, where

1 cosnt
eo(t) = Wors en(t) = Jr
and M = {e,, n > 1}, where
sin nt
en(t) =

are orthonormal sets.

Remark 18.7 Let M = {ei,...,en} be a basis in X. ThenVzx € X, A ay,...,an such that
Tr=qaie1 + -+ apen.

If M is orthonormal, that is, {(ex,e;) = O, then

(x,er) = (ane; + -+ ager + - + anep, ex) = a(er, ex) + -+ - + agler, ex) + - + anlen, €x) = ag.
Now we want to extend the idea of Remark 18.7 to infinite-dimensional inner product spaces. Let

{e1,..., e} be an orthonormal set in an infinite-dimensional space X. With some = € X, take

n

yim Sl eren 2imo-y.

k=1

Then, applying the Pythagorean theorem

n n 2
(z,9) = (z —y,y) = (z,9) = (y,9) = <:r <w,ek>ek> — D (@, enex
k=1 k=1
= (wen) (@ er) =Y (@ en)er] = Z! (@,en)> =D [z, ex)Pllex]* = 0.
k=1 k=1 k=1

n
Again by the Pythagorean theorem ||z|% = ||y|* + ||z]|* = ||y||* = Z |(z, ep)|?

Theorem 18.8 (Bessel Inequality) Let {ex, k > 1} be an orthonormal sequence in an inner product
space X. ThenVzx € X

oo

>l en)l? < ll=)*.
k=1

Let {x,, n > 1} be linearly independent. We want to construct a sequence {e,, n > 1} such that

span{zy,...,x,} = span{ej,...,e,}, Vn.
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We use the Gram-Schmidt procedure:

€1
e = —,
(21|
V2
vg 1= X9 — (X2, €1)€1, €9 1= ——),
[[va
and in general
n—1
Un
Up 1= Ty, — Z(xn,ek>ek, en 1= )
2 onl

18.3 Series Related to Orthonormal Sequences
Given any orthonormal sequence {ey, k > 1} we consider
(o]
Z ageg, o € K.
k=1

We want to find for which oy, & > 1 this series converges.

Theorem 18.9 Let {ey, k > 1} be an orthonormal sequence in a Hilbert space H.

1. (18.1) converges in H if and only if
o0
Z lag|* < oo
k=1

2. If (18.1) converges and
o0
xTr = Zakek,
k=1

then ag, = (z,e), k > 1.

3. For every x € H the series
oo
Z(xa €k>€k
k=1

converges, but not necessarily to x.

Proof:

(18.1)

1. Proving that Y"}_; axey converges in H if and only if Yo, |ay|? converges is equivalent to proving

that S,, = aje1 +- - - + ape, is a Cauchy sequence if and only if R, = |a1\2 44 \an\g is a Cauchy

sequence. We compute for n < m

1Sm = Sull* = llomt1€nts + - - + amem||* = |O‘$L+1 +- -+ om[* = Ry — Ry,

Indeed {Sy }n>1 is a Cauchy sequence in H if and only if {R,},>1 is a Cauchy sequence in R.

2. Let © =Y 72| ager. We compute for k < n that (Sy, ex) = ay. Since S, — z, by the continuity of

the inner product ay = (S, ex) — (x,ex), n — 0.
3. Using the Bessel inequality and the proof of 1), we have

oo

NE

i

1 k=1

o8

[o¢]
[z, en)? < [lz)? = (@ en)? < 0o =) {z,ex)er < oo
k=1



18.4 Total Orthonormal Sets

Definition 18.10
o A set M C X is called a total orthonormal set if span M = X, that is, if span M is dense in X.
e A total orthonormal family in X is called an orthonormal basis.

Theorem 18.11 In every Hilbert space H there exists a total orthonormal set.

Theorem 18.12 (Parseval Equality) Let M be an orthonormal set in a Hilbert space H. Then M s
total in H if and only if
D @, ex)* = ||z)? Vo € H.
k

Theorem 18.13 Let H be a Hilbert space.
1. If H is separable, then every orthonormal set in H is countable.

2. If H contains a total orthonormal sequence, then H is separable.
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19

Adjoint Operators (Lecture Notes)

19.1 Examples of Orthonormal Bases

1. Legendre Polynomials

We consider the space LQ[—l, 1] which is separable and is the space of all real-valued functions z
given on [—1,1] such that [ |z(t)|*dt < co. We want to find an orthonormal basis of functions
for this space. For that we consider the linearly independent set of polynomials M = {z,, n > 0},
where 2,(t) = t", t € [~1,1]. Then span M = L?[—1,1], so M is a total set. However it is not

orthonormal because
1

1
(zp, 1) = /tktl dt = /t’“” £ ()
—1

-1

if k+ 1 is even. So we need to use the Gram-Schmidt procedure. In general we find

[2n + 1 1 4" n
en(t) = 5 Po(t), Pa(t) = onp] %(tQ -1,

where P, (t) are called the Legendre polynomials. The set {e,, n > 0} is an orthonormal basis in
L*[-1,1]:

[e.9]

x = Z(m,en)en, Ve L*[-1,1].
n=0

Hermite Polynomials
We consider L*(R). Now ¢" ¢ L*(R) because [*_[t"|*dt = co. Instead we take M = {x,, n > 0},
2

where x,(t) = t”e_t?, t € R. After normalization we find

1 2 dr
en(t) = ————e " THy(t), Ho(t) = (—1)"e" ——e"",

V27 dtn

where H,(t) are called the Hermite polynomials. The set {e,, n > 0} is an orthonormal basis in
L*(R).

Laguerre Polynomials

We consider L?[0, 00) and M = {x,,, n > 0}, where z,,(t) = t”e_%, t > 0. Then
et dn ¢
6n(t) =e §Ln<t), n( ) = n'%(tn n )7

where L, (t) are called the Laguerre polynomials. The set {e,, n > 0} is an orthonormal basis in
L0, 00).

19.2 Adjoint Operators

Let H be a Hilbert space.

