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1 Main Classes of Sets (Lecture Notes)

1.1 Jordan Measure

Let A be a subset of Rd. How can we define the volume of A? If A is a rectangle:

A = [a1, b1]× · · · × [ad, bd] = {x = (xk)
d
k=1 : ak 6 xk 6 bk, k = 1, . . . , n},

then

V (A) =
n∏

k=1

(bk − ak).

What if A is more general as in Figure 1.1?

Ae
n

Ai
n

A

1

n

Figure 1.1: A ⊂ R2

If lim
n→∞

V (Ain) = lim
n→∞

V (Aen), then we can say that the volume of A exists and is

V (A) = lim
n→∞

V (Ain).

Definition 1.1 V (A) is called the Jordan measure of A.

Remark 1.2 The Jordan measure was defined in Mathematics 3, Lecture 2 as

V (A) = µ(A) =

∫

I

IA(x) dx =

∫

A

dx,

where I ⊃ A is a rectangle and

IA(x) =





1, x ∈ A,
0, x 6∈ A.
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So, we can compute the volume of more general sets, but does this definition satisfy “intuitive” properties

of volume? For example, let A and B be Jordan measurable.

1. A ∪B is Jordan measurable and V (A ∪B) = V (A) + V (B) if A ∩B = ∅

2. A \B is Jordan measurable and V (A \B) = V (A)− V (B) if B ⊂ A

3. A ∩B is Jordan measurable

Let A1, A2, . . . be Jordan measurable. Then

∞⋃

n=1

An = {x : ∃n > 1, x ∈ An}

is not Jordan measurable in general.

Example 1.3 Take A = [0, 1]2 ∩Q2, which is the set of all points from [0, 1]2 with rational coefficients.

We know that A is countable, so A = {x1, x2, . . . }. Moreover, A is not Jordan measurable. However,

one point sets An = {xn} are Jordan measurable and V (An) = 0.

We find that V (An) = 0 but V (A) = V (
⋃∞
n=1An) does not exist as we cannot define it. Intuitively

V (A) 6
∞∑

n=1

V (An) = 0⇒ V (A) = 0.

This demonstrates that the Jordan measure is not well-defined for some sets which intuitively should

have volume. Our goal is to define a volume, or measure in general, for a wider class of sets, which would

satisfy the “intuitive” or expected properties. In particular, we expect that if we can define the measure

for sets A1, A2, · · · ⊂ Rd, then the volume must exist for any set obtained from A1, A2, . . . by a countable

number of operations like ∩,∪, \, and taking the complement.

1.2 Definitions of Main Classes of Sets

In this section, we will describe the classes of sets for which we can define a measure. Let X be a fixed,

non-empty set. We denote by 2X the family of all subsets of X.

Definition 1.4

• A non-empty class of sets H ⊂ 2X is called a semiring if

1. A,B ∈ H ⇒ A ∩B ∈ H,

2. A,B ∈ H ⇒ ∃n ∈ N, ∃C1, . . . , Cn ∈ H, Cj ∩ Ck = ∅, j 6= k : A \B =

n⋃

k=1

Ck.

• A class H is called a semialgebra if H is a semiring and X ∈ H.

Remark 1.5 A semiring usually contains “simple” sets where a measure can be easily defined.

Example 1.6 Let X = R.

1. H1 = {[a, b) : −∞ < a < b <∞} ∪ {∅} is a semiring.

2. H2 = {[a, b) : −∞ < a < b <∞}∪{∅,R}∪{(−∞, b) : b <∞}∪{[a,∞) : −∞ < a} is a semialgebra.
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Example 1.7 Let X = R2.

1. H1 = {[a1, b1)× [a2, b2) : −∞ < a1 < b1 <∞, −∞ < a2 < b2 <∞} ∪ {∅} is a semiring.

A

B

C1

C2 C3

C4

Figure 1.2

In this case A \B = C1 ∪ C2 ∪ C3 ∪ C4.

2. H2 can be defined in the same way as in Example 1.6 and it would be a semialgebra.

One can see that the measure can be easily defined for sets like H1 from Examples 1.6 and 1.7.

Definition 1.8

• A non-empty class H ⊂ 2X is called a ring if

1. A,B ∈ H ⇒ A ∪B ∈ H,

2. A,B ∈ H ⇒ A \B ∈ H.

• A class H is said to be an algebra if H is a ring and X ∈ H.

Exercise 1.9 Let H be a ring (algebra). Show that H is a semiring (semialgebra, respectively).

Exercise 1.10 Let H be a ring. Show that

1. ∅ ∈ H,

2. A,B ∈ H ⇒ A ∩B ∈ H,

3. A1, . . . , An ∈ H ⇒
n⋃

k=1

Ak ∈ H,
n⋂

k=1

Ak ∈ H.

Proposition 1.11 A non-empty class H is an algebra if and only if

1. A,B ∈ H ⇒ A ∪B ∈ H

2. A ∈ H ⇒ Ac = X \A ∈ H

Proof: Assume that H is an algebra. Then the first condition is trivially fulfilled by definition. We know

that A,X ∈ H. Then by Definition 1.8 we have the second condition: Ac = X \A ∈ H. Now we assume

the converse. The first condition of Definition 1.8 is immediately satisfied. To check the second, take

A,B ∈ H. We have

A \B = A ∩Bc = (A ∩Bc)cc = (Ac ∪B)c.

Since we know that Ac ∈ H, then A \B ∈ H. Remark that X = A ∪Ac ∈ H.

3



2 Generated Classes of Sets, The Borel σ-Algebra (Lecture Notes)

2.1 σ-Rings and σ-Algebras

Let X be a fixed set and let 2X denote a class of all subsets of X. We recall that H ⊂ 2X is

1. a semiring if for all A,B ∈ H

(a) A ∩B ∈ H

(b) A \B =
n⋃

k=1

Ck, where Cj ∩ Ck = ∅ for j 6= k, and Ck ∈ H for k = 1, . . . , n

2. a semialgebra if it is a semiring and if X ∈ H

3. a ring if for all A,B ∈ H

(a) A ∪B ∈ H
(b) A \B ∈ H

(a ring is closed with respect to a finite number of operations ∩,∪, \)

4. an algebra if it is a ring and if X ∈ H (an algebra is also closed with respect to the complement)

Definition 2.1

• A non-empty class of sets H ⊂ 2X is called a σ-ring if

1. A1, A2, · · · ∈ H ⇒
∞⋃

n=1

An ∈ H,

2. A,B ∈ H ⇒ A \B ∈ H.

• A class H is called a σ-algebra if H is a σ-ring and X ∈ H.

Proposition 2.2 A non-empty class H is a σ-algebra if and only if

1. X ∈ H

2. A1, A2, · · · ∈ H ⇒
∞⋃

n=1

An ∈ H

3. A ∈ H ⇒ Ac ∈ H

Proof: The proof is similar to the proof of Proposition 1.11.

Example 2.3 Let X = R2 and let H = {A ⊂ Rd : A is Jordan measurable andµ(A) <∞}. We know that

if A,B ∈ H, that is, if A,B are Jordan measurable, then A ∪ B and A \ B are also Jordan measurable,

and µ(A ∪ B) <∞, µ(A \ B) <∞. Hence A ∪ B, A \ B ∈ H. This implies that H is a ring. However,

note that H is not a σ-ring. Indeed, Q2 =
⋃∞
n=1An is a countably infinite union of Jordan measurable

single point sets with µ(Ak) = 0, but Q2 is not Jordan measurable. Additionally, H is neither an algebra

nor σ-algebra, since µ(R2) 6<∞⇒ R2 6∈ H.

Example 2.4 Let X = [0, 1]2 and let H = {A ⊂ [0, 1]2 : A is Jordan measurable}. Then H is an algebra

but not a σ-algebra.

Exercise 2.5 Let H be a σ-ring. Prove that A1, A2, · · · ∈ H ⇒
∞⋂

n=1

An ∈ H.

4
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Remark 2.6

• A σ-ring is a class closed with respect to a countable number of operations ∩,∪, \.

• A σ-algebra is additionally closed with respect to taking the complement.

H: σ-ring

•
∞⋃

n=1

An ∈ H

• A \B ∈ H
⇒

∞⋂

n=1

An ∈ H, ∅ ∈ H, A∩B ∈ H, A∪B ∈ H

H: ring

• A ∪B ∈ H

• A \B ∈ H

⇒ A∩B ∈ H,
n⋃

k=1

Ak ∈ H,
n⋂

k=1

Ak ∈ H, ∅ ∈ H

H: semiring

• A ∩B ∈ H

• A \B =
n⋃

k=1

Ck, Ck ∈ H and Ck ∩ Cj = ∅, k 6= j

⇒ ∅ ∈ H

H: σ-algebra

•
∞⋃

n=1

An ∈ H

• A \B ∈ H

• X ∈ H

⇒
∞⋂

n=1

An ∈ H, ∅ ∈ H, A∩B ∈ H, A∪B ∈ H

⇒ Ac ∈ H

H: algebra

• A ∪B ∈ H

• A \B ∈ H

• X ∈ H

⇒ A∩B ∈ H,
n⋃

k=1

Ak ∈ H,
n⋂

k=1

Ak ∈ H, ∅ ∈ H

⇒ Ac ∈ H

H: semialgebra

• A ∩B ∈ H

• A \B =

n⋃

k=1

Ck, Ck ∈ H and Ck ∩ Cj = ∅, k 6= j

• X ∈ H

⇒ ∅ ∈ H

Figure 2.1

2.2 Generated Classes of Sets

Let H be a class of subsets of X.

Definition 2.7

• The smallest σ-algebra which contains the class H is called the (smallest) σ-algebra generated by

H and is denoted by σ(H).

• The same definition is given for the ring r(H), the algebra a(H), and the σ-ring σr(H) generated

by H.
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Example 2.8 Take X = {a, b, c} and H = {a, b}.

1. Then σ(H) = {∅, X, {a, b}, {c}}. There are other σ-algebras containing H like 2X , but they are not

the smallest. Remark that σ(H) = a(H) in this case.

2. Then σr(H) = {∅, {a, b}} = r(H).

Theorem 2.9 The σ-algebra generated by H always exists.

Proof: We construct

σ(H) =
⋂

H⊂A
A,

where A is a σ-algebra containing H. In other words, σ(H) is the class of all sets A such that A belongs

to every σ-algebra containing H. Then σ(H) is a σ-algebra. Indeed, if A1, A2, · · · ∈ σ(H), then they

belong to every σ-algebra containing H. That is, if A is a σ-algebra containing H, then A1, A2, · · · ∈ A.

Consequently
⋃∞
n=1An ∈ A for all σ-algebra A containing H. Hence

⋃∞
n=1An ∈ σ(H). Similarly, we can

show that A ∈ σ(H)⇒ Ac ∈ σ(H), and X ∈ σ(H). Proposition 2.2 implies that σ(H) is a σ-algebra and

it is trivial that it is the smallest one.

Remark 2.10 The same statement is true for a(H), r(H), and σr(H).

Theorem 2.11 Let H be a semiring. Then

r(H) =

{
n⋃

k=1

Ak : A1, . . . , An ∈ H, n > 1

}
.

Corollary 2.12 Let H be a semialgebra. Then

a(H) =

{
n⋃

k=1

Ak : A1, . . . , An ∈ H, n > 1

}
.

Example 2.13 If H = {[a, b) : −∞ < a < b <∞} ∪ {∅}, then

r(H) =

{
A =

n⋃

k=1

[ak, bk) : −∞ < ak < bk <∞, k = 1, . . . , n, n > 1

}
.

Exercise 2.14 Let H1 ⊂ H2 ⊂ σ(H1). Show that σ(H1) = σ(H2).

Solution:

We first remark that H1 ⊂ H2 ⇒ H1 ⊂ σ(H2), so σ(H2) is a σ-algebra containing H1. This implies

that σ(H1) ⊂ σ(H2), because σ(H1) is the smallest σ-algebra which contains H1. We also know that

H2 ⊂ σ(H1), so, similarly σ(H2) ⊂ σ(H1). Hence σ(H1) = σ(H2).

2.3 Borel Sets

In this section, we will assume that X = Rd. Let

H = {[a1, b1)× · · · × [ad, bd) : −∞ < ak < bk <∞} ∪ {∅}.

We know from Lecture 1 that H is a semiring.

Definition 2.15 The σ-algebra B(Rd) := σ(H) is called the Borel σ-algebra. Sets from B(Rd) are called

Borel sets.
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Remark 2.16 The Borel σ-algebra contains all rectangles as well as all sets which can be obtained from

rectangles by a countable number of operations ∩,∪, \, and taking the complement.

Example 2.17 Let X = R.

1. {a} ∈ B(R), ∀ a ∈ R

{a} =
∞⋂

n=1

[
a, a+ 1

n

)

2. Q ∈ B(R)

Q =
⋃

a∈Q
{a}

3. [a, b] ∈ B(R)

[a, b] =
∞⋂

n=1

[
a, b+ 1

n

)

4. (a, b) ∈ B(R)

(a, b) =
∞⋃

n=1

[
a+ 1

n , b
)

5. Any open set G ⊂ R belongs to B(R) as G =
∞⋃

n=1

(an, bn).

6. Any closed set F belongs to B(R) since F c is open.

Lemma 2.18 Let H̃ = {A ⊂ Rd : A is open}. Then σ(H̃) = B(Rd). In other words, the Borel σ-algebra

is generated by all open subsets of Rd.

Proof: By Example 2.17, 5), which is true for any dimension d, we have H̃ ⊂ B(Rd). Hence σ(H̃) ⊂ B(Rd).
Next, we remark that

[a1, b1)× · · · × [ad, bd) =
∞⋂

n=1

((
a1 − 1

n , b1
)
× · · · ×

(
ad − 1

n , bd
))
.

So H ⊂ σ(H̃)⇒ σ(H) ⊂ σ(H̃). Hence B(Rd) = σ(H̃).
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3 Properties of Measures (Lecture Notes)

3.1 Definition of a Measure and Basic Properties

Let X be a fundamental set and let H ⊂ 2X be a class of sets. The main object of measure theory is to

find functions

µ : H 7→ (−∞,∞),

which satisfy certain requirements. Length, area, and volume are real examples of such functions. They

lead to a class of functions which satisfy certain properties. For example, the area is nonnegative and

the area of two nonintersecting sets equals the sum of the areas of those sets. We will generalize these

properties to an abstract situation. We will assume that µ can take the value ∞. Moreover, we assume

that

∞+∞ =∞, a+∞ =∞, ∀ a ∈ R, a <∞.

Definition 3.1 A function µ : H 7→ (−∞,∞] is called

1. nonnegative if µ(A) > 0, ∀A ∈ H

2. countably additive or σ-additive if ∀An ∈ H, n > 1, where Aj ∩Ak = ∅, j 6= k, we have

µ

( ∞⋃

n=1

An

)
=

∞∑

n=1

µ(An)

Definition 3.2 A measure is a nonnegative and σ-additive function on a semiring.

Remark 3.3 If µ is a measure on H then µ(∅) = 0. Indeed, if we take A1 = A ∈ H with µ(A) <∞ and

A2 = A3 = · · · = ∅ ∈ H, then

µ(A) = µ

( ∞⋃

n=1

An

)
=

∞∑

n=1

µ(An) =

∞∑

n=2

µ(∅) + µ(A)⇒ µ(∅) = 0.

Remark 3.4 A measure is a also an additive function, that is, for all Ak ∈ H, k = 1, . . . , n, where

Aj ∩Ak = ∅, j 6= k, we have

µ

(
n⋃

k=1

Ak

)
=

n∑

k=1

µ(Ak).

This follows from Remark 3.3 because we can take An+1 = An+2 = · · · = ∅. Then

µ

(
n⋃

k=1

Ak

)
= µ

( ∞⋃

k=1

Ak

)
=

∞∑

k=1

µ(Ak) =

n∑

k=1

µ(Ak) + µ(An+1) + · · · =
n∑

k=1

µ(Ak).

Example 3.5 Let X = N = {1, 2, 3, . . . } and let H = 2X . We set

µ(A) =





number of elements of A if A is finite,

∞ if A is infinite.

Then, for example, µ({1, 7, 8, 10}) = 4 and µ({even numbers}) =∞. It is easy to see that µ is a measure.
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Exercise 3.6 Let X = {x1, x2, . . . , xn, . . . }, H = 2X . Take pn > 0, n > 1 such that
∞∑

n=1

pn = 1, and set

µ(A) =
∑

n:xn∈A
pn, A ∈ H.

For example, µ({x1, x10, x100}) = p1 + p10 + p100. Prove that µ is a measure on H.

Theorem 3.7 Let R be a ring and let µ be a measure on R.

1. µ is monotone on R, that is, for all A,B ∈ R such that A ⊂ B we have µ(A) 6 µ(B)

2. ∀A,B ∈ R such that A ⊂ B, µ(A) <∞ we have µ(B \A) = µ(B)− µ(A)

3. ∀A,B ∈ R such that µ(A) <∞ or µ(B) <∞ we have µ(A ∪B) = µ(A) + µ(B)− µ(A ∩B)

4. ∀B1, . . . , Bn, A ∈ R such that A ⊂
n⋃

k=1

Bk we have

µ(A) 6
n∑

k=1

µ(Bk)

5. µ is σ-semiadditive, that is, ∀A1, A2, · · · ∈ R such that
∞⋃

n=1

An ∈ R we have

µ

( ∞⋃

n=1

An

)
6
∞∑

n=1

µ(An)

(we do not assume that Aj ∩Ak = ∅, j 6= k)

Proof:

1. Take A,B ∈ R such that A ⊂ B. Then B = A ∪ (B \A) and A ∩ (B \A) = ∅. By Remark 3.4

µ(B) = µ(A) + µ(B \A) > µ(A). (3.1)

2. If µ(A) <∞, then (3.1) implies

µ(B \A) = µ(B)− µ(A).

3. If µ(A) <∞ or µ(B) <∞, then by 1) µ(A ∩B) <∞. We can write

A ∪B =
(
A \ (A ∩B)

)
∪B,

(
A \ (A ∩B)

)
∩B = ∅.

Then using Remark 3.4 and 2) we have

µ(A ∪B) = µ
(
A \ (A ∩B)

)
+ µ(B) = µ(A)− µ(A ∩B) + µ(B).

4. Remark that

n⋃

k=1

Bk = B1 ∪ (B2 \B1) ∪
(
B3 \ (B1 ∪B2)

)
∪ · · · ∪

(
Bn \

n−1⋃

k=1

Bk

)
.
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Then using Remark 3.4 and 1) we have

µ(A) 6 µ

(
n⋃

k=1

Bk

)
=

n∑

k=1

µ

(
Bk \

k−1⋃

l=1

Bl

)
6

n∑

k=1

µ(Bk).

5. Using σ-additivity and 1) we have

µ

( ∞⋃

n=1

An

)
= µ

( ∞⋃

n=1

(
An \

n−1⋃

k=1

Ak

))
=

∞∑

n=1

µ

(
An \

n−1⋃

k=1

Ak

)
6
∞∑

n=1

µ(An).

Exercise 3.8 Let µ be a measure on a σ-ring H. Let An ∈ H be such that µ(An) = 0, n > 1. Show that

µ

( ∞⋃

n=1

An

)
= 0.

3.2 Continuity of a Measure

Theorem 3.9 Let R be a ring on which µ is a measure. Then for any increasing sequence An ∈ R, n > 1,

where An ⊂ An+1, ∀n > 1, such that
⋃∞
n=1An ∈ R, one has

µ

( ∞⋃

n=1

An

)
= lim

n→∞
µ(An).

Proof:

I. If there exists n0 such that µ(An0) = ∞, then for all n > n0, we have µ(An) > µ(An0) = ∞ and

µ (
⋃∞
n=1An) > µ(An0) =∞. Hence µ (

⋃∞
n=1An) = lim

n→∞
µ(An) =∞.

II. If µ(An) <∞, ∀n > 1, then

µ

( ∞⋃

n=1

An

)
= µ

(
A1 ∪ (A2 \A1) ∪ (A3 \A2) ∪ · · · ∪ (Ak \Ak−1) ∪ . . .

)

= µ(A1) +

∞∑

k=1

µ(Ak \Ak−1)

= µ(A1) + lim
n→∞

n∑

k=1

µ(Ak \Ak−1)

= µ(A1) + lim
n→∞

(
µ(A2)− µ(A1) + µ(A3)− µ(A2) + · · ·+ µ(An)− µ(An−1)

)

= lim
n→∞

µ(An).
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Theorem 3.10 Let R be a ring and let µ be a measure on R. Then for any decreasing sequence

An ∈ R, n > 1, where An ⊃ An+1, ∀n > 1, such that
⋂∞
n=1An ∈ R and µ(A1) <∞, one has

µ

( ∞⋂

n=1

An

)
= lim

n→∞
µ(An).

Proof: We have

µ

(
A1 \

∞⋂

n=2

An

)
= µ

( ∞⋃

n=2

(A1 \An)

)
= lim

n→∞
µ(A1 \An) = lim

n→∞
(µ(A1)− µ(An)).

Hence

µ(A1)− µ
( ∞⋂

n=1

An

)
= µ

(
A1 \

∞⋂

n=2

An

)
= lim

n→∞
(µ(A1)− µ(An)).

Remark 3.11 The condition µ(A1) < ∞ is important in Theorem 3.10. Consider the measure from

Example 3.5. Let

An = {n, n+ 1, . . . }, n > 1.

Obviously An ⊃ An+1, ∀n > 1, and
⋂∞
n=1An = ∅, so µ (

⋂∞
n=1An) = 0. But lim

n→∞
µ(An) =∞.

3.3 Examples of Measures

Theorem 3.12 Let R be a ring of all Jordan measurable sets on Rd and let µ be the Jordan measure on

R. Then the function µ is σ-additive on R, that is, it is a measure according to Definition 3.2.

Corollary 3.13 Let X = R and take the semiring H = {(a, b] : −∞ < a < b < ∞} ∪ {∅}. Then the

function

λ
(
(a, b]

)
= b− a, λ(∅) = 0

is a measure on H.

Theorem 3.14 Take X = R and H = {(a, b] : −∞ < a < b <∞}∪{∅}. Let F : R 7→ R be a nonnegative

right continuous function on R. Define

λF
(
(a, b]

)
= F (b)− F (a), a < b, λF (∅) = 0.

Then the function is a measure on the semiring H.
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4 Extensions of Measures (Lecture Notes)

4.1 Extending a Measure from a Semiring to a Generated Ring

Let X be a universal set and let H ⊂ 2X . We recall that a nonnegative and σ-additive function µ defined

on a semiring H is called a measure, that is, a measure µ : H 7→ R must satisfy the following properties:

1. µ(A) > 0, ∀A ∈ H

2. ∀An ∈ H, n > 1, where Aj ∩Ak = ∅, j 6= k, we have µ

( ∞⋃

n=1

An

)
=
∞∑

n=1

µ(An)

In this section, we will consider the extension of a measure from a semiring H to a ring. Recall that

Theorem 2.11 implies that

r(H) =

{
n⋃

k=1

Ak : A1, . . . , An ∈ H, n > 1

}
.

Example 4.1 Let H = {[a, b) : a < b} ∪ {∅}. Then

r(H) =

{
n⋃

k=1

[ak, bk) : ak < bk, n > 1

}
∪ {∅}.

For example, take the set [2, 5) ∪ [7, 10) ∪ [9, 11) = [2, 5) ∪ [7, 11) ∈ r(H).

Theorem 4.2 Let µ be a measure on a semiring H. The measure µ can be extended to a measure on

r(H) and this extension is unique. Moreover, if the measure µ is finite, then the extension is finite.

Let r(H) 3 A =
⋃n
k=1Ak, Ak ∈ H. We first remark that there exists C1, C2, . . . , Cm ∈ H such that

Cj ∩ Ck = ∅, j 6= k and

A =
n⋃

k=1

Ak =
m⋃

k=1

Ck. (4.1)

Then the described extension is given by

µ(A) :=

m∑

k=1

µ(Ck).

For example, take A =
⋃3
k=1Ak = A1 ∪ (A2 \A1) ∪

(
A3 \ (A1 ∪A2)

)
= C1 ∪ · · · ∪ C8.

C5

C6

C7

C8

C2

C3

C4

C1

Figure 4.1
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4.2 Outer Measure

Definition 4.3 A function λ∗ : 2X 7→ (−∞,∞] is called an outer measure if

1. λ∗(∅) = 0, λ∗ > 0 (nonnegativity)

2. ∀A,An ∈ 2X : A ⊂
∞⋃

n=1

An we have λ∗(A) 6
∞∑

n=1

λ∗(An) (σ-semiadditivity)

Definition 4.4 Let µ be a measure on a ring R ⊂ 2X . For any A ∈ 2X (A ⊂ X) set

µ∗(A) =





0 if A = ∅,
∞ if cover does not exist,

inf
{∑∞

n=1 µ(An) : An ∈ R, n > 1, A ⊂ ⋃∞n=1An
}

otherwise.

Theorem 4.5 µ∗ is an outer measure on R.

Proof: We only need to show that for any A,An ∈ 2X , n > 1, A ⊂ ⋃∞n=1An we have

µ∗(A) 6
∞∑

n=1

µ∗(An).

It is enough to show this only in the case µ∗(An) <∞, n > 1. Take ε > 0. According to Definition 4.4,

for all An there exists Bk,n ∈ R, k > 1 such that

An ⊂
∞⋃

k=1

Bk,n,
∞∑

k=1

µ(Bk,n) < µ∗(An) +
ε

2n
.

Hence A ⊂ ⋃∞n=1An ⊂
⋃∞
n=1

⋃∞
k=1Bk,n. By Definition 4.4

µ∗(A) 6
∞∑

n=1

∞∑

k=1

µ(Bk,n) <
∞∑

n=1

(
µ∗(An) +

ε

2n

)
=
∞∑

n=1

µ∗(An) + ε.

Making ε→ 0+, we have

µ∗(A) 6
∞∑

n=1

µ∗(An).

Definition 4.6 The function µ∗ from Definition 4.4 is the outer measure generated by the measure µ.

4.3 λ∗-Measurable Sets, Carathéodory Theorem

Definition 4.7 Let λ∗ be an outer measure on 2X . A set A is called λ∗-measurable if ∀B ⊂ X we have

λ∗(B) = λ∗(B ∩A) + λ∗(B \A). (4.2)

Remark 4.8 By the definition of an outer measure, the inequality

λ∗(B) 6 λ∗(B ∩A) + λ∗(B \A)

is always true since B ⊂ (B ∩A) ∪ (B \A).

13



Theorem 4.9 (Carathéodory Theorem) Let λ∗ be an outer measure on 2X and let S be the class of all

λ∗-measurable sets. Then S is a σ-algebra and λ∗ is a measure on S.

Definition 4.10 A measure µ on a σ-algebra H is called complete if ∀A ∈ H such that µ(A) = 0 we

have that any subset C ⊂ A also belongs to H (in this case, µ(C) = 0 by monotonicity).

Proposition 4.11 Under the assumptions of Theorem 4.9, the measure λ∗ is complete on S.

Proof: Let A ∈ S be such that λ∗(A) = 0 and C ⊂ A. We need to show that C ∈ S. We will check (4.2)

for C. Let B ∈ 2X . By the monotonicity of λ∗, we have

λ∗(B) > λ∗(B ∩ Cc) > λ∗(B ∩Ac) = λ∗(B ∩A) + λ∗(B ∩A) = λ∗(B),

since 0 6 λ∗(B ∩A) 6 λ∗(A) = 0. Similarly, 0 6 λ∗(B ∩ C) 6 λ∗(A) = 0, so

λ∗(B) = λ∗(B ∩ Cc) = λ∗(B \ C) + λ∗(B ∩ C).

4.4 µ∗-Measurability of Sets from a Ring

Let R be a ring and let µ be a measure on R, with µ∗ being the outer measure generated by µ. Let S be

the class of all µ∗-measurable subsets of X. We also denote

µ(A) = µ∗(A), A ∈ S.

By Theorem 4.9 S is a σ-algebra and µ is a measure on S.

Theorem 4.12 We have R ⊂ S and µ is the extension of µ from R to S, that is µ(A) = µ(A), ∀A ∈ R.

Proof: We first show that ∀A ∈ R, we have µ∗(A) = µ(A). Since A ⊂ A ∪ ∅ ∪ ∅ ∪ · · · = ⋃n
k=1Ak, then

µ∗(A) 6
∞∑

k=1

µ(Ak) = µ(A).

Now let A ⊂ ⋃∞n=1An, An ∈ R, n > 1. Then

A =

∞⋃

n=1

(A ∩An).

By the monotonicity and σ-semiadditivity of µ, we have

µ(A) 6
∞∑

n=1

µ(A ∩An) 6
∞∑

n=1

µ(An).

Hence µ(A) 6 µ∗(A), and consequently µ(A) = µ∗(A). Now we will show that R ⊂ S. Take A ∈ R and

ε > 0. We consider any set B ⊂ X, µ∗(B) <∞ and show that

µ∗(B) > µ∗(B ∩A) + µ∗(B \A).
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According to Definition 4.4, ∃An ∈ R, n > 1 such that B ⊂ ⋃∞n=1An and µ∗(B) + ε >
∑∞

n=1 µ(An). So

µ∗(B) + ε >
∞∑

n=1

µ(An) =
∞∑

n=1

(
µ(An ∩A) + µ(An \A)

)
> µ∗(B ∩A) + µ∗(B \A),

since B ∩A ⊂ ⋃∞n=1An ∩A and B \A ⊂ ⋃∞n=1An \A. This along with Remark 4.8 implies that

µ∗(B) = µ∗(B ∩A) + µ∗(B \A).

4.5 Lebesgue Measure

Let X = R and take the semiring H = {(a, b] : a < b} ∪ {∅}. Define

λ(∅) = 0, λ
(
(a, b]

)
:= b− a, a < b.

Then, by Corollary 3.13, λ is a measure on H. Additionally, by Theorem 4.2 there exists an extension

of λ to the ring r(H) generated by H. Next, let S be the class of all λ∗-measurable subsets of X = R.

Theorem 4.9 implies that S is a σ-algebra and λ∗ is a measure on S. Moreover, Theorem 4.12 implies

that H ⊂ r(H) ⊂ S. Since B(R) is the smallest σ-algebra which contains all sets from H, we have

B(R) ⊂ S. Hence, H ⊂ r(H) ⊂ B(R) ⊂ S. We also remark that λ∗ is the extension of λ from r(H) to S
by Theorem 4.12.

Definition 4.13

• Sets from S are called Lebesgue measurable sets.

• The measure λ∗ defined on S is called the Lebesgue measure on R.

Remark 4.14 The extension of λ to B(R) is unique.

Remark 4.15 We can define the Lebesgue measure on Rd by taking

H = {(a1, b1]× · · · × (ad, bd] : ak < bk, k = 1, . . . , d} ∪ {∅}

and

λ(∅) = 0, λ
(
(a1, b1]× · · · × (ad, bd]

)
=

d∏

k=1

(bk − ak).

Example 4.16

1. Let x ∈ R. Then since {x} =
⋂∞
n=1

(
x− 1

n , x
]
, by Theorem 3.10 we have

λ
(
{x}
)

= lim
n→∞

λ
((
x− 1

n , x
])

= lim
n→∞

1

n
= 0.

2. λ(Q) = λ
(⋃∞

n=1{rn}
)

=
∑∞

n=1 λ
(
{rn}

)
=
∑∞

n=1 0 = 0, where Q = {r1, r2, . . . } is the set of rational

numbers.
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5 Measurable Functions (Lecture Notes)

5.1 Motivation of the Definition, Introduction to Lebesgue Integrals

Let f : X 7→ R be a function, where X = [0, 1]. Let us recall the definition of the Riemann integral. We

define the Riemann sums

Sn =

n∑

k=1

f(ξk)∆xk, ∆xk = xk − xk−1,

and say that f is Riemann integrable if the limit

lim
|∆x|→0

n∑

k=1

f(ξk)∆xk, |∆x| := max
k
|∆xk|

exists and does not depend on the choice of {ξk}. This limit is called the Riemann integral of f and is

denoted by
1∫

0

f(x) dx.

Example 5.1

1. If f is a continuous function, then f is Riemann integrable.

2. Take

f(x) =





1, x ∈ Q ∩ [0, 1],

0, x ∈ [0, 1] \Q.

This function is not Riemann integrable since the limit depends on the choice of {ξk}. Indeed, if

ξk ∈ [xk−1, xk], k = 1, . . . , n are rational, then
∑n

k=1 f(ξk)∆xk =
∑n

k=1 1 ∆xk = 1, but if they are

irrational, then
∑n

k=1 f(ξk)∆xk =
∑n

k=1 0 ∆xk = 0.

Let us consider another approach to defining the integral.

1

f−1
(
[y3, y4)

)

f−1
(
[y4, y5)

)

f−1
(
[y5, y6)

)

0

y = f(x)

y1

y2

y3

y4

y5

yn

...

x

y

Figure 5.1
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We can define the integral as

lim
|∆y|→0

n∑

k=1

ykλ
(
f−1

(
[yk, yk+1)

))
=

b∫

a

f(x)λ(dx).

Remark that
∫ b
a f(x) dx =

∫ b
a f(x)λ(dx) if f is continuous, but this new definition is better.

Example 5.2 We take

f(x) =





1, x ∈ Q ∩ [0, 1],

0, x ∈ [0, 1] \Q,

and yk =
k

n
. Note that

f−1
([

0, 1
n

))
= [0, 1] \Q,

f−1
([
n
n ,

n+1
n

))
= Q ∩ [0, 1],

f−1
([
k
n ,

k+1
n

))
= ∅, k 6= 0, n.

Hence

n∑

k=0

k

n
λ
(
f−1

([
k
n ,

k+1
n

)))
= 0 · λ

(
[0, 1] \Q

)
+

1

n
λ(∅) + · · ·+ n− 1

n
λ(∅) +

n

n
λ
(
Q ∩ [0, 1]

)
= 0,

and consequently
1∫

0

f(x) dx = lim
n→∞

0 = 0.

With this approach to defining the integral, we need to be sure that we can compute the Lebesgue

measure of sets

Ak = f−1
(
[yk, yk+1)

)
,

that is, the sets Ak, k = 1, . . . , n have to be Lebesgue (or Borel) measurable sets.

Remark 5.3 Not all subsets of Rd are Lebesgue measurable.

Consider the Banach-Tarski paradox. Given a solid ball in 3-dimensional space, there exists a decompo-

sition of the ball into a finite number of disjoint subsets that can be put back together in a different way

to yield two identical copies of the original ball. The Banach-Tarski paradox is a strong mathematical

fact. However, we do not have any contradictions here since the pieces are not Lebesgue measurable:

V (B) =
n∑

k=1

V (Ak) = 2V (B),

because V (Ak) do not exist.
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5.2 Definition of Measurable Functions

Let X,X ′ be some sets and let f : X 7→ X ′ be a map.

Definition 5.4

1. For A ⊂ X the set f(A) = {f(x) : x ∈ A} is called the image of A.

2. For a set A′ ⊂ X ′ the set f−1(A′) = {x ∈ X : f(x) ∈ A′} is called the preimage of A′.

Exercise 5.5 Show that

1. f−1

(
n⋃

k=1

A′k

)
=

n⋃

k=1

f−1(A′k),

2. f−1

(
n⋂

k=1

A′k

)
=

n⋂

k=1

f−1(A′k),

3. f−1(B′ \A′) = f−1(B′) \ f−1(A′),

where A′k ⊂ X ′, B′, A′ ⊂ X ′ and n ∈ N ∪ {∞}.
Solution to 1):

f−1

(
n⋃

k=1

A′k

)
=

{
x : f(x) ∈

n⋃

k=1

A′k

}
=

n⋃

k=1

{x : f(x) ∈ A′k} =

n⋃

k=1

f−1(A′k)

Definition 5.6 If X is a set and F is a σ-algebra on X, then (X,F) is called a measurable space.

Definition 5.7

1. Let (X,F) and (X ′,F ′) be measurable spaces and take f : X 7→ X ′. The function f is called

(F ,F ′)-measurable if f−1(A′) ∈ F , ∀A′ ∈ F ′.

2. In the case X ′ = R, F ′ = B(R), f is called F-measurable.

3. If additionally X = R, F = B(R), that is, f : R 7→ R and f−1(A′) ∈ B(R), ∀A′ ∈ B(R), then f is

called Borel measurable.

Example 5.8 If X = [0, 1], F = {∅, X} and X ′ = R, F ′ = B(R), then only constant functions are

F-measurable. Indeed, we know that A′ = {y} ∈ F ′ = B(R). So f−1(A′) ∈ F means that

f−1({y}) = {x : f(x) = y} = ∅ or [0, 1].

Therefore f(x) = c, ∀x ∈ [0, 1], where c is a constant.

Example 5.9 Take X = X ′ = R and F = F ′ = B(R) with f(x) = x. Then f is Borel measurable since

if A′ ∈ B(R), then f−1(A′) = A′ ∈ B(R).

Remark 5.10 The definition of measurability is very similar to that of continuity. Indeed, f is continuous

if and only if the preimage of every open set is an open set, and for measurability we require that the

preimage of any measurable set is measurable.
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6 Properties of Measurable Functions (Lecture Notes)

6.1 One Condition of Measurability

Let (X,F) and (X,F ′) be measurable spaces. We recall that f is (F ,F ′)-measurable if

∀A′ ∈ F ′, f−1(A′) = {x ∈ X : f(x) ∈ A′} ∈ F . (6.1)

In general, property (6.1) is complicated to check, since the class F ′ can be too large. Theorem 6.1 says

that it is enough to check (6.1) only for some subclass of F ′ in the case F ′ = σ(H).

Theorem 6.1 Let (X,F) and (X,F ′) be measurable spaces, where F ′ = σ(H), H ⊂ 2X
′
. A map

f : X 7→ X ′ is (F ,F ′)-measurable if and only if ∀A′ ∈ H, f−1(A′) ∈ F .

Proof: In the forward direction, the statement follows from the definition of measurability since

A′ ∈ H ⇒ A′ ∈ F ′ ⇒ f−1(A′) ∈ F .

To prove the converse, we set Q := {A′ ∈ F ′ : f−1(A′) ∈ F}. Then H ⊂ Q ⊂ F ′ = σ(H). Let us show

that Q is a σ-algebra.

1. ∅ ∈ Q because f−1(∅) = ∅ ∈ F .

2. If A′1, A
′
2, · · · ∈ Q, then f−1(A′k) ∈ F . Consider

∞⋃

k=1

A′k = A′. Then

f−1(A′) = f−1

( ∞⋃

k=1

A′k

)
=

∞⋃

k=1

f−1(A′k) ∈ F ,

because F is a σ-algebra.

3. If A′, B′ ∈ Q, then

f−1(B′ \A′) = f−1(B′) \ f−1(A′) ∈ F ⇒ B′ \A′ ∈ Q.

Hence σ(H) ⊂ Q⇒ F ′ = σ(H) = Q.

Corollary 6.2 Given f : X 7→ R, the following statements are equivalent.

1. f is F-measurable

2. ∀ a ∈ R, f−1
(
(−∞, a)

)
= {x ∈ X : f(x) < a} ∈ F

3. ∀ a ∈ R, f−1
(
(−∞, a]

)
= {x ∈ X : f(x) 6 a} ∈ F

4. ∀ a ∈ R, f−1
(
(a,∞)

)
= {x ∈ X : f(x) > a} ∈ F

5. ∀ a ∈ R, f−1
(
[a,∞)

)
= {x ∈ X : f(x) > a} ∈ F

Proof: We will only show that 1) and 2) are equivalent. We remark that for H := {(−∞, a), a ∈ R}, we

have B(R) = σ(H). 2) implies ∀A′ ∈ H, f−1(A′) ∈ F . Hence, by Theorem 6.1, f is F-measurable (i.e.

f is
(
F ,B(R)

)
-measurable) if and only if it satisfies 2).
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Application of Corollary 6.2 (X = X ′ = R, F = F ′ = B(R))

1. Every monotone function f : R 7→ R is Borel measurable.

2. Every continuous function f : R 7→ R is Borel measurable.

Proof:

1. Let f increase monotonically. Note that f−1
(
(−∞, a)

)
is always an interval for all a, because f

increase monotonically. This implies f−1
(
(−∞, a)

)
∈ B(R).

2. We know that f is continuous if and only if the preimage f−1(G) of every open set G in R is

open. Consequently, f−1
(
(−∞, a)

)
is open. Since every open set is Borel measurable, f is a Borel

measurable function.

Corollary 6.3 If f : Rd 7→ Rm is continuous, then f is Borel measurable.

Proof: Let H := {G ⊂ Rm : G is open}. Then B(Rm) = σ(H). Take G ∈ H. Then f−1(G) is open in Rd

because it is continuous. Hence f−1(G) ∈ B(Rd) and, by Theorem 6.1, f is Borel measurable.

Exercise 6.4 Let fk : X 7→ R, k = 1, . . . ,m be F-measurable functions. We consider the function

f = (f1, . . . , fm) : X 7→ Rm.

Show that f is F-measurable, that is, ∀A′ ∈ B(Rm), f−1(A′) ∈ F . Take

H = {[a1, b1)× · · · × [am, bm) : ak < bk}

and use Theorem 6.1.

6.2 Composition of Measurable Maps

Theorem 6.5 Let (X,F), (X ′,F ′), (X ′′,F ′′) be measurable spaces. Let f : X 7→ X ′ and g : X ′ 7→ X ′′ be

(F ,F ′)-measurable and (F ′,F ′′)-measurable respectively. Then f ◦ g is (F ,F ′′)-measurable.

Proof: Take A′′ ∈ F ′′. Then A′ := g−1(A′′) = {y ∈ X ′ : g(y) ∈ A′′} because g is (F ′,F ′′)-measurable.

Then

(g ◦ f)−1(A′′) = {x ∈ X : g
(
f(x)

)
∈ A′′} = {x ∈ X : f(x) ∈ A′} = f−1(A′) ∈ F ,

where g
(
f(x)

)
∈ A′′ ⇔ f(x) ∈ A′.