Theorem 19.1 (Riesz Representation Theorem) Every bounded linear functional f on H can be written

in terms of an inner product:

f(@) = (2, 2),

where z is a uniquely determined element of H, and || f|| = ||z]|-
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Definition 19.2 Let Hi and Hs be Hilbert spaces and T : Hi — Hy a bounded linear operator. Then
the adjoint operator T of T is the operator T* : Hy — Hy such that

(Tz,y) = (x,T"y), Vo € Hy, y € Hy.
Theorem 19.3 The adjoint operator T* of T exists, is unique, and is bounded, with | T*|| = ||T|.
The existence of T™ follows from Theorem 19.1. Namely, consider for a fixed y € Hy the map
f(z) = (Tx,y), x € Hy.
Then f: Hi — K is a bounded linear functional:

[f (@) = [Tz, y)| < | T[lllyl < | TH=llyll = Cllzll-

By Theorem 19.1, there exists z € Hy such that f(z) = (z,z). We set Ty := z.

Theorem 19.4 Let H, and Ho be Hilbert spaces and T, S : Hy — Hy bounded linear operators.
1. (T*y,z) = (y,Tx), x € Hy,y € Hy
2. (S+T)" =8"+1T7
3. ()" =aT*, ae K

4. (T =T

[

N T = 7T = |72
6. T"T=0T=0

7. (ST)* = T*S* (if Hy = H,)

19.3 Self-Adjoint, Unitary, and Normal Operators

We assume that H is a Hilbert space.
Definition 19.5 A bounded linear operator T : H — H is said to be
o self-adjoint if T* =T
e unitary if T is bijective and T* = T~
e normal if TT* =T*T
Remark that if T is self-adjoint or unitary then it is normal. The inverse is not true.

Example 19.6 If we take T = 2il, where I is the identity operator, then T* = —2iI. So TT* = T*T,
but T* # T ' = —%il and T # T*.

Example 19.7 Consider C" with inner product

<£L‘,y> = Zékﬁka T = (gk)};:l? Y= (77k)713::1-
k=1
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Any bounded linear operator T : C"™ — C" can be given by a matriz My, that is, y = Tz can be expressed

m ar ... Gip &1

Tn an1 ... Qnn &n

If Mt is the matriz of T, then Mp+, the matriz of T*, is the conjugate transpose of Mr.
Theorem 19.8 Let T : H — H be a bounded linear operator.

1. If T is self-adjoint, then (Txz,x) is real for all x € H.

2. If H is complex (K = C) and (Tx,x) is real, then T is self-adjoint.
Proof:

1. If T is self-adjoint, then

(Tz,z) = (x,Tx) = (T"z,z) = (Tx,x) = (Tz,z) € R.

2. If (Tx,x) is real, then

(Tz,z) = (Tx,z) = (x, T*z) = (T"x, x).

Hence
0= (Tz,x) — (T"x,x) = (Tae —Trz,z) = (T —T")z,z) =T =T".

Theorem 19.9
1. The product of two bounded self-adjoint operators S and T is self-adjoint if and only if ST =TS.
2. Let Ty, n > 1 be self-adjoint operators on H such that T,, — T in B(H,H). Then T is self-adjoint.

Proof: We will only prove 2). We need to show that 7= T™. Consider
1T =T = (T = T)*[| = [|Tn = T'|| — 0.

So T,y — T™ and since T, = T),, then T,, — T™. This implies that 7= T"*. O
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20 Spectral Theory of Bounded Linear Operators (Lecture Notes)

We assume that all spaces are complex.

20.1 Basic Concepts

Assume X # () is a complex normed space and consider the operators
T:D(T)— X, T—-M:D(T)~ X,
where Iz =z and A € C. If it exists, denote
Ry :=Rx\(T) = (T — M)~ .

Note that R is a linear operator.
Definition 20.1
o A reqular value of T is a complexr number \ such that

(R1) R\(T) ewists,
(R2) R\(T) is bounded,
(R3) R\(T) is defined on a dense subset of X.

e The resolvent set p(T) is the set of all reqular values of T'.
o The set o(T') = C\ p(T) is called the spectrum of T'.
o A e o(T) is called a spectral value of T'.
The spectrum o(7T') is partitioned into three disjoint sets.
Definition 20.2
o The point spectrum or discrete spectrum op(T') is the set such that Rx(T) does not exist.

o The continuous spectrum o.(T') is the set such that R\(T) exists and is defined on a dense subset

of X, but R\(T) is unbounded.

e The residual spectrum o(T) is the set such that Ry(T) exists but the domain of Rx(T) is not dense
m X.

Remark that o(T) = 0,(T)Uo(T)Uo,(T). We also note that R(T") does not exist if and only if 7' — AT
is not injective, that is
Jx#0: (T — M)z =Tz — Iz =0.

Then A € 0,(T) & Jdo # 0 : Te — Az = 0 and the vector x is called an eigenvector of T. If X is

finite-dimensional then
o(T) =0,(T) = 0.
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Example 20.3 Take X = 1% = {x = (&)1 : & € C, 302, €| < oo} and define T : 12 +— I such that

Tz = (07‘517527637 .- ')7 T = (Ek:)k‘?l-

T is called a right-shift operator and D(T) = I>. We have
o0
IT2|® =Y 1€l = =) = 1T = 1.
k=1

Now consider X = 0. We have Ry =T, D(T™') = {y = (ni)k>1 : m = 0}, and

T~y = (m,m,...), y € DT,
In this case Ry exists but D(T_l) 1s not dense in X. Thus A = 0 belongs to the residual spectrum of T .
Proposition 20.4 Let X be a complex Banach space and take T € B(X,X) and XA € p(T). Then Rx(T)
is defined on the entire set X and is bounded.

20.2 Spectral Properties of Bounded Linear Operators

Theorem 20.5 Take T € B(X,X), where X is a Banach space. If |T|| < 1, then (I —T)™! exists,
belongs to B(X, X), and

o
I-T)"'=>Tr=1+T+T*+...,
k=0

where the series converges in B(X, X).
Proof: Note that ||T%|| < ||T||*. Since |T|| < 1, we have

oo o0
DITHI <Y ITI < oo

k=0 k=0

This implies that the series
oo
S = Z "
k=0
converges. Now compute
(I-TYI+T+T*+ - +T)=(I+T+T*+ - +TYI-T)=1-T"""

Since || T" | < ||T||"" — 0, we get (I —T)S = S(I —T) =1, and thus S = (I —T)" ' O

Theorem 20.6 The resolvent set p(T) of T € B(X,X) on a complex Banach space X is open. Hence

the spectrum o(T) is closed.