Corollary 6.6 Let (X,F) be a measurable space, fk : X 7→ R, k = 1, . . . ,m F-measurable functions,

and F : Rm 7→ R a Borel measurable function. Then F (f1, . . . , fm) : X 7→ R is F-measurable.
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6.3 Properties of Measurable Functions

Theorem 6.7 Let (X,F) be a measurable space and let f1, f2 : X 7→ R be F-measurable functions. Then

• cf1

• f1 ± f2

• f1 · f2

• f1

f2
, f2(x) 6= 0, x ∈ X

• min{f1, f2}

• max{f1, f2}

are F-measurable.

Proof: The statements follows from Corollary 6.6. For example, f1 + f2 is F-measurable since we can

take f1 + f2 = F (f1, f2), where F (u, v) = u+ v is Borel measurable as a continuous function.

Theorem 6.8 Let (X,F) be a measurable space and let fn : X 7→ R, n > 1 be a sequence of F-measurable

functions. Then

• g1(x) := sup
n>1

fn(x)

• g2(x) := inf
n>1

fn(x)

• g3(x) := lim
n→∞

fn(x)

• g4(x) := lim
n→∞

fn(x)

are F-measurable. In particular, the function f(x) := lim
n→∞

fn(x), x ∈ X, if the limit exists for all x, is

also F-measurable. The set C :=
{
x ∈ X : {fn(x)}n>1 converges inR

}
belongs to F .

Proof:

1. ∀ a ∈ R, g−1
1

(
(−∞, a]

)
= {x : g1(x) 6 a} = {x : sup

n>1
fn(x) 6 a} =

∞⋂

n=1

{fn(x) 6 a} ∈ F

2. ∀ a ∈ R, g−1
2

(
[a,∞)

)
= {x : g2(x) > a} = {x : inf

n>1
fn(x) > a} =

∞⋂

n=1

{fn(x) > a} ∈ F

3. g3(x) = infn>1 supk>n fk(x) is F-measurable because supk>n fk(x) is F-measurable by 1) and thus

infn>1 supk>n fk(x) is F-measurable by 2)

4. Similarly g4(x) = sup
n>1

inf
k>n

fk(x)

Finally

C = {x : g3(x) = g4(x)} = {x : g3(x)− g4(x) = 0} =
(
g3(x)− g4(x)

)−1
({0}) ∈ F

because {0} ∈ B(R).
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7 Lebesgue Integrals (Lecture Notes)

7.1 Approximation by Simple Functions

Let (X,F) be a measurable space and let λ be a measure on F .

Definition 7.1 A function f : X 7→ R is called simple if the set f(X) consists of a finite number of

elements, that is, there exists distinct a1, . . . , am ∈ R such that

f(x) =

m∑

k=1

akIAk
(x), (7.1)

where Ak = {x ∈ X : f(x) = ak} = f−1({ak}) and

IAk
(x) =





0, x 6∈ Ak,
1, x ∈ Ak.

Remark 7.2 The sets A1, . . . , Am ∈ F if and only if the function f is measurable.

Exercise 7.3 Prove that the sum and product of two simple functions are simple functions.

Theorem 7.4 Let f be a nonnegative function. The function f is F-measurable if and only if there

exists a sequence {fn}n>1 of simple F-measurable functions such that ∀x ∈ X, n > 1, fn(x) 6 fn+1(x)

and f(x) = lim
n→∞

fn(x).

Proof: f is F-measurable as a limit of F-measurable functions by Theorem 6.8. Conversely, take an

F-measurable function f . For n ∈ N we consider numbers k
2n , k = 0, . . . , n2n − 1 and define

Akn :=
{
x ∈ X : k

2n 6 f(x) 6 k+1
2n

}
∈ F ,

Bn := {x ∈ X : f(x) > n} ∈ F .

Remark that Akn = f−1
([

k
2n ,

k+1
2n

))
and Bn = f−1

(
[n,∞)

)
. Now take

fn(x) =

n2n−1∑

k=0

k

2n
IAk

n
(x) + nIBn(x).

7.2 Definition of the Integral

Definition 7.5

I. Let f be a nonnegative F-measurable simple function defined by (7.1) and take A ∈ F . The value

∫

A

f dλ :=

∫

A

f(x)λ(dx) =

m∑

k=1

akλ(A ∩Ak)

is called the Lebesgue integral of f over A. We assume akλ(A∩Ak) = 0 if ak = 0, λ(A∩Ak) =∞.
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II. Take A ∈ F and let f : X 7→ R be a nonnegative F-measurable function. The value

∫

A

f dλ :=

∫

A

f(x)λ(dx) := sup
p∈K(f)

∫

A

p(x)λ(dx),

is called the Lebesgue integral of f over A, where K(f) is the set of all simple functions p : X 7→ R
such that 0 6 p(x) 6 f(x), x ∈ X.

Remark 7.6 (Alternate Definition to II) Let f > 0 be F-measurable and take A ∈ F . Let {fn} be as

described in Theorem 7.4. Then

∫

A

f(x)λ(dx) := lim
n→∞

∫

A

fn(x)λ(dx).

These two approaches define the same object.

Let f : X 7→ R be any function. We consider its parts

f+(x) = max{f(x), 0}, x ∈ X, f−(x) = −min{f(x), 0}, x ∈ X.

Then trivially

f(x) = f+(x)− f−(x), x ∈ X, |f(x)| = f+(x) + f−(x), x ∈ X.

III. Take A ∈ F and let f : X 7→ R be an F-measurable function. If one of the integrals

∫

A

f+ dλ,

∫

A

f− dλ (7.2)

is finite, then ∫

A

f dλ :=

∫

A

f(x) dx :=

∫

A

f(x)λ(dx) :=

∫

A

f+ dλ−
∫

A

f− dλ

is called the Lebesgue integral of f over A.

• If both integrals in (7.2) are finite, then the function f is called Lebesgue integrable on A.

• The class of all Lebesgue integrable functions on A is denoted by L(A, λ).
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8 Properties of Lebesgue Integrals (Lecture Notes)

8.1 Basic Properties

We assume that f, g : X 7→ R are F-measurable functions and A ∈ F .

1. If λ(A) = 0, then

∫

A

f dλ = 0.

2. If λ(A) <∞ and f(x) = c, x ∈ A, then f ∈ L(A, λ) and

∫

A

c dλ = cλ(A).

3. Let 0 6 f(x) 6 g(x), x ∈ A. If g ∈ L(A, λ), then f ∈ L(A, λ) and

∫

A

f dλ 6
∫

A

g dλ.

Proof: This follows from Definition 7.5 II and the fact that K(f) ⊂ K(g). So

sup
p∈K(f)

∫

A

p dλ 6 sup
p∈K(g)

∫

A

p dλ <∞.

4. If A 6= ∅, λ(A) <∞ and f is bounded on A, then f ∈ L(A, λ) and

inf
A
f · λ(A) 6

∫

A

f dλ 6 sup
A
f · λ(A).

5. If f ∈ L(A, λ), c ∈ R, then cf ∈ L(A, λ) and

∫

A

cf dλ = c

∫

A

f dλ.

6. If f, g ∈ L(A, λ) and f(x) 6 g(x), ∀x ∈ A, then

∫

A

f dλ 6
∫

A

g dλ.

7. If A,B ∈ F , B ⊂ A and f ∈ L(A, λ), then f ∈ L(B, λ). If additionally f > 0, then

∫

B

f dλ 6
∫

A

f dλ.

8. If A,B ∈ F , A ∩B = ∅ and f ∈ L(A, λ), f ∈ L(B, λ), then f ∈ L(A ∪B, λ) and

∫

A∪B

f dλ =

∫

A

f dλ+

∫

B

f dλ.

9. f ∈ L(A, λ) if and only if |f | ∈ L(A, λ).

Proof: We write f = f+ − f−, |f | = f+ + f−. Remark that f ∈ L(A, λ) if and only if

∫

A

f+ dλ <∞,
∫

A

f− dλ <∞.
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Consider the sets

A− := {x ∈ A : f(x) < 0} ∈ F , A+ := {x ∈ A : f(x) > 0} ∈ F .

Then A− ∩A+ = ∅. Hence

∫

A

|f | dλ =

∫

A−

|f | dλ+

∫

A+

|f | dλ =

∫

A−

f− dλ+

∫

A+

f+ dλ 6
∫

A

f− dλ+

∫

A

f+ dλ <∞.

This implies |f | ∈ L(A, λ). Now assume |f | ∈ L(A, λ). Since on A we have 0 6 f− 6 |f | and

0 6 f+ 6 |f |, by 3) we also have

∫

A

f− dλ <∞,
∫

A

f+ dλ <∞.

10. If f ∈ L(A, λ) and |g(x)| 6 f(x), ∀x ∈ A, then g ∈ L(A, λ) and

∣∣∣∣∣∣

∫

A

g dλ

∣∣∣∣∣∣
6
∫

A

|f | dλ.

11. If f, g ∈ L(A, λ), then f + g ∈ L(A, λ) and

∫

A

(f + g) dλ =

∫

A

f dλ+

∫

A

g dλ.

12. If f ∈ L(X,λ), then the function

µ(A) :=

∫

A

f dλ, A ∈ F

is σ-additive. In particular, if f > 0, then µ is a measure on F .

Definition 8.1 We say that f = g λ−a. e. (almost everywhere) on A if λ
(
{x ∈ A : f(x) 6= g(x)}

)
= 0.

Example 8.2 The functions f(x) = IQ(x), x ∈ R and g(x) = 0, x ∈ R are equal λ−a. e.

Remark that the set {x ∈ A : f(x) 6= g(x)} ∈ F since

{x ∈ A : f(x) 6= g(x)} = {x ∈ A : f(x)− g(x) 6= 0} = (f − g)−1(R \ {0}) ∈ F

and f − g is F-measurable as the difference of two measurable functions.

13. If g = f λ−a. e. on A and f ∈ L(A, λ), then g ∈ L(A, λ) and

∫

A

f dλ =

∫

A

g dλ.

14. If f ∈ L(A, λ), f > 0 and

∫

A

f dλ = 0, then f = 0λ−a. e. on A.

8.2 Convergence of Functions

Definition 8.3 Let f, fn : X 7→ R, n > 1 be F-measurable functions. The sequence {fn}n>1 converges

to f λ−a. e. (a. e. with respect to λ) if there exists Φ ∈ F , λ(Φ) = 0 such that

lim
n→∞

fn(x) = f(x), ∀x ∈ X \ Φ.

In this case we write fn → f λ−a. e.

Exercise 8.4 Let fn → f λ−a. e. and fn → g λ−a. e. Show that f = g λ−a. e.
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9 Limit Theorems for Lebesgue Integrals (Lecture Notes)

9.1 Convergence of Functions

Let (X,F) be a fixed measurable space and let λ be a measure on F . We take functions f, fn, n > 1

from X to R that are F-measurable.

Definition 9.1 The sequence {fn}n>1 converges to f λ−a. e. if there exists Φ ∈ F , λ(Φ) = 0 such that

lim
n→∞

fn(x) = f(x), ∀x ∈ X \ Φ.

In this case we write fn → f λ−a. e.

Exercise 9.2 Let fn → f λ−a. e. and fn → g λ−a. e. Show that f = g λ−a. e.

Definition 9.3 The sequence {fn}n>1 converges to f in measure if

∀ ε > 0, λ
(
{x ∈ X : |fn(x)− f(x)| > ε}

)
→ 0, n→∞

In this case we write fn
λ−→ f .

Theorem 9.4 If fn
λ−→ f and fn

λ−→ g, then f = g λ−a. e.

Proof: We first remark that

{x : |f(x)− fn(x) + fn(x)− g(x)| > ε} ⊂
{
x : |f(x)− fn(x)| > ε

2

}
∪
{
x : |fn(x)− g(x)| > ε

2

}
.

Hence ∀ ε > 0

λ
(
{x : |f(x)− g(x)| > ε}

)
= λ

(
{x : f(x)− fn(x) + fn(x)− g(x)| > ε}

)

6 λ
({
x : |f(x)− fn(x)| > ε

2

})
+ λ

({
x : |fn(x)− g(x)| > ε

2

})
→ 0, n→∞

Thus ∀ ε > 0, λ
(
{x : |f(x)− g(x)| > ε}

)
= 0. Next

{x : f(x) 6= g(x)} =
∞⋃

k=1

{
x : |f(x)− g(x)| > 1

k

}
.

By the σ-semiadditivity of the measure λ, λ
(
{x : f(x) 6= g(x)}

)
= 0.

Note that convergence in measure does not imply convergence λ−a. e. It does not even imply convergence

for some fixed point x. Likewise, convergence λ−a. e. does not imply convergence in measure.

Example 9.5 Take the following sequence with the Lebesgue measure as λ, and X = [0, 1], F = B
(
[0, 1]

)
.

0.5 1

1

f1

0.5 1

1

f2

0.25 0.5 0.75 1

1

f3

0.25 0.5 0.75 1

1

f4

0.25 0.5 0.75 1

1

f5

Figure 9.1

Then fn
λ−→ f but fn 6→ f λ−a. e. Moreover, ∀x ∈ [0, 1], fn(x) 6→ f(x).
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Example 9.6 We take X = R, F = B(R) and the Lebesgue measure as λ. Take fn(x) = I[n,∞)(x), x ∈ R.

n

1

fn

Figure 9.2

Then ∀x ∈ R, fn(x)→ 0⇒ f → 0λ−a. e. But fn 6 λ−→ f since for ε < 1

λ
(
{x : |fn(x)− f(x)| > ε}

)
= λ

(
[n,∞)

)
=∞.

Theorem 9.7 (Lebesgue) If λ(X) <∞, then fn → f λ−a. e.⇒ fn
λ−→ f .

Proof: Let ε > 0 be fixed. We set

An := {x : |fn(x)− f(x)| > ε} ∈ F , Bn :=
∞⋃

k=n

Ak ∈ F .

We remark that Bn, n > 1 decreases. Set

B :=

∞⋂

n=1

Bn = lim
n→∞

An = {x : for an infinite number of indicesn, |fn(x)− f(x)| > ε}.

Then B ⊂ {x : fn(x) 6→ f(x)} and consequently λ(B) = 0 by the convergence fn → f λ−a. e. Moreover

λ(B1) 6 λ(X) <∞. Then by the continuity of the measure λ, 0 = λ(B) = lim
n→∞

λ(Bn). So

lim
n→∞

λ(An) 6 lim
n→∞

λ(Bn) = 0.

Theorem 9.8 (Riesz) If fn
λ−→ f , then there exists a subsequence {fnk

}k>1 such that fnk
→ f λ−a. e.

Theorem 9.9 (Subsequence Criterion) Let λ(X) < ∞. Then fn
λ−→ f if and only if every subsequence

{fnk
}k>1 has a subsubsequence {fnkj

}j>1 such that fnkj
→ f λ−a. e.

9.2 Monotone Convergence Theorem

Theorem 9.10 (Monotone Convergence Theorem) Let A ∈ F , f, fn, n > 1 satisfy

1. 0 6 fn(x) 6 fn+1(x), ∀n > 1, x ∈ A

2. fn → f λ−a. e. on A

Then

lim
n→∞

∫

A

fn dλ =

∫

A

f dλ.
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Proof: We first remark that by the monotonicity of fn, we have

∫

A

f1 dλ 6
∫

A

f2 dλ 6 · · · 6
∫

A

fn dλ 6 · · ·
∫

A

f dλ. (9.1)

Since we have an increasing sequence of numbers, there exists

α := lim
n→∞

∫

A

fn dλ 6∞.

We can assume that α <∞. Otherwise the equality

∫

A

f dλ = lim
n→∞

∫

A

fn dλ

trivially follows from (9.1). Since α < ∞, then
∫
A fn dλ < ∞, ∀n > 1. We take a simple F-measurable

function p ∈ K(f) and c ∈ (0, 1), and set An := {x ∈ A : fn(x) > cp(x)} ∈ F . We know that

1. An ⊂ An+1, 2.

∞⋃

n=1

An = A.

Take x ∈ An ⇒ fn(x) > cp(x) ⇒ fn+1(x) > fn(x) > cp(x) ⇒ x ∈ An+1. This proves 1). Now since

An ⊂ A, we have
⋃∞
n=1An ⊂ A. Next take x ∈ A. Remark that cp(x) < p(x) 6 f(x). Since fn(x)→ f(x),

there exists n such that cp(x) 6 fn(x) 6 f(x). This implies x ∈ An and hence A ⊂ ⋃∞n=1An. This proves

2). By properties 3), 5), and 7) of the Lebesgue integral

∫

A

fn dλ >
∫

An

fn dλ > c

∫

An

p dλ.

Hence

c

∫

An

p dλ 6
∫

A

fn dλ 6 α.

By the σ-additivity of the integral and the continuity of the measure λ

c

∫

A

p dλ = lim
n→∞

c

∫

An

p dλ 6 α.

Since c
∫
A p dλ 6 α, ∀ p ∈ K(f), we have

c

∫

A

f dλ = c sup
p∈K(f)

∫

A

p dλ = sup
p∈K(f)

c

∫

A

p dλ 6 α.

So c
∫
A f dλ 6 α, where c ∈ (0, 1). Sending c→ 1−, we get

∫

A

f dλ 6 α.
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10 Limit Theorems, Change of Variables (Lecture Notes)

10.1 Monotone Convergence Theorem

Let X be a fundamental set with F being a σ-algebra on X. We take λ as a measure on X. We recall

that

1. fn → f λ−a. e.⇔ ∃Φ ∈ F , λ(Φ) = 0 : lim
n→∞

fn(x) = f(x), ∀x ∈ X \ Φ

2. fn
λ−→ f ⇔ ∀ ε > 0, λ

(
{x ∈ X : |fn(x)− f(x)| > ε}

)
→ 0, n→∞

We also recall the Monotone Convergence Theorem.

Theorem 9.10 (Monotone Convergence Theorem) Let A ∈ F and f, fn, n > 1 satisfy

0 6 fn(x) 6 fn+1(x), ∀n > 1, x ∈ A, fn(x)→ f(x)λ−a. e. onA.

Then

lim
n→∞

∫

A

fn dλ =

∫

A

f dλ.

10.2 Fatou’s Lemma

Lemma 10.1 (Fatou’s Lemma) Let A ∈ F and functions fn, n > 1 satisfy fn(x) > 0, ∀x ∈ A. Then

∫

A

lim
n→∞

fn(x)λ(dx) 6 lim
n→∞

∫

A

fn dλ.

Proof: Consider gn(x) := inf
k>n

fk(x), x ∈ A, n > 1. Then 0 6 gn(x) 6 gn+1(x), ∀x ∈ A, n > 1. Moreover

lim
n→∞

gn(x) = lim
n→∞

inf
k>n

fk(x) = lim
n→∞

fn(x).

We also have gn(x) 6 fn(x), ∀x ∈ A, n > 1. Thus

∫

A

gn(x) 6
∫

A

fn(x).

By Theorem 9.10

lim
n→∞

∫

A

gn dλ =

∫

A

lim
n→∞

gn dλ =

∫

A

lim
n→∞

fn dλ.

Hence

lim
n→∞

∫

A

fn dλ > lim
n→∞

∫

A

gn dλ =

∫

A

lim
n→∞

fn dλ.

Remark 10.2 Fatou’s lemma implies that if fn > 0 on A, fn → f λ−a. e. on A, and
∫
A fn dλ 6 C for

all n > 1, then f ∈ L(A, λ) and
∫
A f dλ 6 C.

To see this, just apply Fatou’s lemma for the set A\Φ, where Φ = {x : fn(x) 6→ f(x)}, and use properties

1) and 8) of the integral.
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10.3 The Dominated Convergence Theorem

Theorem 10.3 (Dominated Convergence Theorem) Let A ∈ F and a sequence fn satisfy

1. fn → f λ−a. e. on A

2. ∃ g ∈ L(A, λ) : |fn(x)| 6 g(x), ∀x ∈ A, n > 1

Then f, fn ∈ L(A, λ), n > 1 and

lim
n→∞

∫

A

fn dλ =

∫

A

f dλ.

Proof: We remark that −g(x) 6 fn(x) 6 g(x), ∀x ∈ A, n > 1. Then g+ fn > 0 and g− fn > 0, ∀n > 1.

We can apply Fatou’s lemma:

lim
n→∞

∫

A

(g + fn) dλ >
∫

A

(g + f) dλ,

lim
n→∞

∫

A

(g − fn) dλ >
∫

A

(g − f) dλ.

Hence ∫

A

g dλ+ lim
n→∞

∫

A

fn dλ >
∫

A

g dλ+

∫

A

f dλ

and ∫

A

g dλ− lim
n→∞

∫

A

fn dλ >
∫

A

g dλ−
∫

A

f dλ.

Hence ∫

A

f dλ 6 lim
n→∞

∫

A

fn dλ 6 lim
n→∞

∫

A

fn dλ 6
∫

A

f dλ.

Corollary 10.4 The clam of Theorem 10.3 remains true if condition 1) is replaced by

1′) fn
λ−→ f onA i. e. ∀ ε > 0, λ

(
{x ∈ A : |fn(x)− f(x)| > ε}

)
→ 0, n→∞.

Exercise 10.5 Using Theorem 9.8, prove Corollary 10.4.

10.4 Change of Variables

We consider two measurable spaces (X,F) and (X ′,F ′). Let λ be a measure on X and let T be an

(F ,F ′)-measurable map. We define a new measure on X ′ which is a push forward of the measure λ:

T#λ(A′) := λ
(
T−1(A′)

)
= λ

(
{x ∈ X : T (x) ∈ A′}

)
, ∀A′ ∈ F ′.