Theorem 20.7 The spectrum o(T) of T € B(X, X) on a complex Banach space X is compact and lies
in the disk |A| < ||T]|.
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Proof: Take A # 0 and denote 6 = % From Theorem 20.5 we obtain that

Ry=(T-X)"'=—-0I-0T)"'=-0 i(@T)k _— i <1T>k,
k=0 A k=0 A

where the series converges because

1 1]
—Tl|=-—<1
[57] -5 -
So by Theorem 20.5 Ry € B(X, X). Since o(T) is closed by Theorem 20.6 and bounded, we have that
o(T) is compact. O

Theorem 20.8 Let X be a Banach space and T € B(X,X). Then for every Ao € p(T) the resolvent
RA(T) has the representation

o0

RA(T) =Y (A=) Ry,
k=0

where the series absolutely converges for \ in the open disk

1
1B, l

‘)\—)\0‘ <

in the complex plane.

Definition 20.9 The spectral radius r,(T) of T € B(X, X) is the radius

ro(T) = sup |A|.
Ao (T)

One can show that r,(T) = li_>m VT
n—oo

Theorem 20.10 (Resolvent Equation, Commutativity) Let X be a complex Banach space and take
T e B(X,X) and X\, € p(T).

1. R, — Ry = (n— N)R,Ry
2. Ry commutes with any S € B(X, X) which commutes with T .
3. R\R, = R,R)

Proof:

1. We have

R, — Ry=R,I — IRy = R,((T — \[)Ry) — (R,(T — uI)) Ry = R, (T — AI — T + puI) Ry,
=R,(t— ARy = (1 — AN)R,R).

2. The assumption T'S = ST implies (T'— A\I)S = S(T — A\I). Thus

R)\S = R\S(T — A)Ry = Ry(T — AXI)SRy = SR,.

3. Ry commutes with 7" by 2). Hence R) commutes with R,,.
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Theorem 20.11 Let X be a complex Banach space. Take T' € B(X, X) and the polynomial

p(A) = an A" + Oén—l)\n_l + - 4 ag, a, #0.

Then
o (p(T)) = p(o(T)),
where p(T) = o, T™ + i 1T + - + aol and p(o(T)) ={p(\) e C: X e o(T)}.

Theorem 20.12 FEigenvectors {x1,...,x,} corresponding to different eigenvalues Ap, . . .

operator T on a vector space X are linearly independent.
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21 Spectral Representation of Bounded Self-Adjoint Operators I
(Lecture Notes)

We will assume that H is a complex Hilbert space and T': H — H is a bounded linear operator. We
recall that T is self-adjoint if 7% = T, that is,

Va,ye H, (Tz,y) = (z,Ty).

21.1 Spectral Representation of Self-Adjoint Operators in Finite Dimensions

Here we will assume that H is finite-dimensional. From Mathematics 2, Lecture 12 we know that there

exists an orthonormal basis {e1,...,e,} consisting of eigenvectors of T'. In particular
Tep = Mer, Ve=1,...,n

and )i, are called eigenvalues and are real. Since z =Y, (z, ey)er, we get

Trx =T (Z(x, ek)ek> = Z(:):, ep)Tep = Z Az, ex)eg.

k=1 k=1 k=1

Let us define operators Pyx = (x, ex)er which are projections onto span{ex}. Then

n
Tx = Z A Prx
k=1
or n
T=> AP (21.1)
k=1

But this formula cannot be extended to infinite-dimensional Hilbert spaces. For instance, take
H=170,1], (Tx)(t) = tx(t).

Then T* =T and o(T') = 0.(T) = [0,1]. So we need to rewrite (21.1) in a more appropriate fashion. Let
us assume for simplicity that Ay < Ao < --- < \,,. We introduce

E\ = Z P,.

Remark that

Ey=0 A< )\
Ex=P, A1 <A<\
Ex=P+ P, Aa <A< A3

Ex=Pi+ -+ P, M S A< A1
Ex=1,A>\,.
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Remark also that

k
Bz = Z(x,ej>ej, A <A< Apg1
j=1
is the projection onto span{ei,...,er}. Moreover, it “increases” and is right continuous. Then, in
particular, F\, = P +---+ P, and P, = F), — E),_, = E), — E\,_. Consequently
n oo
T=> M(Er, —Ex_)= / AdEj,
k=1 %

where the integral is a Riemann-Stieltjes integral. We need to understand the last equality as follows:
(T,) = 3 M((Bray) = By ) = [ Ad(Bso.).
k=1

Later we will extend this formula to infinite-dimensional spaces. Namely, we will show that there exists an
“increasing” right-continuous family of projection operators Ey, A € R such that F_o, =0 and Fy = I,

and
oo

T = /)\dEA.

21.2 Spectral Properties of Bounded Self-Adjoint Operators

Example 21.1 Consider H = L*[0,1] and
(Tx)(t) = ta(t), t € [0,1], z € L*[0,1].

1. T is self-adjoint. Indeed

1 1
(Tz,y) :/tq: /:c = (z,Ty).
0 0

2. We want to find the spectrum and resolvent sets. Consider Ty :=T — A\I. We compute

(Tha)(t) = (T — Ax)(t) = ta(t) — Ax(t) = (¢ = Nz (t) = y(1).

Then )
(R)\y)(t) = my(t)v te [07 1]’

(a) If X € C\ [0,1], then A is bounded so

1 1
IRl = [ G yplof < s o / WO < s el
0

Hence Ry is a bounded linear operator defined on the whole space LQ[O, 1], implying X € p(T).
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(b) If X € [0,1], then L5 is not bounded and Ry is not defined on the whole space L*[0,1]. Say
for the function y(t) = vt — X\ 11(t), t € [0,1] we get

ViEt— A\ 1
Ryy(t) = ﬁﬂ[,\,l] (t) = ﬁﬂ[x\,l] (t)

and
1

1
1 1
2_ = —_— =
[yl —!mzﬂ[,\,l](t)dt—/t_/\dt 0

A
if A< 1. So Ry is only defined on the set

2
P
Y

1
D(Ry) = yeL2[0,1]:/|
0

One can show that D(Ry) is dense in L*[0,1] so A € o.(T). Additionally o.(T) = [0,1],
op(T) = 0, (T) =0 and p(T) = C\ [0, 1].

Theorem 21.2 Let H be a complex Hilbert space and T : H — H a bounded self-adjoint operator.

1. All eigenvalues of T (if they exist) are real.

2. Figenvectors corresponding to different eigenvalues of T are orthogonal.

Theorem 21.3 (Resolvent Set) Let H be a complex Hilbert space and T : H — H a bounded self-adjoint
operator. Then \ € p(T) if and only if there exists C' > 0 such that

Tz — \z|| > C||z||, Yz € H.

Theorem 21.4 (Spectrum) Let H be a complex Hilbert space and T : H — H a bounded self-adjoint

operator. Then the spectrum o(T') of T is real and belongs to the interval [m, M|, where m = Hi1”1f (Tz,x)
z||=1

and M = sup (Tx,z). Moreover, m and M are spectral values of T.
llzll=1

Theorem 21.5 (Residual Spectrum) The residual spectrum o,(T) of a bounded self-adjoint operator
T:Hw— H on a complex Hilbert space H is empty.

21.3 Positive Operators

We introduce a partial order “<” on the set of self-adjoint operators on H. If T is a self-adjoint operator,

then we know that (T'z, z) is real.
Definition 21.6

o Let T, Ty : H — H be bounded self-adjoint operators. We write Ty < Ty if (T1x,x) < (Thz,x) for
allz € H.

o A bounded self-adjoint operator T is called positive if T > 0, that is, (Tx,x) >0,Vx € H.
We remark that a sum of positive operators is positive.

Theorem 21.7 FEvery positive bounded self-adjoint operator T' : H — H on a complex Hilbert space H
has a positive square root T%, that s, (T%)2 =T, which is unique. This operator commutes with every

bounded linear operator on H that commutes with T .
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22 Spectral Representation of Bounded Self-Adjoint Operators 11
(Lecture Notes)

22.1 Projection Operators

Let H be a Hilbert space and Y a closed subspace of H. In Lecture 18, we showed that H =Y & YL,
that is, for every x € H there exists a unique y € Y and z € Y+ such that = y 4+ 2. We defined y as

the minimizer of the function Y 5 g+ ||z — 7|, i.e.
—yll = inf ||z — g,
|z =yl = inf [l — 7]

We define the operator P : H — H such that Pz := y, which is called an orthogonal projection on H.
More specifically, P is called the projection of H onto Y.

Exercise 22.1 Show that P is a bounded linear operator on H with ||P|| = 1.
Remark 22.2 If P is the projection of H onto Y, then P(H) = {Pz:2z € H} =Y and ker P =Y.

Theorem 22.3 A bounded linear operator P : H — H on a Hilbert space H is a projection on H if and
only if P* = P and P? = P, that is, if it is self-adjoint and idempotent.

Proof: Assume that P is a projection. Take x € H. Then
Pr=y+2z=Px+0,

where y € Y and z € Y+, Thus P(Pz) = Pz. Now take x1 = y; + 21 and x3 = y2 + 22, where y1,y2 € Y
and z1, 29 € Y. Then

(Pr1,22) = (y1,92 + 22) = (y1,¥2) + (y1,22) = (Y1, 92)

and

(w1, Pxo) = (y1 + 21,42) = (y1,92) + (21,%2) = (Y1, 42)-

This implies that P* = P. Conversely, assume P* = P? = P is given. Set Y := P(H). We need to show
that if z = y + 2, where y € Y and z € Y, then y = Pz. We write

x=Pr+x— Px
and check that 2 — Pz € Y+, Take u € P(H) < u = Pv, v € H. Compute

(u,z — Px) = (Pv,x — Px) = (Pv,z) — (Pv, Pz) = (Pv,2) — (P*v,z) =

Example 22.4 Consider H = L*[0,1]. Define for X € [0, 1]

z(t), t <A

(Px)(t) =IpN(t)z(t) =
0,t> A\

Let us check that P is a projection. According to Theorem 22.8, we have to show that P> = P* = P. It
is clear that P2 = P.
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Next

1

1
(Pxy,29) = / (Px1)(t)zo(t) dt = /H[O’)\](t)azl(t)xg(t) dt =
0

0

w1 (t) n (B)22(t) dt = (z1, Pxa).

o

This implies that P is a projection on H. We define
Y = P(H)={z € L*[0,1] : z(t) = 0, t € (\, 1]}

22.2 Properties of Projection Operators

Assume that H is a Hilbert space and P;, P», P are projections on H. Denote Y; = P;(H) = Im P; and
Y =PH)=ImP.

1. P is positive and (Pzx,z) = ||Pz|?>.
2. PP is a projection if and only if PyP, = P,P;. Then P; P> projects H onto Y; N Ys.
3. P + P, is a projection on H if and only if Y7 | Y5. In this case P; + P, projects H onto Y1 & Ys.
4. P, — P; is a projection on H if and only if Y7 C Ys.
Theorem 22.5 (Partial Order) The following conditions are equivalent.
1. PPb=PP =P
2. Y1CYs
3. ker P; D ker P,
4- N1 Pre|| < || Pa|

5. Py < Py (P, — Py is positive)

22.3 Spectral Family

Let H be a complex Hilbert space.
Definition 22.6
e A real spectral family is a family {Ex, A € R} of projections Ex on H such that

1. EAQEM,V)\<LL
2. lim Eyx =0, 1im Exx=x,Vzx e H
A——00 A—00

. FE = lim E,x=F H
3. Exiox u—g\r}&-O 0T \z, Vo €

o {E)\, A € R} is called a spectral family on an interval [a,b] if Ex =0, A < a and Ex =1, A\ > b.

We define a spectral family for a bounded self- adjoint operator T': H — H. Fix A € R and consider
T\ = T — MI. Define the positive operator By = (TA) Remark that B) is the unique positive self-adjoint
operator such that B)\ = TA. Define T)\+ = §(B,\ + T)) as the positive part of the operator 7.
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Example 22.7 Let H = L?[0,1] and take (Tz)(t) = ta(t). We want to construct Ex. We compute
(Tha)(t) = (Tz)(t) — Ax(t) = (t = A)z(t), t € [0,1],

Then (Tix)(t) = (t — A\)2x(t) and (Baz)(t) = /(t — X\)2x(t) = |t — Nz(t), t € [0,1]. So the positive part
of T is

(T 2)(0) = 5 (Bra)(t) + () (1)) = 5 (1t = Ale(t) + (¢ = M) = (£ = ) (e), £ € [0,1],

where
s$,820
st =
0, s <0.
So
x(t), t > A
(TYz)(t) =
0,t< A

Then ker Ty = {z : Tyfx = 0} = {z : 2(t) = 0, t > A\}. From Ezample 22./ we know that the projection
Ey of H onto ker T)'f is defined as

(Exz)(t) = To,x (1) (1)

Theorem 22.8 The family {Ex, A € R}, where E is the projection of H onto Ty, is the spectral family

on the interval [m, M|, which is the smallest interval containing the spectrum of T' (see Theorem 21.4).