We will also use the notation λ ◦ T−1 := T#λ.

T−1(A′)

λ X

F

A′

T#λ = λ ◦ T−1
X ′

F ′
T

Figure 10.1
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Exercise 10.6 Check that T#λ is a measure on F ′.

Example 10.7 Take X = R and X ′ = [0,∞). Let λ be the Lebesgue measure on X = R. Take

T (x) = |x|.

−2 −1 1 2

1

2

T (x) = |x|

A′

X

X ′

Figure 10.2

Then λ ◦T−1
(
[1, 2]

)
= λ

(
[1, 2]∪ [−2,−1]

)
= 2λ

(
[1, 2]

)
= 2. It is easy to check that λ ◦T−1(A′) = 2λ(A′).

Theorem 10.8 (Change of Variables) Let f : X ′ 7→ R be F ′-measurable. Then

∫

X

f
(
T (x)

)
λ(dx) =

∫

X′

f(y)(λ ◦ T−1)(dy)

holds if at least one of the integrals exists.

10.5 Comparison of Lebesgue and Riemann Integrals

Take X = [a, b] and F = B
(
[a, b]

)
= B(R) ∩ [a, b], and let λ be the Lebesgue measure on [a, b]. We will

denote the Lebesgue integral over λ as

b∫

a

f dλ :=

b∫

a

f(x) dx :=

∫

[a,b]

f dλ.

We denote by R
(
[a, b]

)
the set of all Riemann integrable functions f : [a, b] 7→ R on [a, b].

Theorem 10.9 If f ∈ R
(
[a, b]

)
, then f ∈ L

(
[a, b], λ

)
and

b∫

a

f(x) dx =

b∫

a

f dλ.

10.6 Lebesgue-Stieltjes Integral

Take X = R and H = {(a, b] : −∞ < a < b < ∞} ∪ {∅}. Let F : R 7→ R be a non-decreasing and right

continuous function. We set

λF (∅) := 0, λF
(
(a, b]

)
= F (b)− F (a), (a, b] ∈ H.
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Theorem 10.10 λF is a measure on H.

Consequently λF can be extended to a measure on r(H). We will denote this extension also by λF . Next

let λ∗F be the outer measure on 2X generated by λF . Consider the class SF of all λ∗F -measurable sets

from 2X . By Theorem 4.9 SF is a σ-algebra and λ∗F is a measure on SF . We denote this measure by

λF . Next, by Theorem 4.12, H ⊂ r(H) ⊂ SF . We can conclude that B(R) = σ(H) ⊂ SF . Hence λF is

defined on B(R).

Definition 10.11 The integral ∫

A

f dλF

is called the Lebesgue-Stieltjes integral on R and is denoted by

∫

A

f(x) dF (x) :=

∫

A

f dλF .

If A = [a, b], then we write
b∫

a

f(x) dF (x).

Exercise 10.12

1. Let F be a continuously differentiable function and F ′(x) = f(x), x ∈ R. Show that

∞∫

−∞

g(x) dF (x) =

∞∫

−∞

g(x)f(x) dx.

2. Let x1 < · · · < xn and m1, . . . ,mn > 0. Define

x1 x2 x3 xn−1 xn

m1

m2

mn

. . .

Figure 10.3

Show that
∞∫

−∞

g dF =
n∑

k=1

g(xk)mk.
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11 Metric Spaces (Lecture Notes)

11.1 Definition and Examples

Definition 11.1 A metric space is a pair (X, d), where X is a set and d is a metric or distance function

on X, that is, d is a function d : X ×X 7→ R such that ∀x, y, z ∈ X

(M1) d(x, y) > 0

(M2) d(x, y) = 0⇔ x = y

(M3) d(x, y) = d(y, x) (symmetry)

(M4) d(x, y) 6 d(x, z) + d(z, y) (triangle inequality)

Examples of Metric Spaces

1. Real line R
X = R, d(x, y) = |x− y|, x, y ∈ R

2. Euclidean space Rn

X = Rn, d(x, y) =
√∑n

k=1(ξk − ηk)2, x = (ξ1, . . . , ξn), y = (η1, . . . , ηn)

3. Sequence space l∞

X = l∞ := {x = (ξk)
∞
k=1 : ξk ∈ R, x is bounded}, d(x, y) = sup

k∈N
|ξk − ηk|, x = (ξk)

∞
k=1, y = (ηk)

∞
k=1

4. Space c

X = c = {x = (ξk)
∞
k=1 : ξk ∈ R, x is convergent}, d(x, y) = sup

k∈N
|ξk − ηk|

We can say that c is a metric subspace of l∞ because it is a subset of l∞ and its metric is just a

restriction of the metric on l∞.

5. Space B(A)

X = B(A) is the set of all bounded functions x : A 7→ R, A ⊂ R. We define

d(x, y) = sup
t∈A
|x(t)− y(t)|, x, y ∈ B(A).

Let us check that
(
B(A), d

)
is a metric space.

(M1) d(x, y) > 0 is trivial

(M2) d(x, y) = 0⇔ sup
t∈A
|x(t)− y(t)| = 0⇔ x(t) = y(t), ∀ t ∈ [a, b]

(M3) d(x, y) = sup
t∈A
|x(t)− y(t)| = sup

t∈A
|y(t)− x(t)| = d(y, x)

(M4) d(x, y) = sup
t∈A
|x(t)− z(t) + z(t)− y(t)| 6 sup

t∈A
|x(t)− z(t)|+ sup

t∈A
|z(t)− y(t)| = d(x, z) + d(z, y)

6. Functional space C[a, b]

X = C[a, b] is the set of all continuous functions from [a, b] to R. We define

d(x, y) = max
t∈[a,b]

|x(t)− y(t)|.

Again we can say that
(
C[a, b], d

)
is a metric subspace of

(
B[a, b], d

)
.
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7. Space lp, p > 1

X = lp is the set of all sequences x = (ξk)
∞
k=1 in R such that

∑∞
k=1 |ξk|p <∞. We define

d(x, y) =

( ∞∑

k=1

|ξk − ηk|p
) 1

p

, (11.1)

where x = (ξk)
∞
k=1 and y = (ηk)

∞
k=1. Let us check that (lp, d) is a metric space. For this we need

the following inequalities. We start from the Hölder inequality:

∞∑

k=1

|ξkηk| 6
( ∞∑

k=1

|ξk|p
) 1

p
( ∞∑

k=1

|ηk|q
) 1

q

,
1

p
+

1

q
= 1, p > 1.

In particular, if p = 2, then q = 2 and we have the Cauchy-Schwarz inequality:

∞∑

k=1

|ξkηk| 6
( ∞∑

k=1

|ξk|2
) 1

2
( ∞∑

k=1

|ηk|2
) 1

2

.

We also need the Minkowski inequality:

( ∞∑

k=1

|ξk + ηk|p
) 1

p

6
( ∞∑

k=1

|ξk|p
) 1

p

+

( ∞∑

k=1

|ηk|p
) 1

p

.

Let us now show that d defined by (11.1) is a distance. Conditions (M1)-(M3) are trivial, so we

will show (M4):

d(x, y) =

( ∞∑

k=1

|ξk − ηk|p
) 1

p

=

( ∞∑

k=1

|ξk − ζk + ζk − ηk|p
) 1

p

6
( ∞∑

k=1

(
|ξk − ζk|+ |ζk − ηk|

)p
) 1

p

6
( ∞∑

k=1

|ξk − ζk|p
) 1

p

+

( ∞∑

k=1

|ζk − ηk|p
) 1

p

= d(x, z) + d(z, y),

where z = (ζk)
∞
k=1, and x and y are as before.

8. Space lpn, p > 1

X = lpn = Rn, d(x, y) = (
∑n

k=1 |ξk − ηk|p)
1
p

9. Space Lp[a, b], p > 1

Let λ be the Lebesgue measure on [a, b]. We assume that two measurable functions x, y : [a, b] 7→ R
are equal to each other if x = y λ−a. e. Then X = Lp[a, b] is the space of all measurable functions

x on [a, b] (more precisely classes of equivalence) such that
∫ b
a |x(t)|p dt <∞. We define

d(x, y) =




b∫

a

|x(t)− y(t)|p dt




1
p

.
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10. Discrete metric space

Let X be a set. We define

d(x, y) =





0, x = y

1, x 6= y.

(X, d) is called a discrete metric space.

11.2 Open and Closed Sets

Let (X, d) be a metric space.

Definition 11.2

• Br(x0) = {x ∈ X : d(x, x0) < r} is called an open ball with center x0 and radius r

• Br(x0) = {x ∈ X : d(x, x0) 6 r} is called a closed ball with center x0 and radius r

Definition 11.3

• A set G is called open (in X) if ∀x ∈ G, ∃ r > 0 : Br(x) ⊂ G.

• A set F is called closed (in X) if F c = X \ F is open.

Exercise 11.4

1. Prove that the union of any family of open sets is open.

2. Prove that the intersection of any finite family of open sets is open.

Exercise 11.5 Show that the set G =
{
x ∈ C[0, 1] :

∣∣f
(

1
2

)∣∣ < 1
}

is open in C[0, 1].

35



12 Convergence in Metric Spaces (Lecture Notes)

12.1 Continuous Maps

Definition 12.1

• Let (X, dX) and (Y, dY ) be metric spaces. A map T : X 7→ Y is said to be continuous at x0 if

∀ ε > 0, ∃ δ > 0 : ∀x ∈ X, dX(x, x0) < δ ⇒ dY (Tx0, Tx) < ε.

• A function T is continuous on X if it is continuous at every point of X.

Example 12.2 The function T : l∞ 7→ R2 defined as

Tx = (ξ1, ξ2), x = (ξk)
∞
k=1

is continuous. Indeed take x = (ξk)
∞
k=1 ∈ l∞ and ε > 0. Then for all y = (ηk)

∞
k=1 ∈ l∞ such that

dl∞(x, y) = sup
k
|ξk − ηk| < δ,

where δ will be chosen later, we have

dR2(Tx, Ty) = dR2

(
(ξ1, ξ2), (η1, η2)

)
=
√

(ξ1 − η1)2 + (ξ2 − η2)2 <
√
δ2 + δ2 =

√
2δ = ε.

Hence δ = ε√
2
. So T is continuous at all x ∈ l∞ and is thus continuous on l∞.

Theorem 12.3 A map T : X 7→ Y is continuous on X if and only if for all sets G open in Y the set

f−1(G) = {x ∈ X : f(x) ∈ G}

is open in X.

Definition 12.4

• A point x0 is called a limit point of a set M ⊂ X if

∀ ε > 0, ∃x ∈M, x 6= x0 : x ∈ Bε(x0).

• The set M which contains all points of M and all limit points of M is called the closure of M .

Example 12.5 Take X = R2 and M = Q2 = {(ξ1, ξ2) ∈ R2 : ξ1, ξ2 ∈ Q}. Then Q2 = R2 since every

point of R2 is a limit point of Q2:

∀ ε > 0, ∃x ∈ Q2, x 6= x0 : x ∈ Bε(x0), ∀x0 ∈ R2.

Exercise 12.6 Propose a metric space X and a ball Br(x0) ∈ X such that

Br(x0) 6= Br(x0) = {x ∈ X : d(x, x0) 6 r}.
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Definition 12.7

• A subset M of X is called dense in X if M = X.

• X is called separable if there exists a countable subset M ⊂ X which is dense in X.

Example 12.8 According to Example 12.5 the metric space R2 is separable.

Remark 12.9 A metric space is separable if there exists a countable set M ⊂ X such that every ball

Br(x), r > 0, x ∈ X contains points from M , that is,

∀x ∈ X, r > 0, Br(x) ∩M 6= ∅.

Remark 12.10 The spaces R, Rn, c, C[a, b], lp, lpn, L
p are separable while the spaces B[a, b] and l∞ are

not.

Example 12.11 lp is separable. To show this, take

M = {x ∈ lp : x = (ξ1, . . . , ξn, 0, 0, . . . ), ξk ∈ Q, k = 1, . . . , n, n > 1}.

Remark that M is countable. Indeed, we can identify

Mn = {x ∈ lp : x = (ξ1, . . . , ξn, 0, 0, . . . ), ξk ∈ Q}

with Qn that is countable. Consequently M =
⋃∞
n=1Mn is countable. Let us show that M = X. By

Remark 12.9 we need to take arbitrary x ∈ lp and r > 0, and find y ∈ M : y ∈ Br(x) ⇔ d(x, y) < r.

Since x ∈ l∞
∞∑

k=1

|ξk|p <∞.

There exists n > 1 such that
∞∑

k=n+1

|ξk|p < δ1 =
εp

2
.

Next we choose ηk ∈ Q, k = 1, . . . , n such that

|ξk − ηk| < δ2 =
ε

p
√

2n
, k = 1, . . . , n.

Take y = (η1, . . . , ηn, 0, 0, . . . ) ∈M . Then

dp(x, y) =
∞∑

k=1

|ξk − ηk|p =
n∑

k=1

|ξk − ηk|p +
∞∑

k=n+1

|ξk|p < nδp2 + δ1 =
εp

2
+
εp

2
= εp.

12.2 Convergence, Cauchy Sequences, Completeness

Definition 12.12

• A sequence {xn}n>1 in a metric space (X, d) is said to be convergent if there exists x ∈ X such that

lim
n→∞

d(xn, x) = 0.

• x is called the limit of {xn}n>1 and we write lim
n→∞

xn = x or xn → x.
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Remark 12.13 xn → x if and only if ∀ ε > 0, ∃N : d(xn, x) < ε, ∀n > N .

A set M is bounded if it is contained in a ball Br(x0), that is, ∃x0 ∈ X, r > 0 : M ⊂ Br(x0).

Lemma 12.14 Let (X, d) be a metric space.

1. A convergent sequence in X is bounded and its limit is unique.

2. If xn → x and yn → y in X, then d(xn, yn)→ d(x, y).
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13 Completeness of Metric Spaces (Lecture Notes)

13.1 Cauchy Sequences

Recall the definition of convergence in a metric space.

Theorem 12.12

• A sequence {xn}n>1 in a metric space (X, d) is said to be convergent if there exists x ∈ X such that

lim
n→∞

d(xn, x) = 0.

• x is called the limit of {xn}n>1 and we write lim
n→∞

xn = x or xn → x.

Definition 13.1

• A sequence {xn}n>1 is said to be a Cauchy sequence if d(xn, xm)→ 0, n,m→∞, i.e.

∀ ε > 0, ∃N : d(xn, xm) < ε, ∀n,m > N.

• The space X is said to be complete if every Cauchy sequence in X converges, that is, it has a limit

which is an element of X.

Example 13.2

1. Spaces 1) - 9) from Lecture 11 are complete.

2. The metric space (X, d) where X = Q and d(x, y) = |x− y|, x, y ∈ Q is incomplete. Take

xn =
n∑

k=0

1

k!
∈ Q.

We know that
∑∞

k=0
1
k! = e 6∈ Q. The sequence {xn}n>1 is a Cauchy sequence. Indeed, for n < m

d(xn, xm) = |xn − xm| =
m∑

k=n+1

1

k!
6

∞∑

k=n+1

1

k!
→ 0, n,m→∞.

But {xn}n>1 is not convergent in X = Q because there exists no x ∈ Q such that xn → x in X = Q.

3. Take X = (0, 1)2 = {(ξ1, ξ2) : ξ1, ξ2 ∈ (0, 1)} and d(x, y) =
√

(ξ1 − η1)2 + (ξ2 − η2)2. This metric

space is incomplete. Indeed, take xn =
(

1
n ,

1
n

)
∈ X, n > 2. Then

d(xn, xm) =

√(
1

n
− 1

m

)2

+

(
1

n
− 1

m

)2

=
√

2

∣∣∣∣
1

n
− 1

m

∣∣∣∣→ 0, n,m→∞.

Hence {xn}n>2 is a Cauchy sequence but @x ∈ X : xn → x, because xn → (0, 0) 6∈ X.

4. Let X = C[0, 1] and take

d(x, y) =

1∫

0

|x(t)− g(t)| dt.

(X, d) is a metric space but it is not complete.
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Take

1
2 − 1

n
1
2

1
2 + 1

n
1

1 xn, n > 2

1
2 − 1

n
1
2

1
2 + 1

n
1

1

xn

xm

S = d(xn, xm)

Figure 13.1

Hence {xn}n>1 is a Cauchy sequence but it does not converge in C[0, 1]:

xn →





1, x > 1
2

0, x < 1
2

6∈ C[0, 1].

13.2 Some Properties

Theorem 13.3 Every convergent sequence in a metric space is a Cauchy sequence.

Proof: Let {xn}n>1 converge to x. Then

0 6 d(xn, xm) 6 d(xn, x) + d(xm, x)→ 0, n,m→∞.

This implies that {xn}n>1 is a Cauchy sequence.

Exercise 13.4 Show that a Cauchy sequence is bounded, that is, {xn}n>1 is bounded if ∃ y ∈ X, r > 0

such that xn ∈ Br(y).

Example 13.5 Let us prove that lp is a complete metric space. Recall that for lp

X =

{
x = (ξk)

∞
k=1 :

∞∑

k=1

|ξk|p <∞
}
, d(x, y) =

( ∞∑

k=1

|ξk − ηk|p
) 1

p

.

Take a Cauchy sequence xn = (ξnk )∞k=1 ∈ lp.

1. First we need to show that {ξnl }n>1 is a Cauchy sequence in R for all l. Indeed

|ξnl − ξml | =
(
|ξnl − ξml |p

)1
p 6

( ∞∑

k=1

|ξnk − ξmk |p
) 1

p

= d(xn, xm)→ 0, n,m→∞.

So {ξnl }n>1 is a Cauchy sequence in R, and since R is complete, there exists ξl ∈ R such that

ξnl → ξl, n→∞.
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2. Next we need to show that x = (ξk)
∞
k=1 ∈ lp and xn → x in lp. Take ε > 0. By the fact that {xn}n>1

is a Cauchy sequence, ∃N > 1 : d(xn, xm) < ε
2 , ∀n,m > N . So

( ∞∑

k=1

|ξnk − ξmk |p
) 1

p

< ε
2 ⇒

∞∑

k=1

|ξnk − ξmk |p <
εp

2p
.

By Fatou’s lemma
∞∑

k=1

lim
m→∞

|ξnk − ξmk |p =
∞∑

k=1

|ξnk − ξk|p 6
εp

2p
< εp.

So ( ∞∑

k=1

|ξnk − ξk|p
) 1

p

< ε, ∀n > N.

We need only to show that x = (ξk)
∞
k=1 ∈ lp. By Fatou’s lemma

∞∑

k=1

|ξk|p =
∞∑

k=1

lim
n→∞

|ξnk |p 6 lim
n→∞

∞∑

k=1

|ξnk |p = lim
n→∞

d(0, xn) <∞,

because {xn}n>1 is bounded.

Theorem 13.6 Let M ⊂ X be non-empty.

1. x ∈M ⇔ ∃xn ∈M, n > 1 : xn → x.

2. M is closed if and only if for all {xn}n>1 ∈M such that xn → x in X we have that x ∈M .

Theorem 13.7 Let (X, d) be a complete metric space and take M ⊂ X. The metric subspace (M,d) is

complete if and only if M is a closed subset of X.

Proof: Let (M,d) be complete. We will prove that M is closed in X by using Theorem 13.6 2). Take a

sequence {xn}n>1 ∈ M such that xn → x in X. Then by Theorem 13.3 {xn}n>1 is a Cauchy sequence

in X, that is d(xn, xm) → 0, n,m → ∞. Then {xn}n>1 is a Cauchy sequence in (M,d). Since M is

complete, there exists y ∈ M such that xn → y in M , that is, d(xn, y) → 0, n → ∞. Then xn → y in

X. Since the limit is unique by Lemma 12.14, x = y ∈ M . Now let M be closed in X and let (X, d)

be complete. Take a Cauchy sequence {xn}n>1 in M . {xn}n>1 is also a Cauchy sequence in X, so by

the completeness of X, there exists x ∈ X such that xn → x, n → ∞ in X. Then by Theorem 13.6 2)

x ∈M . So xn → x in M, n→∞.

Definition 13.8 (Isometric Spaces)

1. A map T : X → X̃ is said to be isometric if T preserves distances, that is, d̃(Tx, Ty) = d(x, y) for

all x, y ∈ X.

2. The space X is said to be isometric with the space X̃ if there exists a bijective isometry of X onto

X̃. X, X̃ are called isometric spaces.

Definition 13.9 For a metric space (X, d) there exists a complete metric space (X̂, d̂) which has a

subspace W that is isometric with X and dense in X̂. This metric space X̂ is unique except for isometries.
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14 Normed and Banach Spaces (Lecture Notes)

14.1 Vector Spaces

Let K = R or K = C be a fixed field of scalars.

Definition 14.1 A vector space over a field of scalars K is a non-empty set X of elements called vectors,

together with the operations of addition “+” and multiplication “·”, satisfying the following conditions

for any α, β ∈ K and x, y, z ∈ X:

1. x+ y = y + x

2. (x+ y) + z = x+ (y + z)

3. There exists a vector 0 ∈ X such that ∀x ∈ X, 0 + x = x

4. ∀x ∈ X, ∃ y ∈ X denoted by −x such that x+ y = 0

5. 1 · x = x

6. α(x+ y) = αx+ αy, (α+ β)x = αx+ βx

Recall that Y ⊂ X is called a vector subspace of X if Y is closed with respect to “+” and “·”, that is,

∀x, y ∈ Y, ∀α, β ∈ K, αx+ βy ∈ Y .