Theorem 22.9 (Spectral Theorem for Bounded Self-Adjoint Linear Operators) Let T : H — H be a

bounded self-adjoint linear operator on a complex Hilbert space H. Then

00 M
T:/AdEA: / NdE),
—00 m—0

where Ey is the spectral family associated with T'. In particular

0o M
To)= [ NdEsey) = [ Ad(Bsog) Yoy e .

—00 m—0

Coming back to (T'z)(t) = tz(t), we compute

o] 1 1
(T2)(t) = / NdBra(t) = / ATy (£)2(t) = (1) / Adlig y(t) = 2(t) - £ 1 = ta(t).
—00 0 0
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23 Compact Linear Operators (Lecture Notes)

23.1 Definition and Properties of Compact Linear Operators on Normed Spaces

Let X be a normed space. We first recall that F' C X is compact in X if every open cover of F' contains
a finite subcover, that is, for every family {G,} of open sets in X such that F' C |J, G, there exists
{Gays.--,Ga,} C{Gq} such that F C |J;_; Gq

Theorem 23.1 F is compact in X if and only if every sequence {xp}n>1 C F has a subsequence that is

convergent in F.
Definition 23.2 A set F C X is called relatively compact if F is compact.
Every bounded set in a finite-dimensional normed space is relatively compact.

Exercise 23.3 Show that F' is relatively compact if and only if ¥V {xy}n>1 C F there exists a subsequence

{zn, k=1 such that x,, — x, where x is not necessarily in F.

Definition 23.4 Let X and Y be normed spaces. An operator T : X — Y is called a compact linear
operator if T is linear and if for every bounded subset M C X the image T'(M) is relatively compact.

Theorem 23.5 (Compactness Criterion) Let X and Y be normed spaces and T : X — Y a linear
operator. Then T is compact if and only if it maps every bounded sequence {xy}n>1 in X onto a sequence
{Tz,} in'Y that has a convergent subsequence, that is, for all bounded {xp}n>1 in X there exists a

subsequence {Txp, }k>1 of {Txn}tn>1 such that Tx,, — vy inY.
Theorem 23.6 If T : X — Y is bounded and ImT = T(X) is finite-dimensional, then T is compact.

Example 23.7 Take X =Y =12 over the field K. The operator T defined by

= (261,&2,83 +£4,0,0,0,...)

for x = (& )5y is compact. Indeed T(X) = {(n1,m2,13,0,0,0...) : m1,m2,m3 € K} is a 3-dimensional
subspace of 1?. By Theorem 23.6 T is compact.

Theorem 23.8 Let {T,}n>1 be a sequence of compact linear operators from a normed space X to a
Banach space Y. If T,, — T in B(X,Y), then T is compact.

Example 23.9 We consider X =Y =12 and

<§1,§2,53,...>.

Let us prove that T is compact. Take

Tnx:<§1,§2 & ..,5—”00 >

Then T, is bounded and dim (Tn(X)) =n. So by Theorem 25.6 it is compact. Let us compute

ey e |

2
> &< nﬂg Z Gy el

k=n+1

Hence |T — T, < — 0, n = oo. By Theorem 25.8 T is compact.

n+1

73


http://www.math.uni-leipzig.de/~konarovskyi/teaching/2020/Math4/pdf/notes/Math4Note23.pdf

23.2 Spectral Properties of Compact Self-Adjoint Operators

In this section we will assume that H is a separable Hilbert space.
Theorem 23.10 Let T : H — H be a bounded linear operator. The following statements are equivalent.
1. T is compact.
2. T is compact.
3. If (xn,y) — (z,y),Vy € H, then Tz, — Tz in H.
4. There exists a sequence T, of operators of finite rank such that | T — T,| — 0.
Theorem 23.11 (Hilbert-Schmidt Theorem) Let T' be a self-adjoint compact operator.
1. There exists an orthonormal basis consisting of eigenvectors of T .

2. All eigenvalues of T are real and for every eigenvalue A # O the corresponding eigenspace is finite

dimensional.
3. Two eigenvalues of T that correspond to different eigenvalues are orthogonal.
4. If T has a countable (not finite) set of eigenvalues {\p}n>1, then A\, — 0, n — co.
Corollary 23.12 Let T be a compact self-adjoint linear operator on a complex Hilbert space H. Then

there exists an orthonormal basis {ey}r>1 such that

Tx = Z Az, en)en, x € H.

n=1
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24 Unbounded Linear Operators (Lecture Notes)

24.1 Examples of Unbounded Linear Operators

Take H = L*(—o0,00). Consider first the multiplication operator

oo

(Tx)(t) =tx(t), t €eR, D(T) =< x € L*(—00,00) : / t22(t)|* dt < oo
Remark that D(T) # L?(—o0, 00). Indeed
Lzt
x(t) = € L*(—o00,00)
0,t<1
because - -
1
Joll? = [ et = [ ae=1.
—00 1
but - -
|Tz||? = / 2|z(t)|? dt = /1dt = o0.
—00 1

Let us recall that a linear operator T': D(T') — H is bounded if

3C > 0:||Tz| < C|z||, Vo € D(T).

We take
IL,n<t<n+1
Ty =
0, otherwise.
Then
o n+1
|z |? = / |z, (t) 2 dt = / dt =1,
s v
but
o n+1
Tal = [ PP~ [ #az o
o s

So ||Tz,||> = n?||zs]|, ¥n > 1, hence T is unbounded. The differentiation operator
(Ta)(t) = ia'(t),  D(T) € L*(~00, 0)

is also unbounded. Later we will explain what D(T') is. Here we only remark that all continuously

differentiable functions with compact support and Hermite polynomials belong to D(T).
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24.2 Symmetric and Self-Adjoint Linear Operators

Let H be a complex Hilbert space. Let T': D(T') — H be a densely defined (D(T') = H) linear operator.
The adjoint operator T : D(T™) — H of T is defined as follows. The domain D(T™) of T™ consists of all
y € H such that 3y* € H satisfying

(Tz,y) = (x,y"), Ve € D(T). (24.1)

For each such y € D(T™) define T"y := y*. Remark that D(T™) is not necessarily equal to H. Since
D(T) is dense in H, for every y € D(T™) there exists a unique y* satisfying (24.1). Before we discuss the
properties of adjoint operators, we will first discuss the extension of a linear operator. Let us come back

to the operator
(Thz)(t) = i’ (t).

We can define T only for functions from
D(Ty) = C}(R) = {f € C*(R) : f = 0outside some interval}.

Now let

(Toz)(t) = ia'(t), D(Ty) = feC(R):/|f2dt<oo, /|f’|2dt<oo

Ty and T; are different operators, but D(71) C D(T5) and T = TQ‘D(Tl).

Definition 24.1 An operator Ty is called an extension of another operator Ty if D(Tv) C D(T2) and

T = . In this case we write T1 C Ts.

TQ}D(Tl)
Theorem 24.2 Let S:D(S)+— H and T : D(T) — H be densely defined linear operators.
1. If S C T then T* C S*.
2. If D(T™) is dense in H, then T C (T™)*.
8. If T is injective and Im T is dense in H, then T* is injective and (T*)™* = (T1)*.

Definition 24.3 Let T : D(T) — H be a densely defined linear operator on H. T is called a symmetric

linear operator if
(Tw,y) = (x,Ty), Va,y € D(T).

Remark T being symmetric does not imply that 7= T*. Indeed, take

(T2)(t) = ix(t), D(T) = Co(R).

Then
(Tz,y) = /im'(t)y(t)dt: /zy(t)dx(t) :iy(t)x(t)‘_ - /x(t) d(iy(t)) =0 -0 — /:c(t)z'y’(t) dt
= / z(t)iy' (t) dt = (z, Ty), Va,y € D(T) = Cy(R).
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However, T* # T. For instance, y(t) = e, t € R does not belong to D(T) = Co(R) but y € D(T™)

because for y*(t) = i(—2t)e*t2 one has
(Tz,y) = (z,y"), Vo € D(T).

Lemma 24.4 A densely defined linear operator T is symmetric if and only if T C T*.

Definition 24.5 Let T : D(T) — H be a densely defined linear operator. T is called self-adjoint if
T=T".

Remark 24.6 FEvery self-adjoint operator is symmetric but not every symmetric operator is self-adjoint.

24.3 Closed Linear Operators

Definition 24.7 Let T : D(T') — H be a linear operator, where D(T)) C H. T is called a closed linear
operator if its graph
Gr(T) ={(z,y) : 2 € D(T), y =Tx}

is closed in H x H, where the norm on H x H 1is defined as

Gz, ) = Vlzl* + [yl

Theorem 24.8 Let T : D(T) — H be a linear operator, where D(T') C H.
1. T is closed if and only if x,, — z, x,, € D(T) and Tz, — y imply x € D(T) and Tz = y.
2. If T is closed and D(T) is closed, then T is bounded.
3. Let T be bounded. Then T is closed if and only if D(T) is closed.
Exercise 24.9 Show that the multiplication operator is closed.
Theorem 24.10 Let T be a densely defined operator on H. Then the adjoint operator T* is closed.
Definition 24.11
e [If a linear operator T has an extension T which is a closed linear operator, then T is called closable.

o If T is closable, then there exists a minimal closed operator T satisfying T C T. The operator T is
called the closure of T'.

Theorem 24.12 Let T : D(T) — H be a densely defined linear operator. If T is symmetric, its closure

T exists and is unique.
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25 Spectral Representation of Unbounded Self-Adjoint Operators,
Curves in Rg (Lecture Notes)

25.1 Spectral Representation

Let H be a complex Hilbert space. We recall that a bounded operator U : H + H is called unitary if
Ur=U"%

Theorem 25.1 Let U : H — H be a unitary operator. Then there exists a spectral family {Ep}r on
[—m, 7| such that

T

U= /e’” dE,, (25.1)

—Tr

where the integral is understood in the sense of uniform operator convergence.

Proof Idea: One can show that there exists a bounded self-adjoint linear operator S with o(S) C [—m, 7]
such that
U =¢e" =cosS+isinS.

Let {Ey} be a spectral family for S on [, 7]. Then

S = /GdEg.
Hence i i i
UzeiS:/COSQdE@-i-’i/SiHQdE@: /ewdEg.

O

Let T : D(T') — H be a self-adjoint linear operator, where D(T) is dense in H and T may be unbounded.

We take a new operator
U= (T—i)(T+4iI)~!

called the Cayley transform of 7. It is defined on the whole Hilbert space since —i € o(7") C R. One can

also check that it is unitary and
T=i(l+U)I-U)""

Theorem 25.2 (Spectral Representation for Unbounded Self-Adjoint Operators) Let T': D(T') — H be
a self-adjoint linear operator and let D(T') be dense in H. Let U be the Cayley transform of T' and {E@}
a spectral family in the spectral representation (25.1) for —U. Then

T 0 00
T:/tan2dE9: /)\dE)\,

where By = Egarctan,\, A€ R.
We remark that T =i(I + U)(I —U)~' = f(=U), where f(f) = i{75. Let

U = /eiedEg.

—Tr
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Then

™

1—ef - r (1 —cosf) —isinf -
———dEy = | i dE
/Zl+el9 o /Z(1+0089)+isin0 f

—T —T

T:/f(ew) dEy =

90 s . 7 .
:/Z'ZSlnedEQZ/tanedEg.
2+ 2cosf 2

—T —T

Example 25.3 (Spectral Representation of the Multiplication Operator) Let H = L?*(—c0,00) be taken

over C and take

(Tx)(t) = tx(t), t €R, D(T)={ x € L*(—00,00) : / 32 (t)* dt < oo

—00

Then T is self-adjoint and the spectral family associated with T is

(Fra)(t) = x(t), t < A
0, 1> A

25.2 Some Definitions

We consider a map = : I — R3, where z(t) = (z1(t), z2(t), 23(t)), t € I = [a,b]. We assume that x;
are 7 times continuously differentiable and a'(t) = (2 (t), z5(t), 25(t)) # 0, V¢t € I. The set of points
represented by x we will call a curve. A curve can have different representations. Indeed, let us consider

a transformation ¢ = ¢(¢*) such that
1. t:[a",b%] — [a,b], t(a™) = a, t(b*) = b (or t(a™) = b, t(b*) = a)
2. the function is r times continuously differentiable
at . . .
3. T S different from zero on I
Then z(t(t*)) =: (t*) is another parametrization of the curve .