Example 14.2 The following sets together with “+” and “·” are vector spaces.

1. Kn = {(ξ1, . . . , ξn) : ξk ∈ K, k = 1, . . . , n}

(ξ1, . . . , ξn) + (η1, . . . , ηn) = (ξ1 + η1, . . . , ξn + ηn), α(ξ1, . . . , ξn) = (αξ1, . . . , αξn)

2. C[a, b] = {x : [a, b] 7→ R : x is continuous on [a, b]}

(x+ y)(t) = x(t) + y(t), (αx)(t) = αx(t)

3. lp = {x = (ξ1, ξ2, . . . ) : ξk ∈ R,
∑∞

k=1 |ξk|p <∞}, l∞ = {x = (ξ1, ξ2, . . . ) : ξk ∈ R, supk |ξk| <∞}

x+ y = (ξ1 + η1, ξ2 + η2, . . . ), αx = (αξ1, αξ2, . . . )

4. Lp[a, b] = {x : [a, b] 7→ R : x is measurable and
∫ b
a |x(t)|p dt <∞}

(x+ y)(t) = x(t) + y(t), (αx)(t) = αx(t)

We identify x, y ∈ Lp if x = y λ−a. e., where λ is the Lebesgue measure on [a, b].
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14.2 Normed and Banach Spaces

Definition 14.3

• A norm on a vector space X is a real-valued function on X whose value at x ∈ X is denoted by

‖x‖ and which satisfies the following properties:

(N1) ‖x‖ > 0, ∀x ∈ X
(N2) ‖x‖ = 0⇔ x = 0

(N3) ‖αx‖ = |α|‖x‖, ∀α ∈ K, x ∈ X
(N4) ‖x+ y‖ 6 ‖x‖+ ‖y‖, ∀x, y ∈ X

• A normed space X is a vector space with a norm defined on it.

Let (X, ‖ · ‖) be a normed vector space. The norm ‖ · ‖ defines the metric d on X given by

d(x, y) = ‖x− y‖, x, y ∈ X.

The metric d is called the metric induced by the norm ‖ · ‖. We will also consider every normed space

(X, ‖ · ‖) as a metric space with the metric induced by the norm. So {xn}n>1 converges in X if

‖xn − x‖ → 0, n→∞.

Similarly {xn}n>1 is a Cauchy sequence if

‖xn − xm‖ → 0, n,m→∞.

Definition 14.4 A normed space (X, ‖ · ‖) is called a Banach space if it is complete with respect to the

metric induced by the norm ‖ · ‖.

Exercise 14.5 Show that a norm satisfies the inequality

∣∣‖x‖ − ‖y‖
∣∣ 6 ‖x− y‖.

This inequality implies that the map X 3 x 7→ ‖x‖ ∈ R is continuous.

Example 14.6 The following sets are Banach spaces.

1. Euclidean space Rn and unitary space Cn

‖x‖ =

( ∞∑

k=1

|ξk|2
) 1

2

2. Sequence spaces l∞ and lp

‖x‖ = sup
k>1
|ξk|, x ∈ l∞, ‖x‖ =

( ∞∑

k=1

|ξk|p
) 1

p

, x ∈ lp

3. Space c

‖x‖ = sup
k>1
|ξk|

Remark that c is a subspace of l∞.
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4. Space B(A)

‖x‖ = sup
t∈A
|x(t)|

5. Space C[a, b]

‖x‖ = max
t∈[a,b]

|x(t)|

6. Spaces lpn, p > 1 and l∞n

‖x‖ =

(
n∑

k=1

|ξk|p
) 1

p

, x ∈ lpn, ‖x‖ = max
k=1,...,n

|ξk|, x ∈ l∞n

7. Space Lp[a, b], p > 1

‖x‖ =




b∫

a

|x(t)|p dt




1
p

Example 14.7 (C[a, b], ‖ · ‖) with norm

‖x‖ =

b∫

a

|x(t)| dt

is incomplete because the metric space C[a, b] with d(x, y) =
∫ b
a |x(t)− y(t)| dt is not complete.

14.3 Finite Dimensional Normed Spaces

Definition 14.8

• Vectors x1, . . . , xn ∈ X are called linearly independent if the equality

α1x1 + · · ·+ αnxn = 0

only holds if α1 = · · · = αn = 0.

• M ⊂ X is linearly independent if every non-empty finite subset of M is linearly independent.

• A vector space X is finite dimensional if ∃n > 1 such that X contains a linearly independent set of

vectors and every set containing more than n vectors is linearly dependent. The number n = dimX

is called the dimension of X. If n does not exist, then X is infinite-dimensional.

• If n = dimX, then any family of vectors {e1, . . . , en} that is linearly independent is called a basis

for X. If {e1, . . . , en} is a basis, then for every vector x ∈ X there exists a unique set of scalars

α1, . . . , αn such that

x =
n∑

k=1

αkek.

• We say that Y ⊂ X is a subspace of a normed space X if Y is a vector subspace of X and the norm

on Y is a restriction of the norm on X. Y is a closed subspace of X if additionally Y is a closed

subset of X.
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14.4 Schauder Basis

In a normed space we can use series. Take xn ∈ X, n > 1. We define the partial sum

Sn =
n∑

k=1

xk.

We say that the series
∑∞

n=1 xn converges if {Sn}n>1 is convergent, that is, there exists S ∈ X such that

Sn → S, n→∞. The element S is called the sum of the series
∑∞

n=1 xn. A series
∑∞

n=1 xn is absolutely

convergent if
∑∞

n=1 ‖xn‖ converges in R.

Exercise 14.9 Show that absolute convergence implies convergence in X if and only if X is a Banach

space.

Definition 14.10 If a normed space X contains a sequence {en}n>1 with the property that for every

x ∈ X there exists a unique sequence of scalars {αn}n>1 such that

x =

∞∑

k=1

αkek,

then {en}n>1 is called a Schauder basis for X.

Exercise 14.11 Show that if a normed space has a Schauder basis then X is separable. The inverse

statement is not true in general.

Example 14.12 {en = (0, 0, . . . , 0, 1, 0, . . . ), n > 1}, where 1 is in the nth position is a Schauder basis

for lp, p > 1.
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15 Linear Operators (Lecture Notes)

15.1 Basic Definition

Let X,Y be vector spaces over the same scalar field K.

Definition 15.1

• A linear operator T is a map from D(T ) ⊂ X to Y such that

1. the domain D(T ) is a vector subspace of X,

2. ∀x, y ∈ D(T ) and for any scalar α, T (x+ y) = Tx+ Ty and T (αx) = αT (x).

• If Y = K, then T is called a linear functional.

Example 15.2

1. Consider X = Rn and Y = Rm. Let A = (aij)
m,n
i,j=1 be an m× n matrix. We define

Tx = Ax, x ∈ Rn,

that is, for x = (ξ1, . . . , ξn) we have

Tx =




a11 . . . a1n

...
...

...

am1 . . . amn







ξ1

...

ξn


 =




η1

...

ηm


 .

Then D(T ) = Rn and T is a linear operator.

2. Consider X = C[a, b] and Y = C[a, b]. We define

(Tx)(t) =

t∫

α

x(s) ds, t ∈ [a, b].

Then D(T ) = C[a, b].

3. Consider X = C[a, b] and Y = C[a, b]. We define

(Tx)(t) = x′(t), t ∈ [a, b].

Then C[a, b] ⊃ D(T ) = C1[a, b], the set of all continuously differentiable functions on [a, b].

4. Consider X = Lp[a, b] and Y = Lq[a, b]. Fix ϕ : [a, b] 7→ R that is Lebesgue measurable. We define

(Tx)(t) = ϕ(t)x(t).

Then D(T ) = {x ∈ Lp :
∫ b
a |ϕ(t)x(t)|q dt <∞}.

5. Consider X = l∞ and Y = R. Take

Tx = lim
k→∞

ξk, x = (ξk)
∞
k=1.

Then D(T ) = c ⊂ l∞ and T is a linear functional.
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15.2 Bounded and Continuous Linear Operators

Let X and Y be normed spaces over the same scalar field.

Definition 15.3

• A linear operator T : D(T ) 7→ Y, D(T ) ⊂ X is said to be bounded if there exists C > 0 such that

‖Tx‖ 6 C‖x‖. (15.1)

• The number

‖T‖ = sup
x∈D(T )
x 6=0

‖Tx‖
‖x‖

is called the norm of T .

Exercise 15.4

1. Show that ‖T‖ is the smallest constant C satisfying (15.1), that is,

‖T‖ = min{C : ‖Tx‖ 6 C‖x‖, ∀x ∈ D(T )}.

2. Show that ‖T‖ = sup
x∈D(T )
‖x‖=1

‖Tx‖.

Example 15.5

1. Consider X = Y = C[0, 1]. We define

(Tx)(t) =

t∫

0

x(s) ds, x ∈ C[0, 1] = D(T ).

We claim that T is bounded. To show this we compute

‖Tx‖ = max
t∈[0,1]

∣∣∣∣∣∣

t∫

0

x(s) ds

∣∣∣∣∣∣
6 max

t∈[0,1]

t∫

0

|x(s)| ds

6 max
t∈[0,1]

t∫

0

max
s∈[0,1]

|x(s)| ds = ‖x‖ max
t∈[0,1]

t∫

0

ds = ‖x‖ max
t∈[0,1]

t = ‖x‖,

where we use max
s∈[0,1]

|x(s)| = ‖x‖, x ∈ C[0, 1]. So ‖T‖ 6 1. Let us show that ‖T‖ = 1. Take x = 1.

Then ‖x‖ = 1 and moreover, (Tx)(t) =
∫ t

0 1 ds = t. So

‖Tx‖ = 1⇒ ‖T‖ > ‖Tx‖‖x‖ = 1.

This implies ‖T‖ = 1.
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2. Take again X = Y = C[0, 1]. We consider

(Tx)(t) = x′(t), D(T ) = C1[0, 1].

We claim that T is unbounded. Take xn(t) = tn, t ∈ [0, 1], n > 1.We compute

‖xn‖ = max
t∈[0,1]

|tn| = 1, ‖Txn‖ = max
t∈[0,1]

|ntn−1| = n.

Then

‖T‖ > ‖Txn‖‖xn‖
= n, ∀n > 1.

We see that there does not exist C such that for all n we have n 6 C, so T is unbounded.

Theorem 15.6 Let X be a finite-dimensional normed space and T a linear operator on X. Then T is

bounded.

Let us recall that T : D(T ) 7→ Y is continuous at x0 ∈ D(T ) if

∀ ε > 0, ∃ δ > 0 : ∀x ∈ D(T ), ‖x− x0‖ < δ ⇒ ‖Tx− Tx0‖ < ε.

Theorem 15.7 Let T : D(T ) 7→ Y be a linear operator.

1. T is continuous if and only if T is bounded.

2. If T is continuous at a single point, then it is continuous at every point.

Proof: We prove the first statement. For T = 0, the statement is trivial. So we take T 6= 0 ⇒ ‖T‖ 6= 0.

Let the boundedness of T be given. Take x0 ∈ D(T ) and show that T is continuous:

∀ ε > 0, ∃ δ > 0 : ∀x ∈ D(T ), ‖x− x0‖ < δ ⇒ ‖Tx− Tx0‖ < ε.

Let ε > 0 be given. We take δ = ε
‖T‖ and x ∈ D(T ) : ‖x− x0‖ < δ. Then

‖Tx− Tx0‖ = ‖T (x− x0)‖ 6 ‖T‖‖x− x0‖ < ‖T‖δ = ‖T‖ ε

‖T‖ = ε.

Since x0 was arbitrary, T is continuous. Now let T be continuous at x0 ∈ D(T ). Then if we choose ε = 1,

we can find δ such that

‖x− x0‖ < δ ⇒ ‖Tx− Tx0‖ < ε = 1.

Now take any y 6= 0 from D(T ) and set x = x0 + δ
2‖y‖y. Then

‖x− x0‖ =
δ

2
< δ ⇒ ‖Tx− Tx0‖ < ε = 1.

Then we also have

1 > ‖Tx− Tx0‖ = ‖T (x− x0)‖ =

∥∥∥∥
(
T

δ

2‖y‖y
)∥∥∥∥ =

δ

2‖y‖‖Ty‖.

Thus
δ

2‖y‖‖Ty‖ < 1⇒ ‖Ty‖ < 2

δ
‖y‖.
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Since y ∈ D(T ) was arbitrary, this implies that T is bounded, as we can take C = 2
δ . Remark that we

only used the continuity of T at x0. So we conclude that if T is continuous at x0, it must be bounded,

and if it is bounded, it must then be continuous on D(T ), proving the second statement.

Corollary 15.8 Let T be a bounded linear operator.

1. For xn, x ∈ D(T ), we have xn → x⇒ Txn → Tx.

2. The null set ker(T ) = {x : Tx = 0} is closed in X.

Exercise 15.9 Prove Corollary 15.8.

Theorem 15.10 Let T : D(T ) 7→ Y be a bounded linear operator and Y a Banach space. Then T has

an extension T̃ : D(T ) 7→ Y , where T̃ is a bounded linear operator and ‖T̃‖ = ‖T‖.

Proof: We only show how T̃ can be constructed. Take x ∈ D(T ). Then there exists a sequence xn ∈ D(T )

such that xn → x. Since T is linear and bounded, then

‖Txn − Txm‖ 6 ‖T (xn − xm)‖ 6 ‖T‖‖xn − xm‖ → 0, n,m→∞.

So {Txn}n>1 is a Cauchy sequence in Y . Since Y is a Banach space, there exists y ∈ Y such that

Txn → y, n → ∞. Set T̃ x := y. Now we show that T̃ x is well-defined. If zn, n > 1 is another sequence

from D(T ) converging to x, then Tzn → y′. Consider the sequence vn : x1, z1, x2, z2, x3, z3, . . . . This

sequence converges to x and Tvn → y′′. But Tv2k+1 → y = y′′ and Tv2k → y′ = y′′. This implies

y = y′.
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16 Dual Spaces (Lecture Notes)

16.1 Normed Spaces of Operators

Let X and Y be normed spaces. Consider bounded linear operators T : X 7→ Y such that ‖Tx‖ 6 C‖x‖.
Denote B(X,Y ) the set of all such bounded linear operators. B(X,Y ) is a vector space if we define

(T1 + T2)(x) = T1x+ T2x, (αT )(x) = αTx,

where T1, T2, T ∈ B(X,Y ), α ∈ K, and x ∈ X.

Theorem 16.1 The vector space B(X,Y ) is a normed space with norm defined by

‖T‖ = sup
x 6=0

‖Tx‖
‖x‖ = sup

‖x‖=1
‖Tx‖.

Exercise 16.2 Prove Theorem 16.1, that is, show that ‖ · ‖ : B(X,Y ) 7→ R is a norm on B(X,Y ).

Theorem 16.3 If Y is a Banach space, then B(X,Y ) is a Banach space.

Proof: Let Tn ∈ B(X,Y ), n > 1 be a Cauchy sequence in B(X,Y ). We want to show that there exists

T ∈ B(X,Y ) such that Tn → T in B(X,Y ). Take x ∈ X and define Tx = lim
n→∞

Tnx. Consider the

sequence Tnx, n > 1 in Y . Claim that Tnx, n > 1 is a Cauchy sequence in Y :

‖Tnx− Tmx‖ = ‖(Tn − Tm)x‖ = ‖Tn − Tm‖‖x‖ → 0, n,m→∞.

Since Y is complete, there exists y ∈ Y such that Tnx→ y := Tx. We have obtained the map T : X 7→ Y .

Now we show that T is linear:

T (αx+ βz) = lim
n→∞

Tn(αx+ βz) = lim
n→∞

(αTnx+ βTnz) = α lim
n→∞

Tnx+ β lim
n→∞

Tnz = αTx+ βTz.

Take ε > 0. Then there exists N : ∀n,m > N, ‖Tn − Tm‖ < ε
2 . For n > N

‖Tnx− Tx‖ =
∥∥∥Tnx− lim

m→∞
Tmx

∥∥∥ = lim
m→∞

‖Tnx− Tmx‖ 6 lim
m→∞

‖Tn − Tm‖‖x‖ 6
ε

2
‖x‖ < ε‖x‖.

Thus T is bounded so T ∈ B(X,Y ). Furthermore, this implies ‖Tn− T‖ 6 ε
2 < ε, ∀n > N , which means

that Tn → T, n→∞, that is, it converges in B(X,Y ). Therefore B(X,Y ) is a Banach space.

16.2 Dual Spaces

Let X be a normed space and take Y = K.

Definition 16.4 The set of all bounded linear functionals on X with norm

‖f‖ = sup
x 6=0

|f(x)|
‖x‖ = sup

‖x‖=1
|f(x)|

is called the dual space of X and is denoted by X ′ = B(X,K).

Theorem 16.5 The dual space X ′ of a normed space X is a Banach space, whether or not X is.
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Definition 16.6

• An isomorphism of a normed space X onto another normed space X̃ is a bijective linear operator

T : X 7→ X̃ that preserves the norm, that is, ‖Tx‖ = ‖x‖ for all x ∈ X.

• If there exists an isomorphism of X onto X̃, then X and X̃ are called isomorphic normed spaces.

Example 16.7

1. We have (lpn)′ = lqn,
1
p + 1

q = 1, 1 < p < ∞. Let f ∈ (lpn)′ be a bounded linear functional. Take a

basis e1 = (1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1) ∈ lpn. Then

x =
n∑

k=1

ξkek ∈ lpn, f(x) = f

(
n∑

k=1

ξkek

)
=

n∑

k=1

ξkf(ek) =
n∑

k=1

γkξk = 〈u, x〉,

where u = (γ1, . . . , γn), γk = f(ek), k = 1, . . . , n. Next we compute the norm of f using the Hölder

inequality:

|f(x)| =
∣∣∣∣∣
n∑

k=1

γkξk

∣∣∣∣∣ 6
n∑

k=1

|γkξk| 6
(

n∑

k=1

|γk|q
) 1

q
(

n∑

k=1

|ξk|p
) 1

p

= ‖u‖q‖x‖p, ∀x ∈ lpn.

This implies ‖f‖ 6 ‖u‖q. Now take x =
(
± |γ1|q−1, . . . ,±|γn|q−1

)
, where we take + if γk > 0 and

− if γk < 0. Then

|f(x)| =
n∑

k=1

γk
(
± |γk|q−1

)
=

n∑

k=1

|γk|q

and

‖x‖ =

(
n∑

k=1

|γk|(q−1)p

) 1
p

=

(
n∑

k=1

|γk|q
)1− 1

q

.

So

|f(x)| =
n∑

k=1

|γk|q =

(
n∑

k=1

|γk|q
) 1

q
(

n∑

k=1

|γk|q
)1− 1

q

= ‖u‖‖x‖.

Hence ‖f‖ = ‖u‖. Consequently, the map f 7→
(
f(ek)

)n
k=1

=: u is an isomorphism of (lpn)′ onto lqn

and ‖f‖ = ‖u‖q. In other words, any bounded linear functional f can be written in the form

f(x) =

n∑

k=1

γkξk =: 〈u, x〉,

where u = (γk)
n
k=1 ∈ lqn and ‖f‖ = ‖u‖q.

2. (l1n)′ = l∞n and (l∞n )′ = l1n.

3. (lp)′ = lq, 1
p + 1

q = 1, 1 < p <∞

4. (l1)′ = l∞

5. c′ = (c0)′ = l1

6. (Lp[a, b])′ = Lq[a, b] and (L′[a, b])′ = L∞[a, b].

7. (C[a, b])′ =“functions of bounded variation”
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16.3 Dual Space to C[a, b]

Definition 16.8 A function w : [a, b] 7→ R is said to be of bounded variation on [a, b] if its total variation

Var(w) = sup

n∑

j=1

|w(tj)− w(tj−1)|

is finite, where the supremum is taken over all partitions a = t0 < t1 < · · · < tn = b.

Example 16.9 If w is non-decreasing, then w has bounded variation. Indeed

Var(w) = sup

n∑

j=1

|w(tj)− w(tj−1)| = sup

n∑

j=1

(
w(tj)− w(tj−1)

)
= w(b)− w(a).

Remark 16.10 A function w has bounded variation if it can be written as a difference of two non-

decreasing functions, that is ∃w1, w2 : [a, b] 7→ R that are non-decreasing such that w = w1 − w2.

Let BV [a, b] be the set of all functions on [a, b] of bounded variation. It is obvious that BV [a, b] is a

vector space over K = R. Define the norm on this space as ‖w‖ = |w(a)|+ Var(w).

Lemma 16.11 BV [a, b] is a Banach space.

If x ∈ C[a, b] and w ∈ BV [a, b], then one can check that the Riemann-Stieltjes integral

b∫

a

x(t) dw(t) = lim
λ→0

n∑

k=1

x(ξk)
(
w(tk)− w(tk−1)

)

exists, where λ = max
k
|tk − tk−1|, ξk ∈ [tk−1, tk] and a = t0 < t1 < · · · < tn = b. Remark that if

w ∈ C1[a, b], then w ∈ BV [a, b] and

b∫

a

x(t) dw(t) =

b∫

a

x(t)w′(t) dt.