Example 25.4

1. z(t) = (a1 + bit,as + bot,az + bst) describes a line passing through (a1, a2,as) and parallel to
(b1,b2,b3).

2. x(t) = (acost,bsint,0) describes an ellipse with azes a and b in the plane spanned by x1 and xa.
3. x(t) = (rcost,rsint,ct), c # 0 describes a circular heliz.

We recall that )
L= / 2/ (8)] dt

a

is the total length of a curve while
t
)= [ )l dr

to

is the length of the part of the curve between tg and ¢.
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Since §'(t) = |2/(t)] > 0, the function s : [a,b] — [a*,b"] is strictly increasing. This means that the
inverse map ¢t = t(s), s € [~Ly, Lo] exists. The parametrization z(s) := z(t(s)) is called a natural
parametrization. Remark that the point tg for s = 0 is chosen arbitrarily. For a natural parametrization

we use the notation
. dx o d%x
Xr = — =

ds’ U7 a2

and for an arbitrary parametrization we use the notation

Codt’ Cde?’
We remark that

. da;dt_ ,
) = T dds

(1)

= |i(s)] = 1.

-
|/ (t(5))]

Lemma 25.5 Let x be naturally parametrized. Then |(s)| = 1.

80



26 Curves in Rg (Lecture Notes)

26.1 Tangent, Principal Normal and Binormal Vectors

Let z : I — R? where 2(t) = (21(t),22(t),23(t)), t € I = [a,b], be a curve C. Let z = x(s) be a natural

parametrization of x, that is z(s) = z(t(s)), where ¢ = t(s) is the inverse function to

y:/mawmﬁ:/Vk%am2+¢gm»?+@gmfdw

Remark 26.1 x = x(t) is the natural parametrization (s(t) =t) if and only if |2’ (t)] = 1 for every t € I.
Definition 26.2

o The vector ( h) (s) d(s)
- . x(s+ —x(s x(s .
ts) = limy h =g 2

is called the unit tangent vector to the curve C at the point x(s). Remark that if x(t) is not a

natural parametrization, then

e The plane orthogonal to t(s) and passing through x(s) is called the normal plane. It can be written
i the form

i(s)-z+x(s) =0, 2 = (21, 22, 23) € R3,

Example 26.3 We consider the circular heliz x(t) = (rcost,rsint,ct), t € I, ¢ # 0. We first calculate

2'(t) = (—rsint,rcost,c) = |2'(t)| = Vr2sin?t + 12 cos2t + 2 = \/r2 + 2,

S 22
T2 —w,w.— T4+ ce.

Thus we obtain the natural parametrization and unit tangent vector

t
1
s(t):/\/r2+c2dt: r2 4+t =t(s) = —=s
0

s . 8 ¢ - r . s T s ¢
x(s) = (rcos—,rsin—, —s), t(s)=(——sin—,—cos—,—]).
w w’ w w w w w’ w
Definition 26.4

e The rate of change of the unit tangent vector

k(s) = [t(s)] = |z (s)|
is called the curvature of the curve C' at the point x(s).

e The plane passing through x(s) and parallel to ©(s) and &(s) (if &(s) # 0) is called the osculating

plane.

o The vector

—,

i i) i)
)= e T o)

is called the principal normal to the curve C at the point x(s).
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Example 26.3 Coming back to the circular heliz, we have

r s s r
(T s T 0) N o T
Z(s) ( 3OS s sin — ” k(s) = |z(s)] ek

pl(s) = (— coS i, —sin i, 0) )
w w
Definition 26.5

o The vector

—,

b(s) = #(s) x pls)
is called the binormal vector of C at the point x(s).

e The plane parallel to t(s) and I;(s) and passing through x(s) is called the rectifying plane.

Example 26.3 For the circular heliz, we have

s s
p(s) = (— cos —, —Sin—,0> ,
w w

i 7 k
- c . s ¢ s T
b(s)=|—Lsin2 Lcoss £ :(—sm—,——cos—,—).
—cos2  —sinZ 0
w w

Next we introduce torsion. Roughly speaking, the torsion measures the rate of rotation of the curve, that

is, the rate of change of the osculating plane. Assume that x(s) > 0.

Definition 26.6 The scalar

is called the torsion of the curve C at the point z(s).

Example 26.3 For the circular heliz, we calculate the torsion:

Theorem 26.7 A curve (of class r > 3) with k(s) # 0, Vs is a heliz if and only if T = const., kK = const..

We remark that the vectors ¢, 7, b form a basis. Consequently, every vector can be rewritten as a linear

combination of these vectors. In particular, we obtain the Frenet formulae:

T+
o
~

K
pl=1-« 0 7 I
b 0 -7 0 b

Theorem 26.8 A curve with k # 0 belongs to a plane if and only if T(s) =0, V s.
Theorem 26.9 If the curve C is given by an arbitrary parametrization, then

2/ (t) x 2" (¢)

] (0).2" (1)
OF

x a(t)[?

k(t) =

X
X



26.2 Topological Spaces

Let X be a set and 7 a class of subsets which satisfies the following properties:
(T1) Per, X er

(T2) Any arbitrary (finite or infinite) union of sets from 7 belongs to 7

(T3) The intersection of a finite number of sets from 7 belongs to 7

Definition 26.10 The pair (X, 7) is called a topological space, where T satisfies (T1) - (T3). Sets from

T are called open sets.

Example 26.11
1. Let X be a metric space and 7 a family of all open subsets from X. Then X is a topological space.
2. Take X =1[0,1] and 7 = {[0,b) : b€ (0,1)} U{D, X}. Then X is also a topological space.

Definition 26.12 A topological space (X,T) is called a Hausdorff space if Ve,y € X, 3A, B € 7 such
that ANB=0 andx € A, y € B.

Definition 26.13 Let (X,7) and (X', 7) be topological spaces. A function f : X v X' is continuous if
A er,vAaer.