Theorem 16.12 Every f ∈ (C[a, b])′ can be expressed as a Riemann-Stieltjes integral:

f(x) =

b∫

a

x(t) dw(t)

with ‖f‖ = Var(w).

In Theorem 16.12 the function can be made unique if we additionally require that w is right continuous

and w(0) = 0. So (C[a, b])′ = BV0[a, b], where BV0[a, b] ⊂ BV [a, b] contains all right continuous functions

of bounded variation.
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17 Hilbert Spaces (Lecture Notes)

17.1 Definitions of Inner Product and Hilbert Spaces

Let X be a vector space over the field K = R or K = C.

Definition 17.1

• An inner product on X is a map 〈·, ·〉 : X ×X 7→ K such that for all x, y, z ∈ X and α ∈ K

(IP1) 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉
(IP2) 〈αx, y〉 = α〈x, y〉
(IP3) 〈x, y〉 = 〈y, x〉
(IP4) 〈x, x〉 > 0, 〈x, x〉 = 0⇔ x = 0

• A vector space X with an inner product on it is called an inner product space.

Remark that 〈x, y+z〉 = 〈y + z, x〉 = 〈y, x〉+ 〈z, x〉 = 〈y, x〉+〈z, x〉 = 〈x, y〉+〈x, z〉 and 〈x, αy〉 = α〈x, y〉.

Example 17.2

1. Euclidean space Rn

〈x, y〉 = ξ1η1 + · · ·+ ξnηn

2. Unitary space Cn

〈x, y〉 = ξ1η1 + · · ·+ ξnηn

3. Space l2 = {x = (ξk)
∞
k=1 : ξk ∈ K, k > 1,

∑∞
k=1 |ξk|2 <∞}

〈x, y〉 =
∞∑

k=1

ξkηk

4. Space L2[a, b] = {x : [a, b] 7→ K :
∫ b
a |x(t)|2 dt <∞}

〈x, y〉 =

b∫

a

x(t)y(t) dt

5. Space L2(R) = {x : R 7→ K :
∫∞
−∞ |x(t)|2 dt <∞}

〈x, y〉 =

∞∫

−∞

x(t)y(t), dt
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17.2 Properties of Inner Product Spaces

Define ‖x‖ =
√
〈x, x〉, x ∈ X. ‖ · ‖ satisfies properties (N1) - (N3) of Definition 14.3. The space X with

norm ‖ · ‖ induced by the inner product is a normed space.

Lemma 17.3 (Cauchy-Schwarz and Triangle Inequalities)

1. For all x, y ∈ X we have |〈x, y〉| 6 ‖x‖‖y‖, and equality holds if and only if x and y are linearly

dependent.

2. For all x, y ∈ X we have ‖x+ y‖ 6 ‖x‖+ ‖y‖.

Exercise 17.4 Check that a norm ‖x‖ =
√
〈x, x〉 on an inner product space satisfies the parallelogram

equality:

‖x+ y‖2 + ‖x− y‖2 = 2(‖x‖2 + ‖y‖2).

Remark 17.5 Exercise 17.4 implies that lp, Lp[a, b], p 6= 2 and C[a, b] are not inner product spaces. Let

us show this explicitly for lp. Take in lp

x = (1, 1, 0, 0, . . . ), y = (1,−1, 0, 0, . . . ).

Then ‖x‖ = ‖y‖ = 2
1
p and ‖x+ y‖ = ‖x− y‖ = 2. Thus

‖x+ y‖2 + ‖x− y‖2 = 22 + 22 6= 2
(

2
2
p + 2

2
p

)
= 2(‖x‖2 + ‖y‖2)

unless p = 2.

Lemma 17.6 Let xn → x and yn → y in X. Then 〈xn, yn〉 → 〈x, y〉.

Proof:

|〈xn, yn〉 − 〈x, y〉| =
∣∣(〈xn, yn〉 − 〈xn, y〉

)
+
(
〈xn, y〉 − 〈x, y〉

)∣∣

6 |〈xn, yn〉 − 〈xn, y〉|+ |〈xn, y〉 − 〈x, y〉|
= |〈xn, yn − y〉|+ |〈xn − x, y〉|
6 ‖xn‖‖yn − y‖+ ‖xn − x‖‖y‖ → 0

Definition 17.7 An inner product space X that is complete in norm generated by the inner product is

said to be a Hilbert space.

A Hilbert space is a Banach space. A subspace Y of an inner product space X is defined to be a vector

subspace of X take with the inner product on X restricted to Y × Y .

Theorem 17.8 Let Y be a subspace of a Hilbert space H.

1. Y is complete if and only if Y is closed in H.

2. If Y is finite-dimensional, then Y is complete.

3. If H is separable, then Y is also separable.

Proof: 1) is a direct consequence of Theorem 13.7. 2) follows from the fact that every finite-dimensional

space is closed.
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17.3 Orthogonality

Definition 17.9 An element x of an inner product space X is said to be orthogonal to an element y ∈ X
if 〈x, y〉 = 0. We also say that x and y are orthogonal and write x ⊥ y. Similarly, for subsets A,B ⊂ X,

x ⊥ A if x ⊥ a, ∀ a ∈ A and A ⊥ B if a ⊥ b, ∀ a ∈ A, b ∈ B.

Now we are interested in finding a perpendicular from x to a subspace Y . Let M be a non-empty subset

of X and let us define the distance from x to M as

δ = inf
ỹ∈M
‖x− ỹ‖.

We want to know if there exists a unique y ∈M such that δ = ‖x− y‖.

Example 17.10 Take X = R2.

x

x

δ

M

y does not exist in M

x

x

δ
M

y

y

exists unique y

x

x

δ δ

M
y

y
y

y

exists infinitely many y

Figure 17.1

A subset M of X is convex if ∀x, y ∈M we have αx+ (1− α)y ∈M, ∀α ∈ [0, 1].

Theorem 17.11 Let X be an inner product space and M 6= ∅ a complete convex subset of X. Then for

every given x ∈ X there exists a unique y ∈M such that

δ = inf
ỹ∈M
‖x− ỹ‖ = ‖x− y‖.

Proof Idea: We need to take a sequence yn ∈ M such that δn = ‖x− yn‖ → δ, n→∞ and show that it

is a Cauchy sequence in M . Then there exists y ∈M such that yn → y.

Lemma 17.12 If in Theorem 17.11 M = Y , where Y is a complete subspace of X, and x ∈ X is fixed,

then z = x− y is orthogonal to Y .

Let H be a Hilbert space and Y a closed subspace of H. We define the orthogonal complement as

Y ⊥ = {z ∈ H : z ⊥ Y },

which is a vector subspace of H.
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18 Orthonormal Sets (Lecture Notes)

18.1 Direct Sums

Let X be an inner product space over K. Assume that Y ⊂ X is a complete subspace of X. Then we

know that z = x− y ⊥ Y , where ‖x− y‖ = inf
ỹ∈Y
‖x− ỹ‖. We define the following subspace of X:

Y ⊥ = {z ∈ X : z ⊥ Y }.

Theorem 18.1 Let Y be any complete subspace of X. Then for every x ∈ X unique y ∈ Y and z ∈ Y ⊥
exist such that x = y + z.

Proof: The existence of y and z follows from Theorem 17.11 and Lemma 17.12. Indeed, take y ∈ Y such

that

inf
ỹ∈Y
‖x− ỹ‖ = ‖x− y‖

and z = x− y. Then z ∈ Y ⊥, so x = y + x− y = y + z. To prove the uniqueness of y and z, we assume

that x = y + z = y1 + z1, where y, y1 ∈ Y and z, z1 ∈ Y ⊥. Then Y 3 y − y1 = z1 − z ∈ Y ⊥ and

〈y − y1, z1 − z〉 = 〈y − y1, y − y1〉 = 0

since Y ⊥ Y ⊥. This implies y1 = y and hence z1 = z.

Definition 18.2 A vector space X is said to be a direct sum of two subspaces Y and Z of X, written

X = Y ⊕ Z, if ∀x ∈ X, ∃! y ∈ Y, z ∈ Z : x = y + z.

Remark 18.3 Let Y be a closed subspace. Then X = Y ⊕ Y ⊥.

18.2 Orthonormal Sets

Definition 18.4

• An orthogonal set M in X is a subset of X whose elements are pairwise orthogonal:

〈x, y〉 = 0, ∀x, y ∈M, x 6= y.

• An orthogonal set M is called orthonormal if

〈x, y〉 =





1, x = y

0, x 6= y.

Exercise 18.5

1. Show that for every x, y ∈ X, x ⊥ y we have ‖x+ y‖2 = ‖x‖2 + ‖y‖2.

2. Prove that an orthonormal set is linearly independent.
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Example 18.6

1. M = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} and M =
{(

1√
2
, 1√

2
, 0
)
,
(

1√
2
,− 1√

2
, 0
)
, (0, 0, 1)

}
are orthonormal

sets in X = R3.

2. Take X = l2. The set M = {en, n > 1, en}, where e1 = (1, 0, 0, . . . ), e2 = (0, 1, 0, . . . ) and so on,

is an orthonormal set.

3. Take X = L2[0, 2π]. The sets M = {en, n > 0}, where

e0(t) =
1√
2π
, en(t) =

cosnt√
π

and M = {en, n > 1}, where

en(t) =
sinnt√
π

are orthonormal sets.

Remark 18.7 Let M = {e1, . . . , en} be a basis in X. Then ∀x ∈ X, ∃!α1, . . . , αn such that

x = α1e1 + · · ·+ αnen.

If M is orthonormal, that is, 〈ek, el〉 = δkl, then

〈x, ek〉 = 〈α1e1 + · · ·+ αkek + · · ·+ αnen, ek〉 = α1〈e1, ek〉+ · · ·+ αk〈ek, ek〉+ · · ·+ αn〈en, ek〉 = αk.

Now we want to extend the idea of Remark 18.7 to infinite-dimensional inner product spaces. Let

{e1, . . . , en} be an orthonormal set in an infinite-dimensional space X. With some x ∈ X, take

y :=
n∑

k=1

〈x, ek〉ek, z := x− y.

Then, applying the Pythagorean theorem

〈z, y〉 = 〈x− y, y〉 = 〈x, y〉 − 〈y, y〉 =

〈
x,

n∑

k=1

〈x, ek〉ek
〉
−
∥∥∥∥∥

n∑

k=1

〈x, ek〉ek
∥∥∥∥∥

2

=

n∑

k=1

〈x, ek〉〈x, ek〉 −
n∑

k=1

‖〈x, ek〉ek‖2 =

n∑

k=1

|〈x, ek〉|2 −
n∑

k=1

|〈x, ek〉|2‖ek‖2 = 0.

Again by the Pythagorean theorem ‖x‖2 = ‖y‖2 + ‖z‖2 > ‖y‖2 =
n∑

k=1

|〈x, ek〉|2.

Theorem 18.8 (Bessel Inequality) Let {ek, k > 1} be an orthonormal sequence in an inner product

space X. Then ∀x ∈ X
∞∑

k=1

|〈x, ek〉|2 6 ‖x‖2.

Let {xn, n > 1} be linearly independent. We want to construct a sequence {en, n > 1} such that

span{x1, . . . , xn} = span{e1, . . . , en}, ∀n.

57



We use the Gram-Schmidt procedure:

e1 :=
x1

‖x1‖
,

v2 := x2 − 〈x2, e1〉e1, e2 :=
v2

‖v2‖
,

and in general

vn := xn −
n−1∑

k=1

〈xn, ek〉ek, en :=
vn
‖vn‖

.

18.3 Series Related to Orthonormal Sequences

Given any orthonormal sequence {ek, k > 1} we consider

∞∑

k=1

αkek, αk ∈ K. (18.1)

We want to find for which αk, k > 1 this series converges.

Theorem 18.9 Let {ek, k > 1} be an orthonormal sequence in a Hilbert space H.

1. (18.1) converges in H if and only if
∞∑

k=1

|αk|2 <∞.

2. If (18.1) converges and

x :=
∞∑

k=1

αkek,

then αk = 〈x, ek〉, k > 1.

3. For every x ∈ H the series
∞∑

k=1

〈x, ek〉ek

converges, but not necessarily to x.

Proof:

1. Proving that
∑n

k=1 αkek converges in H if and only if
∑∞

k=1 |αk|2 converges is equivalent to proving

that Sn = α1e1 + · · ·+αnen is a Cauchy sequence if and only if Rn = |α1|2 + · · ·+ |αn|2 is a Cauchy

sequence. We compute for n < m

‖Sm − Sn‖2 = ‖αn+1en+1 + · · ·+ αmem‖2 = |α2
n+1 + · · ·+ |αm|2 = Rm −Rn.

Indeed {Sn}n>1 is a Cauchy sequence in H if and only if {Rn}n>1 is a Cauchy sequence in R.

2. Let x =
∑∞

k=1 αkek. We compute for k 6 n that 〈Sn, ek〉 = αk. Since Sn → x, by the continuity of

the inner product αk = 〈Sn, ek〉 → 〈x, ek〉, n→∞.

3. Using the Bessel inequality and the proof of 1), we have

∞∑

k=1

|〈x, ek〉|2 6 ‖x‖2 ⇒
∞∑

k=1

|〈x, ek〉|2 <∞⇒
∞∑

k=1

〈x, ek〉ek <∞.
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18.4 Total Orthonormal Sets

Definition 18.10

• A set M ⊂ X is called a total orthonormal set if spanM = X, that is, if spanM is dense in X.

• A total orthonormal family in X is called an orthonormal basis.

Theorem 18.11 In every Hilbert space H there exists a total orthonormal set.

Theorem 18.12 (Parseval Equality) Let M be an orthonormal set in a Hilbert space H. Then M is

total in H if and only if ∑

k

|〈x, ek〉|2 = ‖x‖2, ∀x ∈ H.

Theorem 18.13 Let H be a Hilbert space.

1. If H is separable, then every orthonormal set in H is countable.

2. If H contains a total orthonormal sequence, then H is separable.
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19 Adjoint Operators (Lecture Notes)

19.1 Examples of Orthonormal Bases

1. Legendre Polynomials

We consider the space L2[−1, 1] which is separable and is the space of all real-valued functions x

given on [−1, 1] such that
∫∞
−∞ |x(t)|2 dt < ∞. We want to find an orthonormal basis of functions

for this space. For that we consider the linearly independent set of polynomials M = {xn, n > 0},
where xn(t) = tn, t ∈ [−1, 1]. Then spanM = L2[−1, 1], so M is a total set. However it is not

orthonormal because

〈xk, xl〉 =

1∫

−1

tktl dt =

1∫

−1

tk+l 6= 0

if k + l is even. So we need to use the Gram-Schmidt procedure. In general we find

en(t) =

√
2n+ 1

2
Pn(t), Pn(t) =

1

2nn!

dn

dtn
(t2 − 1)n,

where Pn(t) are called the Legendre polynomials. The set {en, n > 0} is an orthonormal basis in

L2[−1, 1]:

x =

∞∑

n=0

〈x, en〉en, ∀x ∈ L2[−1, 1].

2. Hermite Polynomials

We consider L2(R). Now tn 6∈ L2(R) because
∫∞
−∞ |tn|2 dt =∞. Instead we take M = {xn, n > 0},

where xn(t) = tne−
t2

2 , t ∈ R. After normalization we find

en(t) =
1√

2nn!
√
π
e−

t2

2 Hn(t), Hn(t) = (−1)net
2 dn

dtn
e−t

2
,

where Hn(t) are called the Hermite polynomials. The set {en, n > 0} is an orthonormal basis in

L2(R).

3. Laguerre Polynomials

We consider L2[0,∞) and M = {xn, n > 0}, where xn(t) = tne−
t
2 , t > 0. Then

en(t) = e−
t
2Ln(t), Ln(t) =

et

n!

dn

dtn
(tne−t),

where Ln(t) are called the Laguerre polynomials. The set {en, n > 0} is an orthonormal basis in

L2[0,∞).

19.2 Adjoint Operators

Let H be a Hilbert space.

Theorem 19.1 (Riesz Representation Theorem) Every bounded linear functional f on H can be written

in terms of an inner product:

f(x) = 〈x, z〉,

where z is a uniquely determined element of H, and ‖f‖ = ‖z‖.
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Definition 19.2 Let H1 and H2 be Hilbert spaces and T : H1 7→ H2 a bounded linear operator. Then

the adjoint operator T ∗ of T is the operator T ∗ : H2 7→ H1 such that

〈Tx, y〉 = 〈x, T ∗y〉, ∀x ∈ H1, y ∈ H2.

Theorem 19.3 The adjoint operator T ∗ of T exists, is unique, and is bounded, with ‖T ∗‖ = ‖T‖.

The existence of T ∗ follows from Theorem 19.1. Namely, consider for a fixed y ∈ H2 the map

f(x) = 〈Tx, y〉, x ∈ H1.

Then f : H1 7→ K is a bounded linear functional:

|f(x)| = |〈Tx, y〉| 6 ‖Tx‖‖y‖ 6 ‖T‖‖x‖‖y‖ = C‖x‖.

By Theorem 19.1, there exists z ∈ H1 such that f(x) = 〈x, z〉. We set T ∗y := z.

Theorem 19.4 Let H1 and H2 be Hilbert spaces and T, S : H1 7→ H2 bounded linear operators.

1. 〈T ∗y, x〉 = 〈y, Tx〉, x ∈ H1, y ∈ H2

2. (S + T )∗ = S∗ + T ∗

3. (αT )∗ = αT ∗, α ∈ K

4. (T ∗)∗ = T

5. ‖T ∗T‖ = ‖TT ∗‖ = ‖T‖2

6. T ∗T = 0⇔ T = 0

7. (ST )∗ = T ∗S∗ (if H1 = H2)

19.3 Self-Adjoint, Unitary, and Normal Operators

We assume that H is a Hilbert space.

Definition 19.5 A bounded linear operator T : H 7→ H is said to be

• self-adjoint if T ∗ = T

• unitary if T is bijective and T ∗ = T−1

• normal if TT ∗ = T ∗T

Remark that if T is self-adjoint or unitary then it is normal. The inverse is not true.

Example 19.6 If we take T = 2iI, where I is the identity operator, then T ∗ = −2iI. So TT ∗ = T ∗T ,

but T ∗ 6= T−1 = −1
2 iI and T 6= T ∗.

Example 19.7 Consider Cn with inner product

〈x, y〉 =
n∑

k=1

ξkηk, x = (ξk)
n
k=1, y = (ηk)

n
k=1.
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Any bounded linear operator T : Cn 7→ Cn can be given by a matrix MT , that is, y = Tx can be expressed

as 


η1

...

ηn


 =




a11 . . . a1n

...
...

...

an1 . . . ann







ξ1

...

ξn


 .

If MT is the matrix of T , then MT ∗, the matrix of T ∗, is the conjugate transpose of MT .

Theorem 19.8 Let T : H 7→ H be a bounded linear operator.

1. If T is self-adjoint, then 〈Tx, x〉 is real for all x ∈ H.

2. If H is complex (K = C) and 〈Tx, x〉 is real, then T is self-adjoint.

Proof:

1. If T is self-adjoint, then

〈Tx, x〉 = 〈x, Tx〉 = 〈T ∗x, x〉 = 〈Tx, x〉 ⇒ 〈Tx, x〉 ∈ R.

2. If 〈Tx, x〉 is real, then

〈Tx, x〉 = 〈Tx, x〉 = 〈x, T ∗x〉 = 〈T ∗x, x〉.

Hence

0 = 〈Tx, x〉 − 〈T ∗x, x〉 = 〈Tx− T ∗x, x〉 = 〈(T − T ∗)x, x〉 ⇒ T = T ∗.

Theorem 19.9

1. The product of two bounded self-adjoint operators S and T is self-adjoint if and only if ST = TS.

2. Let Tn, n > 1 be self-adjoint operators on H such that Tn → T in B(H,H). Then T is self-adjoint.

Proof: We will only prove 2). We need to show that T = T ∗. Consider

‖T ∗n − T ∗‖ = ‖(Tn − T )∗‖ = ‖Tn − T‖ → 0.

So T ∗n → T ∗ and since Tn = T ∗n , then Tn → T ∗. This implies that T = T ∗.
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20 Spectral Theory of Bounded Linear Operators (Lecture Notes)

We assume that all spaces are complex.

20.1 Basic Concepts

Assume X 6= ∅ is a complex normed space and consider the operators

T : D(T ) 7→ X, T − λI : D(T ) 7→ X,

where Ix = x and λ ∈ C. If it exists, denote

Rλ := Rλ(T ) = (T − λI)−1.

Note that Rλ is a linear operator.

Definition 20.1

• A regular value of T is a complex number λ such that

(R1) Rλ(T ) exists,

(R2) Rλ(T ) is bounded,

(R3) Rλ(T ) is defined on a dense subset of X.

• The resolvent set ρ(T ) is the set of all regular values of T .

• The set σ(T ) = C \ ρ(T ) is called the spectrum of T .

• λ ∈ σ(T ) is called a spectral value of T .

The spectrum σ(T ) is partitioned into three disjoint sets.

Definition 20.2

• The point spectrum or discrete spectrum σp(T ) is the set such that Rλ(T ) does not exist.

• The continuous spectrum σc(T ) is the set such that Rλ(T ) exists and is defined on a dense subset

of X, but Rλ(T ) is unbounded.

• The residual spectrum σr(T ) is the set such that Rλ(T ) exists but the domain of Rλ(T ) is not dense

in X.

Remark that σ(T ) = σp(T )∪σc(T )∪σr(T ). We also note that Rλ(T ) does not exist if and only if T −λI
is not injective, that is

∃x 6= 0 : (T − λI)x = Tx− λx = 0.

Then λ ∈ σp(T ) ⇔ ∃x 6= 0 : Tx − λx = 0 and the vector x is called an eigenvector of T . If X is

finite-dimensional then

σc(T ) = σr(T ) = ∅.
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Example 20.3 Take X = l2 = {x = (ξk)k>1 : ξk ∈ C,
∑∞

k=1 |ξk|2 <∞} and define T : l2 7→ l2 such that

Tx = (0, ξ1, ξ2, ξ3, . . . ), x = (ξk)k>1.

T is called a right-shift operator and D(T ) = l2. We have

‖Tx‖2 =
∞∑

k=1

|ξk|2 = ‖x‖2 ⇒ ‖T‖ = 1.

Now consider λ = 0. We have R0 = T−1, D(T−1) = {y = (ηk)k>1 : η1 = 0}, and

T−1y = (η2, η3, . . . ), y ∈ D(T−1).

In this case R0 exists but D(T−1) is not dense in X. Thus λ = 0 belongs to the residual spectrum of T .

Proposition 20.4 Let X be a complex Banach space and take T ∈ B(X,X) and λ ∈ ρ(T ). Then Rλ(T )

is defined on the entire set X and is bounded.

20.2 Spectral Properties of Bounded Linear Operators

Theorem 20.5 Take T ∈ B(X,X), where X is a Banach space. If ‖T‖ < 1, then (I − T )−1 exists,

belongs to B(X,X), and

(I − T )−1 =
∞∑

k=0

T k = I + T + T 2 + . . . ,

where the series converges in B(X,X).

Proof: Note that ‖T k‖ 6 ‖T‖k. Since ‖T‖ < 1, we have

∞∑

k=0

‖T k‖ 6
∞∑

k=0

‖T‖k <∞.

This implies that the series

S :=

∞∑

k=0

T k

converges. Now compute

(I − T )(I + T + T 2 + · · ·+ Tn) = (I + T + T 2 + · · ·+ Tn)(I − T ) = I − Tn+1.

Since ‖Tn+1‖ 6 ‖T‖n+1 → 0, we get (I − T )S = S(I − T ) = I, and thus S = (I − T )−1.

Theorem 20.6 The resolvent set ρ(T ) of T ∈ B(X,X) on a complex Banach space X is open. Hence

the spectrum σ(T ) is closed.

Theorem 20.7 The spectrum σ(T ) of T ∈ B(X,X) on a complex Banach space X is compact and lies

in the disk |λ| 6 ‖T‖.
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Proof: Take λ 6= 0 and denote θ = 1
λ . From Theorem 20.5 we obtain that

Rλ = (T − λI)−1 = −θ(I − θT )−1 = −θ
∞∑

k=0

(θT )k = − 1

λ

∞∑

k=0

(
1

λ
T

)k
,

where the series converges because ∥∥∥∥
1

λ
T

∥∥∥∥ =
‖T‖
|λ| < 1.

So by Theorem 20.5 Rλ ∈ B(X,X). Since σ(T ) is closed by Theorem 20.6 and bounded, we have that

σ(T ) is compact.

Theorem 20.8 Let X be a Banach space and T ∈ B(X,X). Then for every λ0 ∈ ρ(T ) the resolvent

Rλ(T ) has the representation

Rλ(T ) =

∞∑

k=0

(λ− λ0)kRk+1
λ0

,

where the series absolutely converges for λ in the open disk

|λ− λ0| <
1

‖Rλ0‖

in the complex plane.

Definition 20.9 The spectral radius rσ(T ) of T ∈ B(X,X) is the radius

rσ(T ) = sup
λ∈σ(T )

|λ|.

One can show that rσ(T ) = lim
n→∞

n
√
‖Tn‖.

Theorem 20.10 (Resolvent Equation, Commutativity) Let X be a complex Banach space and take

T ∈ B(X,X) and λ, µ ∈ ρ(T ).

1. Rµ −Rλ = (µ− λ)RµRλ

2. Rλ commutes with any S ∈ B(X,X) which commutes with T .

3. RλRµ = RµRλ

Proof:

1. We have

Rµ −Rλ = RµI − IRλ = Rµ
(
(T − λI)Rλ

)
−
(
Rµ(T − µI)

)
Rλ = Rµ(T − λI − T + µI)Rλ

= Rµ(µ− λ)Rλ = (µ− λ)RµRλ.

2. The assumption TS = ST implies (T − λI)S = S(T − λI). Thus

RλS = RλS(T − λI)Rλ = Rλ(T − λI)SRλ = SRλ.

3. Rλ commutes with T by 2). Hence Rλ commutes with Rµ.
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Theorem 20.11 Let X be a complex Banach space. Take T ∈ B(X,X) and the polynomial

p(λ) = αnλ
n + αn−1λ

n−1 + · · ·+ a0, αn 6= 0.

Then

σ
(
p(T )

)
= p
(
σ(T )

)
,

where p(T ) = αnT
n + αn−1T

n−1 + · · ·+ α0I and p
(
σ(T )

)
= {p(λ) ∈ C : λ ∈ σ(T )}.

Theorem 20.12 Eigenvectors {x1, . . . , xn} corresponding to different eigenvalues λ1, . . . , λn of a linear

operator T on a vector space X are linearly independent.
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21 Spectral Representation of Bounded Self-Adjoint Operators I
(Lecture Notes)

We will assume that H is a complex Hilbert space and T : H 7→ H is a bounded linear operator. We

recall that T is self-adjoint if T ∗ = T , that is,

∀x, y ∈ H, 〈Tx, y〉 = 〈x, Ty〉.

21.1 Spectral Representation of Self-Adjoint Operators in Finite Dimensions

Here we will assume that H is finite-dimensional. From Mathematics 2, Lecture 12 we know that there

exists an orthonormal basis {e1, . . . , en} consisting of eigenvectors of T . In particular

Tek = λkek, ∀ k = 1, . . . , n

and λk are called eigenvalues and are real. Since x =
∑n

k=1〈x, ek〉ek, we get

Tx = T

(
n∑

k=1

〈x, ek〉ek
)

=
n∑

k=1

〈x, ek〉Tek =
n∑

k=1

λk〈x, ek〉ek.

Let us define operators Pkx = 〈x, ek〉ek which are projections onto span{ek}. Then

Tx =

n∑

k=1

λkPkx

or

T =
n∑

k=1

λkPk. (21.1)

But this formula cannot be extended to infinite-dimensional Hilbert spaces. For instance, take

H = L2[0, 1], (Tx)(t) = tx(t).

Then T ∗ = T and σ(T ) = σc(T ) = [0, 1]. So we need to rewrite (21.1) in a more appropriate fashion. Let

us assume for simplicity that λ1 < λ2 < · · · < λn. We introduce

Eλ =
∑

k:λk6λ
Pk.

Remark that

Eλ = 0, λ < λ1

Eλ = P1, λ1 6 λ < λ2

Eλ = P1 + P2, λ2 6 λ < λ3

...

Eλ = P1 + · · ·+ Pk, λk 6 λ < λk+1

Eλ = I, λ > λn.
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Remark also that

Eλx =

k∑

j=1

〈x, ej〉ej , λk 6 λ < λk+1

is the projection onto span{e1, . . . , ek}. Moreover, it “increases” and is right continuous. Then, in

particular, Eλk = P1 + · · ·+ Pk and Pk = Eλk − Eλk−1
= Eλk − Eλk− . Consequently

T =
n∑

k=1

λk(Eλk − Eλk−) =

∞∫

−∞

λ dEλ,

where the integral is a Riemann-Stieltjes integral. We need to understand the last equality as follows:

〈Tx, y〉 =

n∑

k=1

λk
(
〈Eλkx, y〉 − 〈Eλk−x, y〉

)
=

∞∫

−∞

λ d〈Eλx, y〉.

Later we will extend this formula to infinite-dimensional spaces. Namely, we will show that there exists an

“increasing” right-continuous family of projection operators Eλ, λ ∈ R such that E−∞ = 0 and E∞ = I,

and

T =

∞∫

−∞

λ dEλ.

21.2 Spectral Properties of Bounded Self-Adjoint Operators

Example 21.1 Consider H = L2[0, 1] and

(Tx)(t) = tx(t), t ∈ [0, 1], x ∈ L2[0, 1].

1. T is self-adjoint. Indeed

〈Tx, y〉 =

1∫

0

tx(t)y(t) dt =

1∫

0

x(t)ty(t) dt = 〈x, Ty〉.

2. We want to find the spectrum and resolvent sets. Consider Tλ := T − λI. We compute

(Tλx)(t) = (Tx− λx)(t) = tx(t)− λx(t) = (t− λ)x(t) = y(t).

Then

(Rλy)(t) =
1

t− λy(t), t ∈ [0, 1].

(a) If λ ∈ C \ [0, 1], then 1
t−λ is bounded so

‖Rλy‖2 =

1∫

0

1

|t− λ|2 |y(t)|2 dt 6 sup
t∈[0,1]

1

|t− λ|2

1∫

0

|y(t)|2 dt 6 sup
t∈[0,1]

1

|t− λ|2 ‖y‖
2.

Hence Rλ is a bounded linear operator defined on the whole space L2[0, 1], implying λ ∈ ρ(T ).
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(b) If λ ∈ [0, 1], then 1
t−λ is not bounded and Rλ is not defined on the whole space L2[0, 1]. Say

for the function y(t) =
√
t− λ I[λ,1](t), t ∈ [0, 1] we get

Rλy(t) =

√
t− λ
t− λ I[λ,1](t) =

1√
t− λ

I[λ,1](t)

and

‖Rλy‖2 =

1∫

0

1
√
t− λ2 I[λ,1](t) dt =

1∫

λ

1

t− λ dt =∞

if λ < 1. So Rλ is only defined on the set

D(Rλ) =



y ∈ L

2[0, 1] :

1∫

0

|y(t)|2
|t− λ| dt <∞



 .

One can show that D(Rλ) is dense in L2[0, 1] so λ ∈ σc(T ). Additionally σc(T ) = [0, 1],

σp(T ) = σr(T ) = ∅ and ρ(T ) = C \ [0, 1].

Theorem 21.2 Let H be a complex Hilbert space and T : H 7→ H a bounded self-adjoint operator.

1. All eigenvalues of T (if they exist) are real.

2. Eigenvectors corresponding to different eigenvalues of T are orthogonal.

Theorem 21.3 (Resolvent Set) Let H be a complex Hilbert space and T : H 7→ H a bounded self-adjoint

operator. Then λ ∈ ρ(T ) if and only if there exists C > 0 such that

‖Tx− λx‖ > C‖x‖, ∀x ∈ H.

Theorem 21.4 (Spectrum) Let H be a complex Hilbert space and T : H 7→ H a bounded self-adjoint

operator. Then the spectrum σ(T ) of T is real and belongs to the interval [m,M ], where m = inf
‖x‖=1

〈Tx, x〉
and M = sup

‖x‖=1
〈Tx, x〉. Moreover, m and M are spectral values of T .

Theorem 21.5 (Residual Spectrum) The residual spectrum σr(T ) of a bounded self-adjoint operator

T : H 7→ H on a complex Hilbert space H is empty.

21.3 Positive Operators

We introduce a partial order “6” on the set of self-adjoint operators on H. If T is a self-adjoint operator,

then we know that 〈Tx, x〉 is real.

Definition 21.6

• Let T1, T2 : H 7→ H be bounded self-adjoint operators. We write T1 6 T2 if 〈T1x, x〉 6 〈T2x, x〉 for

all x ∈ H.

• A bounded self-adjoint operator T is called positive if T > 0, that is, 〈Tx, x〉 > 0, ∀x ∈ H.

We remark that a sum of positive operators is positive.

Theorem 21.7 Every positive bounded self-adjoint operator T : H 7→ H on a complex Hilbert space H

has a positive square root T
1
2 , that is, (T

1
2 )2 = T , which is unique. This operator commutes with every

bounded linear operator on H that commutes with T .
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22 Spectral Representation of Bounded Self-Adjoint Operators II
(Lecture Notes)

22.1 Projection Operators

Let H be a Hilbert space and Y a closed subspace of H. In Lecture 18, we showed that H = Y ⊕ Y ⊥,

that is, for every x ∈ H there exists a unique y ∈ Y and z ∈ Y ⊥ such that x = y + z. We defined y as

the minimizer of the function Y 3 ỹ 7→ ‖x− ỹ‖, i.e.

‖x− y‖ = inf
ỹ∈Y
‖x− ỹ‖.

We define the operator P : H 7→ H such that Px := y, which is called an orthogonal projection on H.

More specifically, P is called the projection of H onto Y .

Exercise 22.1 Show that P is a bounded linear operator on H with ‖P‖ = 1.

Remark 22.2 If P is the projection of H onto Y , then P (H) = {Px : x ∈ H} = Y and kerP = Y ⊥.

Theorem 22.3 A bounded linear operator P : H 7→ H on a Hilbert space H is a projection on H if and

only if P ∗ = P and P 2 = P , that is, if it is self-adjoint and idempotent.

Proof: Assume that P is a projection. Take x ∈ H. Then

Px = y + z = Px+ 0,

where y ∈ Y and z ∈ Y ⊥. Thus P (Px) = Px. Now take x1 = y1 + z1 and x2 = y2 + z2, where y1, y2 ∈ Y
and z1, z2 ∈ Y ⊥. Then

〈Px1, x2〉 = 〈y1, y2 + z2〉 = 〈y1, y2〉+ 〈y1, z2〉 = 〈y1, y2〉

and

〈x1, Px2〉 = 〈y1 + z1, y2〉 = 〈y1, y2〉+ 〈z1, y2〉 = 〈y1, y2〉.

This implies that P ∗ = P . Conversely, assume P ∗ = P 2 = P is given. Set Y := P (H). We need to show

that if x = y + z, where y ∈ Y and z ∈ Y ⊥, then y = Px. We write

x = Px+ x− Px

and check that x− Px ∈ Y ⊥. Take u ∈ P (H)⇔ u = Pv, v ∈ H. Compute

〈u, x− Px〉 = 〈Pv, x− Px〉 = 〈Pv, x〉 − 〈Pv, Px〉 = 〈Pv, x〉 − 〈P 2v, x〉 = 0.

Example 22.4 Consider H = L2[0, 1]. Define for λ ∈ [0, 1]

(Px)(t) = I[0,λ](t)x(t) =




x(t), t 6 λ

0, t > λ.

Let us check that P is a projection. According to Theorem 22.3, we have to show that P 2 = P ∗ = P . It

is clear that P 2 = P .
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Next

〈Px1, x2〉 =

1∫

0

(Px1)(t)x2(t) dt =

1∫

0

I[0,λ](t)x1(t)x2(t) dt =

1∫

0

x1(t)I[0,λ](t)x2(t) dt = 〈x1, Px2〉.

This implies that P is a projection on H. We define

Y = P (H) = {x ∈ L2[0, 1] : x(t) = 0, t ∈ (λ, 1]}.

22.2 Properties of Projection Operators

Assume that H is a Hilbert space and P1, P2, P are projections on H. Denote Yi = Pi(H) = ImPi and

Y = P (H) = ImP .

1. P is positive and 〈Px, x〉 = ‖Px‖2.

2. P1P2 is a projection if and only if P1P2 = P2P1. Then P1P2 projects H onto Y1 ∩ Y2.

3. P1 + P2 is a projection on H if and only if Y1 ⊥ Y2. In this case P1 + P2 projects H onto Y1 ⊕ Y2.

4. P2 − P1 is a projection on H if and only if Y1 ⊂ Y2.

Theorem 22.5 (Partial Order) The following conditions are equivalent.

1. P1P2 = P2P1 = P1

2. Y1 ⊂ Y2

3. kerP1 ⊃ kerP2

4. ‖P1x‖ 6 ‖P2x‖

5. P1 6 P2 (P2 − P1 is positive)

22.3 Spectral Family

Let H be a complex Hilbert space.

Definition 22.6

• A real spectral family is a family {Eλ, λ ∈ R} of projections Eλ on H such that

1. Eλ 6 Eµ, ∀λ < µ

2. lim
λ→−∞

Eλx = 0, lim
λ→∞

Eλx = x, ∀x ∈ H

3. Eλ+0x := lim
µ→λ+0

Eµx = Eλx, ∀x ∈ H

• {Eλ, λ ∈ R} is called a spectral family on an interval [a, b] if Eλ = 0, λ < a and Eλ = I, λ > b.

We define a spectral family for a bounded self-adjoint operator T : H 7→ H. Fix λ ∈ R and consider

Tλ = T−λI. Define the positive operator Bλ = (T 2
λ )

1
2 . Remark that Bλ is the unique positive self-adjoint

operator such that B2
λ = T 2

λ . Define T+
λ = 1

2(Bλ + Tλ) as the positive part of the operator T .
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Example 22.7 Let H = L2[0, 1] and take (Tx)(t) = tx(t). We want to construct Eλ. We compute

(Tλx)(t) = (Tx)(t)− λx(t) = (t− λ)x(t), t ∈ [0, 1].

Then (T 2
λx)(t) = (t− λ)2x(t) and (Bλx)(t) =

√
(t− λ)2x(t) = |t− λ|x(t), t ∈ [0, 1]. So the positive part

of T is

(T+
λ x)(t) =

1

2

(
(Bλx)(t) + (Tλx)(t)

)
=

1

2

(
|t− λ|x(t) + (t− λ)x(t)

)
= (t− λ)+x(t), t ∈ [0, 1],

where

s+ =




s, s > 0

0, s < 0.

So

(T+
λ x)(t) =




x(t), t > λ

0, t 6 λ.

Then kerT+
λ = {x : T+

λ x = 0} = {x : x(t) = 0, t > λ}. From Example 22.4 we know that the projection

Eλ of H onto kerT+
λ is defined as

(Eλx)(t) = I[0,λ](t)x(t).

Theorem 22.8 The family {Eλ, λ ∈ R}, where Eλ is the projection of H onto T+
λ , is the spectral family

on the interval [m,M ], which is the smallest interval containing the spectrum of T (see Theorem 21.4).

Theorem 22.9 (Spectral Theorem for Bounded Self-Adjoint Linear Operators) Let T : H 7→ H be a

bounded self-adjoint linear operator on a complex Hilbert space H. Then

T =

∞∫

−∞

λ dEλ =

M∫

m−0

λ dEλ,

where Eλ is the spectral family associated with T . In particular

〈Tx, y〉 =

∞∫

−∞

λ d〈Eλx, y〉 =

M∫

m−0

λ d〈Eλx, y〉, ∀x, y ∈ H.

Coming back to (Tx)(t) = tx(t), we compute

(Tx)(t) =

∞∫

−∞

λ dEλx(t) =

1∫

0

λ dI[0,λ](t)x(t) = x(t)

1∫

0

λ dI[0,λ](t) = x(t) · t · 1 = tx(t).
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23 Compact Linear Operators (Lecture Notes)

23.1 Definition and Properties of Compact Linear Operators on Normed Spaces

Let X be a normed space. We first recall that F ⊂ X is compact in X if every open cover of F contains

a finite subcover, that is, for every family {Gα} of open sets in X such that F ⊂ ⋃αGα there exists

{Gα1 , . . . , Gαn} ⊂ {Gα} such that F ⊂ ⋃n
k=1Gαk

.

Theorem 23.1 F is compact in X if and only if every sequence {xn}n>1 ⊂ F has a subsequence that is

convergent in F .

Definition 23.2 A set F ⊂ X is called relatively compact if F is compact.

Every bounded set in a finite-dimensional normed space is relatively compact.

Exercise 23.3 Show that F is relatively compact if and only if ∀ {xn}n>1 ⊂ F there exists a subsequence

{xnk
}k>1 such that xnk

→ x, where x is not necessarily in F .

Definition 23.4 Let X and Y be normed spaces. An operator T : X 7→ Y is called a compact linear

operator if T is linear and if for every bounded subset M ⊂ X the image T (M) is relatively compact.

Theorem 23.5 (Compactness Criterion) Let X and Y be normed spaces and T : X 7→ Y a linear

operator. Then T is compact if and only if it maps every bounded sequence {xn}n>1 in X onto a sequence

{Txn} in Y that has a convergent subsequence, that is, for all bounded {xn}n>1 in X there exists a

subsequence {Txnk
}k>1 of {Txn}n>1 such that Txnk

→ y in Y .

Theorem 23.6 If T : X 7→ Y is bounded and ImT = T (X) is finite-dimensional, then T is compact.

Example 23.7 Take X = Y = l2 over the field K. The operator T defined by

Tx = (2ξ1, ξ2, ξ3 + ξ4, 0, 0, 0, . . . )

for x = (ξk)
∞
k=1 is compact. Indeed T (X) = {(η1, η2, η3, 0, 0, 0 . . . ) : η1, η2, η3 ∈ K} is a 3-dimensional

subspace of l2. By Theorem 23.6 T is compact.

Theorem 23.8 Let {Tn}n>1 be a sequence of compact linear operators from a normed space X to a

Banach space Y . If Tn → T in B(X,Y ), then T is compact.