Remark 26.14 If X, X' are metric spaces, then f : X — X' is continuous as a function between metric

spaces if and only if it is continuous according to Definition 26.13.

Definition 26.15 A map f : X — X' is called a homeomorphism if f is a bijection and f and f~1 are

continuous.

Let us consider a way of constructing a topology. Assume that B is a collection of subsets from X such
that B covers X and for all By, By € B and x € B N By, there exists By € B such that By C By N Bs.
Then the collection of arbitrary (finite or infinite) unions of subsets from B is a topology on X. This

topology is called the topology generated by B and B is called the base of this topology.
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27 Differentiable Manifolds (Lecture Notes)

27.1 Main Definitions

Assume that M is a connected, Hausdorff topological space. Connected means that no open sets U,V
exist such that M =U UV and UNV = ().

Definition 27.1

e An m-dimensional coordinate chart on M is a pair (U, @), where U is an open subset of M (called

the domain of the coordinate chart) and ¢ is a homeomorphism of U onto an open subset of R™.
o IfU = M, then the coordinate chart is globally defined, otherwise it is locally defined.

Definition 27.2 Let (U1, 1) and (U, p2) be m-dimensional coordinate charts with Uy N Uy # 0. Then
the function
P9 0 gol_l : ng(Ul N UQ) — (pQ(Ul N Ug)

is called the overlap function.
Definition 27.3

e An atlas of dimension m on M is a family of m-dimensional coordinate charts {(U;, ;) }icr, where
I is an index set, such that M is covered by {U;}icr and each overlap function ¢j o cpi_l, 1,7 €1 is
infinitely differentiable.

e An atlas is said to be complete if it is maximal, that is, it is not contained in any other atlas.

e For a complete atlas, the family (U;, @;)icr is called a differential structure on M of dimension m.

The topological space M is called a differentiable manifold.

Definition 27.4 A point p € U C M has the coordinates (cpl(p), .. .,gom(p)) with respect to the chart
(U, ). The coordinates of p are often written as (xl(p), .., 2™(p)).

27.2 Some Example of Differentiable Manifolds

1. The circle S* = {(z,y) € R? : 22 + y* = 1} is a differentiable manifold. One can define the

differential structure on S' by introducing the following charts:
Ur = {(z,y) € §' 12 >0}, 1(z,y) =y

Us :={(z,y) € ST : 2 < 0}, wo(x,y) ==y
Uri={(z,y) € S" 1y > 0}, py(w,y) ==
Ur = {(z,y) € S 1y <0}, pa(z,y) ==z

Let us show that the overlap functions are from C*°. Consider the overlap of U; and Us:
pr(@y) =y, @3 (@)= (z,V1-22).

Hence

9010(1051: V1_$27$E(0a1)

is infinitely differentiable on (0, 1).
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2. The n-sphere S™ = {x € R"™ : |22 = 1} is a differentiable manifold. The differential structure

can be given by means of a stereographic projection from the north and south poles (p; and @9

respectively):
T X2 T,
T1y..., X = e R
901( 1, » n+1) <1_xn+1’1_xn+1’ ’1—$n+1>
€1 €2 L, n
o(x1,...,T = , ey € R".
2l nt1) (1 +Tpr1 1+ o001 1+ $n+1>

27.3 Differentiable Maps and Tangent Spaces

Definition 27.5

e A local representative of a function f: M — N with respect to coordinate charts (U, @) and (V, 1)
on M and N respectively is the map

Yo fop t:pU)— R

e Amap f: M N is a C%-function if for all covers of M and N, the local representatives are
times continuously differentiable. If f is a C function, then f is called differentiable. If f is a C™

function, then f is called smooth.
Definition 27.6
o A curve on a manifold M is a smooth map o from some interval (—e,€) of the real line into M.

e Two curves o1 and oy are tangent at a point p in M if 01(0) = 02(0) = p and if in some local

coordinate system (x',... 2™) around the point p
dx’ dx’
(o1(t)) = (o2(t))| Li=1,...,m.
dt o dt o ’

Remark that if o1 and oo are tangent in one coordinate system, then they are tangent in any other

coordinate system.

o A tangent vector at p € M is an equivalence class of tangent curves in p. Then tangent class will
be denoted by [o].

A tangent vector v = [o] can be used as a directional derivative for functions f : M +— R by defining

olf) = df(gt(t))

9

t=0

where ¢ is any curve from [o]. Remark that v does not depend on the choice of ¢ from [o]. Indeed, take
any chart (U, ¢) such that p € U. Let o1 and o2 be two curves such that
dz’ dx’

g (1(1) —y  dt (o2(1))

t=0
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Then

df (o1(t))|  d(fop Hpoor))

at |, dt

dt

_—Of o) dai(ay)
0 B ; ot

t= =0

df (o2(t))
o dt

~Of o) dat(o2)
N Z ozt dt

i=1 t=0

Definition 27.7

The tangent space T,M to M at a point p € M is the set of all tangent vectors at the point p. The
tangent bundle T M is defined as
™ = | T,M.
peEM

Example 27.8 Tuke M = S" = {z € R"" . |z|> = 1}. Then
T,8" ={veR"™ :p.v =0}, TS"={(p,v) e R xR |p?>=1,p-v=0}

27.4 The Vector Space Structure on 7,M

The set T),M can be made a vector space. Let v; and v2 be two tangent vectors from T,,M. Let o1 and
o9 be two representative curves for vy and vy respectively. o1 and o9 cannot be added directly since M

is not a vector space, but we can consider the sum
t— pooi(t)+ pooa(t),
which is a curve in R™. So we can define
v + vy 1= [cp_l o(poor+pooy)], ru = [go_l o(r-poay)],reR. (27.1)

This definition is independent of the choice of chart (U, ) and representatives o; and o9 of the tangent
vectors v1 and ve. Under the operations defined by (27.1), the set T,,M is a vector space. A tangent

vector also can be defined as a derivative:

t=0
where [o] = v.
Definition 27.9
o A derivation at a point p € M is a map v : C°(M) — R such that
Low(f+g) =v(f) +v(g), v(rf) =rv(f), r €R, f,g € CF(M)
2. v(fg) = f(p)v(9) +9(p)v(f), ¥V f,g € C=(M)
o The set of all derivations is denoted by D,M .

Theorem 27.10 The linear map L : T,M — D,M defined by

100 =L -

18 an isomorphism.
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