Example 23.9 We consider X = Y = l2 and

Tx =

(
ξ1,

ξ2

2
,
ξ3

3
, . . .

)
.

Let us prove that T is compact. Take

Tnx =

(
ξ1,

ξ2

2
,
ξ3

3
, . . . ,

ξn
n
, 0, 0, . . .

)
.

Then Tn is bounded and dim
(
Tn(X)

)
= n. So by Theorem 23.6 it is compact. Let us compute

‖(T − Tn)x‖2 =

∥∥∥∥
(

0, 0, . . . , 0,
ξn+1

n+ 1
,
ξn+2

n+ 2
, . . .

)∥∥∥∥
2

=

∞∑

k=n+1

ξ2
k

k2
6 1

(n+ 1)2

∞∑

k=n+1

ξ2
k 6 1

(n+ 1)2
‖x‖2.

Hence ‖T − Tn‖ 6 1
n+1 → 0, n→∞. By Theorem 23.8 T is compact.
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23.2 Spectral Properties of Compact Self-Adjoint Operators

In this section we will assume that H is a separable Hilbert space.

Theorem 23.10 Let T : H 7→ H be a bounded linear operator. The following statements are equivalent.

1. T is compact.

2. T ∗ is compact.

3. If 〈xn, y〉 → 〈x, y〉, ∀ y ∈ H, then Txn → Tx in H.

4. There exists a sequence Tn of operators of finite rank such that ‖T − Tn‖ → 0.

Theorem 23.11 (Hilbert-Schmidt Theorem) Let T be a self-adjoint compact operator.

1. There exists an orthonormal basis consisting of eigenvectors of T .

2. All eigenvalues of T are real and for every eigenvalue λ 6= 0 the corresponding eigenspace is finite

dimensional.

3. Two eigenvalues of T that correspond to different eigenvalues are orthogonal.

4. If T has a countable (not finite) set of eigenvalues {λn}n>1, then λn → 0, n→∞.

Corollary 23.12 Let T be a compact self-adjoint linear operator on a complex Hilbert space H. Then

there exists an orthonormal basis {ek}k>1 such that

Tx =

∞∑

n=1

λn〈x, en〉en, x ∈ H.
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24 Unbounded Linear Operators (Lecture Notes)

24.1 Examples of Unbounded Linear Operators

Take H = L2(−∞,∞). Consider first the multiplication operator

(Tx)(t) = tx(t), t ∈ R, D(T ) =



x ∈ L

2(−∞,∞) :

∞∫

−∞

t2|x(t)|2 dt <∞



 .

Remark that D(T ) 6= L2(−∞,∞). Indeed

x(t) =





1
t , t > 1

0, t < 1
∈ L2(−∞,∞)

because

‖x‖2 =

∞∫

−∞

|x(t)|2 dt =

∞∫

1

1

t2
dt = 1,

but

‖Tx‖2 =

∞∫

−∞

t2|x(t)|2 dt =

∞∫

1

1 dt =∞.

Let us recall that a linear operator T : D(T ) 7→ H is bounded if

∃C > 0 : ‖Tx‖ 6 C‖x‖, ∀x ∈ D(T ).

We take

xn =





1, n 6 t < n+ 1

0, otherwise.

Then

‖xn‖2 =

∞∫

−∞

|xn(t)|2 dt =

n+1∫

n

dt = 1,

but

‖Txn‖2 =

∞∫

−∞

t2|xn(t)|2 dt =

n+1∫

n

t2 dt > n2.

So ‖Txn‖2 > n2‖xn‖, ∀n > 1, hence T is unbounded. The differentiation operator

(Tx)(t) = ix′(t), D(T ) ⊂ L2(−∞,∞)

is also unbounded. Later we will explain what D(T ) is. Here we only remark that all continuously

differentiable functions with compact support and Hermite polynomials belong to D(T ).
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24.2 Symmetric and Self-Adjoint Linear Operators

Let H be a complex Hilbert space. Let T : D(T ) 7→ H be a densely defined (D(T ) = H) linear operator.

The adjoint operator T ∗ : D(T ∗) 7→ H of T is defined as follows. The domain D(T ∗) of T ∗ consists of all

y ∈ H such that ∃ y∗ ∈ H satisfying

〈Tx, y〉 = 〈x, y∗〉, ∀x ∈ D(T ). (24.1)

For each such y ∈ D(T ∗) define T ∗y := y∗. Remark that D(T ∗) is not necessarily equal to H. Since

D(T ) is dense in H, for every y ∈ D(T ∗) there exists a unique y∗ satisfying (24.1). Before we discuss the

properties of adjoint operators, we will first discuss the extension of a linear operator. Let us come back

to the operator

(T1x)(t) = ix′(t).

We can define T1 only for functions from

D(T1) = C1
0 (R) = {f ∈ C1(R) : f = 0 outside some interval}.

Now let

(T2x)(t) = ix′(t), D(T2) =



f ∈ C(R) :

∞∫

−∞

|f |2 dt <∞,
∞∫

−∞

|f ′|2 dt <∞



 .

T1 and T2 are different operators, but D(T1) ⊂ D(T2) and T1 = T2

∣∣
D(T1)

.

Definition 24.1 An operator T2 is called an extension of another operator T1 if D(T1) ⊂ D(T2) and

T1 = T2

∣∣
D(T1)

. In this case we write T1 ⊂ T2.

Theorem 24.2 Let S : D(S) 7→ H and T : D(T ) 7→ H be densely defined linear operators.

1. If S ⊂ T then T ∗ ⊂ S∗.

2. If D(T ∗) is dense in H, then T ⊂ (T ∗)∗.

3. If T is injective and ImT is dense in H, then T ∗ is injective and (T ∗)−1 = (T−1)∗.

Definition 24.3 Let T : D(T ) 7→ H be a densely defined linear operator on H. T is called a symmetric

linear operator if

〈Tx, y〉 = 〈x, Ty〉, ∀x, y ∈ D(T ).

Remark T being symmetric does not imply that T = T ∗. Indeed, take

(Tx)(t) = ix(t), D(T ) = C0(R).

Then

〈Tx, y〉 =

∞∫

−∞

ix′(t)y(t) dt =

∞∫

−∞

iy(t)dx(t) = iy(t)x(t)

∣∣∣∣
∞

−∞
−
∞∫

−∞

x(t) d(iy(t)) = 0− 0−
∞∫

−∞

x(t)iy′(t) dt

=

∞∫

−∞

x(t)iy′(t) dt = 〈x, Ty〉, ∀x, y ∈ D(T ) = C0(R).
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However, T ∗ 6= T . For instance, y(t) = e−t
2
, t ∈ R does not belong to D(T ) = C0(R) but y ∈ D(T ∗)

because for y∗(t) = i(−2t)e−t
2

one has

〈Tx, y〉 = 〈x, y∗〉, ∀x ∈ D(T ).

Lemma 24.4 A densely defined linear operator T is symmetric if and only if T ⊂ T ∗.

Definition 24.5 Let T : D(T ) 7→ H be a densely defined linear operator. T is called self-adjoint if

T = T ∗.

Remark 24.6 Every self-adjoint operator is symmetric but not every symmetric operator is self-adjoint.

24.3 Closed Linear Operators

Definition 24.7 Let T : D(T ) 7→ H be a linear operator, where D(T ) ⊂ H. T is called a closed linear

operator if its graph

Gr(T ) = {(x, y) : x ∈ D(T ), y = Tx}

is closed in H ×H, where the norm on H ×H is defined as

‖(x, y)‖ =
√
‖x‖2 + ‖y‖2

Theorem 24.8 Let T : D(T ) 7→ H be a linear operator, where D(T ) ⊂ H.

1. T is closed if and only if xn → x, xn ∈ D(T ) and Txn → y imply x ∈ D(T ) and Tx = y.

2. If T is closed and D(T ) is closed, then T is bounded.

3. Let T be bounded. Then T is closed if and only if D(T ) is closed.

Exercise 24.9 Show that the multiplication operator is closed.

Theorem 24.10 Let T be a densely defined operator on H. Then the adjoint operator T ∗ is closed.

Definition 24.11

• If a linear operator T has an extension T1 which is a closed linear operator, then T is called closable.

• If T is closable, then there exists a minimal closed operator T satisfying T ⊂ T . The operator T is

called the closure of T .

Theorem 24.12 Let T : D(T ) 7→ H be a densely defined linear operator. If T is symmetric, its closure

T exists and is unique.
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25 Spectral Representation of Unbounded Self-Adjoint Operators,
Curves in R3

(Lecture Notes)

25.1 Spectral Representation

Let H be a complex Hilbert space. We recall that a bounded operator U : H 7→ H is called unitary if

U∗ = U−1.

Theorem 25.1 Let U : H 7→ H be a unitary operator. Then there exists a spectral family {Eθ}π on

[−π, π] such that

U =

π∫

−π

eiθ dEθ, (25.1)

where the integral is understood in the sense of uniform operator convergence.

Proof Idea: One can show that there exists a bounded self-adjoint linear operator S with σ(S) ⊂ [−π, π]

such that

U = eiS = cosS + i sinS.

Let {Eθ} be a spectral family for S on [−π, π]. Then

S =

π∫

−π

θ dEθ.

Hence

U = eiS =

π∫

−π

cos θ dEθ + i

π∫

π

sin θ dEθ =

π∫

−π

eiθ dEθ.

Let T : D(T ) 7→ H be a self-adjoint linear operator, where D(T ) is dense in H and T may be unbounded.

We take a new operator

U = (T − iI)(T + iI)−1

called the Cayley transform of T . It is defined on the whole Hilbert space since −i 6∈ σ(T ) ⊆ R. One can

also check that it is unitary and

T = i(I + U)(I − U)−1.

Theorem 25.2 (Spectral Representation for Unbounded Self-Adjoint Operators) Let T : D(T ) 7→ H be

a self-adjoint linear operator and let D(T ) be dense in H. Let U be the Cayley transform of T and {Ẽθ}
a spectral family in the spectral representation (25.1) for −U . Then

T =

π∫

−π

tan
θ

2
dẼθ =

∞∫

−∞

λ dEλ,

where Eλ = Ẽ2 arctanλ, λ ∈ R.

We remark that T = i(I + U)(I − U)−1 = f(−U), where f(θ) = i1−θ
1+θ . Let

−U =

π∫

−π

eiθ dẼθ.
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Then

T =

π∫

−π

f
(
eiθ
)
dẼθ =

π∫

−π

i
1− eiθ
1 + eiθ

dẼθ =

π∫

−π

i
(1− cos θ)− i sin θ

(1 + cos θ) + i sin θ
dẼθ

=

π∫

−π

i
−2i sin θ

2 + 2 cos θ
dẼθ =

π∫

−π

tan
θ

2
dẼθ.

Example 25.3 (Spectral Representation of the Multiplication Operator) Let H = L2(−∞,∞) be taken

over C and take

(Tx)(t) = tx(t), t ∈ R, D(T ) =



x ∈ L

2(−∞,∞) :

∞∫

−∞

t2|x(t)|2 dt <∞



 .

Then T is self-adjoint and the spectral family associated with T is

(Fλx)(t) =




x(t), t < λ

0, t > λ.

25.2 Some Definitions

We consider a map x : I 7→ R3, where x(t) =
(
x1(t), x2(t), x3(t)

)
, t ∈ I = [a, b]. We assume that xi

are r times continuously differentiable and x′(t) =
(
x′1(t), x′2(t), x′3(t)

)
6= 0, ∀ t ∈ I. The set of points

represented by x we will call a curve. A curve can have different representations. Indeed, let us consider

a transformation t = t(t∗) such that

1. t : [a∗, b∗] 7→ [a, b], t(a∗) = a, t(b∗) = b (or t(a∗) = b, t(b∗) = a)

2. the function is r times continuously differentiable

3.
dt

dt∗
is different from zero on I∗

Then x
(
t(t∗)

)
=: x(t∗) is another parametrization of the curve x.

Example 25.4

1. x(t) = (a1 + b1t, a2 + b2t, a3 + b3t) describes a line passing through (a1, a2, a3) and parallel to

(b1, b2, b3).

2. x(t) = (a cos t, b sin t, 0) describes an ellipse with axes a and b in the plane spanned by x1 and x2.

3. x(t) = (r cos t, r sin t, ct), c 6= 0 describes a circular helix.

We recall that

L =

b∫

a

|x′(t)| dt

is the total length of a curve while

s(t) =

t∫

t0

|x′(r)| dr

is the length of the part of the curve between t0 and t.
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Since s′(t) = |x′(t)| > 0, the function s : [a, b] 7→ [a∗, b∗] is strictly increasing. This means that the

inverse map t = t(s), s ∈ [−L1, L2] exists. The parametrization x(s) := x
(
t(s)

)
is called a natural

parametrization. Remark that the point t0 for s = 0 is chosen arbitrarily. For a natural parametrization

we use the notation

ẋ =
dx

ds
, ẍ =

d2x

ds2

and for an arbitrary parametrization we use the notation

x′ =
dx

dt
, x′′ =

d2x

dt2
.

We remark that

ẋ(s) =
dx

ds
=
dx

dt

dt

ds
= x′(t)

1

|x′
(
t(s)

)
| ⇒ |ẋ(s)| = 1.

Lemma 25.5 Let x be naturally parametrized. Then |ẋ(s)| = 1.
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26 Curves in R3
(Lecture Notes)

26.1 Tangent, Principal Normal and Binormal Vectors

Let x : I 7→ R3, where x(t) =
(
x1(t), x2(t), x3(t)

)
, t ∈ I = [a, b], be a curve C. Let x = x(s) be a natural

parametrization of x, that is x(s) = x
(
t(s)

)
, where t = t(s) is the inverse function to

s =

t∫

t0

|x′(t)| dt =

t∫

t0

√(
x′1(u)

)2
+
(
x′2(u)

)2
+
(
x′3(u)

)2
du.

Remark 26.1 x = x(t) is the natural parametrization (s(t) = t) if and only if |x′(t)| = 1 for every t ∈ I.

Definition 26.2

• The vector

~t(s) = lim
h→0

x(s+ h)− x(s)

h
=
dx(s)

ds
= ẋ(s)

is called the unit tangent vector to the curve C at the point x(s). Remark that if x(t) is not a

natural parametrization, then

~t(t) =
x′(t)

|x′(t)| .

• The plane orthogonal to ~t(s) and passing through x(s) is called the normal plane. It can be written

in the form

ẋ(s) · z + x(s) = 0, z = (z1, z2, z3) ∈ R3.

Example 26.3 We consider the circular helix x(t) = (r cos t, r sin t, ct), t ∈ I, c 6= 0. We first calculate

x′(t) = (−r sin t, r cos t, c)⇒ |x′(t)| =
√
r2 sin2 t+ r2 cos2 t+ c2 =

√
r2 + c2,

s(t) =

t∫

0

√
r2 + c2 dt =

√
r2 + c2 t⇒ t(s) =

1√
r2 + c2

s =
s

w
, w :=

√
r2 + c2.

Thus we obtain the natural parametrization and unit tangent vector

x(s) =
(
r cos

s

w
, r sin

s

w
,
c

w
s
)
, ~t(s) =

(
− r
w

sin
s

w
,
r

w
cos

s

w
,
c

w

)
.

Definition 26.4

• The rate of change of the unit tangent vector

κ(s) = |~̇t(s)| = |ẍ(s)|

is called the curvature of the curve C at the point x(s).

• The plane passing through x(s) and parallel to ẋ(s) and ẍ(s) (if ẍ(s) 6= 0) is called the osculating

plane.

• The vector

~p(s) =
~̇t(s)

|~̇t(s)|
=

ẍ(s)

|ẍ(s)| =
ẍ(s)

κ(s)

is called the principal normal to the curve C at the point x(s).
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Example 26.3 Coming back to the circular helix, we have

ẍ(s) =
(
− r

w2
cos

s

w
,− r

w2
sin

s

w
, 0
)
⇒ κ(s) = |ẍ(s)| = r

w2
,

~p(s) =
(
− cos

s

w
,− sin

s

w
, 0
)
.

Definition 26.5

• The vector
~b(s) = ~t(s)× ~p(s)

is called the binormal vector of C at the point x(s).

• The plane parallel to ~t(s) and ~b(s) and passing through x(s) is called the rectifying plane.

Example 26.3 For the circular helix, we have

~p(s) =
(
− cos

s

w
,− sin

s

w
, 0
)
,

~b(s) =

∣∣∣∣∣∣∣

~i ~j ~k

− r
w sin s

w
r
w cos s

w
c
w

− cos s
w − sin s

w 0

∣∣∣∣∣∣∣
=
( c
w

sin
s

w
,− c

w
cos

s

w
,
r

w

)
.

Next we introduce torsion. Roughly speaking, the torsion measures the rate of rotation of the curve, that

is, the rate of change of the osculating plane. Assume that κ(s) > 0.

Definition 26.6 The scalar

τ(s) = −~p(s) · ~̇b(s) =

(
ẋ(s), ẍ(s),

...
x (s)

)

|ẍ(s)|

is called the torsion of the curve C at the point x(s).

Example 26.3 For the circular helix, we calculate the torsion:

~̇b(s) =

(
c

w2
cos

s

w
,
c

w2
sin

s

w
,

1

w

)
⇒ τ(s) =

c

w2
.

Theorem 26.7 A curve (of class r > 3) with κ(s) 6= 0, ∀ s is a helix if and only if τ = const., κ = const..

We remark that the vectors ~t, ~p,~b form a basis. Consequently, every vector can be rewritten as a linear

combination of these vectors. In particular, we obtain the Frenet formulae:




~̇t

~̇p

~̇b


 =




0 κ 0

−κ 0 τ

0 −τ 0






~t

~p
~b


 .

Theorem 26.8 A curve with κ 6= 0 belongs to a plane if and only if τ(s) = 0, ∀ s.

Theorem 26.9 If the curve C is given by an arbitrary parametrization, then

~t(t) =
x′(t)

|x′(t)| , ~p(t) = ~b(t)× ~t(t), ~b(t) =
x′(t)× x′′(t)
|x′(t)× x′′(t)| , κ(t) =

x′(t)× x′′(t)
|x′(t)|3 , τ(t) =

(
x′(t), x′′(t), x′′′(t)

)

|x′(t)× x′′(t)|2
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26.2 Topological Spaces

Let X be a set and τ a class of subsets which satisfies the following properties:

(T1) ∅ ∈ τ, X ∈ τ

(T2) Any arbitrary (finite or infinite) union of sets from τ belongs to τ

(T3) The intersection of a finite number of sets from τ belongs to τ

Definition 26.10 The pair (X, τ) is called a topological space, where τ satisfies (T1) - (T3). Sets from

τ are called open sets.

Example 26.11

1. Let X be a metric space and τ a family of all open subsets from X. Then X is a topological space.

2. Take X = [0, 1] and τ = {[0, b) : b ∈ (0, 1)} ∪ {∅, X}. Then X is also a topological space.

Definition 26.12 A topological space (X, τ) is called a Hausdorff space if ∀x, y ∈ X, ∃A,B ∈ τ such

that A ∩B = ∅ and x ∈ A, y ∈ B.

Definition 26.13 Let (X, τ) and (X ′, τ ′) be topological spaces. A function f : X 7→ X ′ is continuous if

f−1(A) ∈ τ, ∀A ∈ τ ′.

Remark 26.14 If X,X ′ are metric spaces, then f : X 7→ X ′ is continuous as a function between metric

spaces if and only if it is continuous according to Definition 26.13.

Definition 26.15 A map f : X 7→ X ′ is called a homeomorphism if f is a bijection and f and f−1 are

continuous.

Let us consider a way of constructing a topology. Assume that B is a collection of subsets from X such

that B covers X and for all B1, B2 ∈ B and x ∈ B1 ∩ B2, there exists B3 ∈ B such that B3 ⊂ B1 ∩ B2.

Then the collection of arbitrary (finite or infinite) unions of subsets from B is a topology on X. This

topology is called the topology generated by B and B is called the base of this topology.
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27 Differentiable Manifolds (Lecture Notes)

27.1 Main Definitions

Assume that M is a connected, Hausdorff topological space. Connected means that no open sets U, V

exist such that M = U ∪ V and U ∩ V = ∅.

Definition 27.1

• An m-dimensional coordinate chart on M is a pair (U,ϕ), where U is an open subset of M (called

the domain of the coordinate chart) and ϕ is a homeomorphism of U onto an open subset of Rm.

• If U = M , then the coordinate chart is globally defined, otherwise it is locally defined.

Definition 27.2 Let (U1, ϕ1) and (U2, ϕ2) be m-dimensional coordinate charts with U1 ∩ U2 6= ∅. Then

the function

ϕ2 ◦ ϕ−1
1 : ϕ1(U1 ∩ U2) 7→ ϕ2(U1 ∩ U2)

is called the overlap function.

Definition 27.3

• An atlas of dimension m on M is a family of m-dimensional coordinate charts {(Ui, ϕi)}i∈I , where

I is an index set, such that M is covered by {Ui}i∈I and each overlap function ϕj ◦ ϕ−1
i , i, j ∈ I is

infinitely differentiable.

• An atlas is said to be complete if it is maximal, that is, it is not contained in any other atlas.

• For a complete atlas, the family (Ui, ϕi)i∈I is called a differential structure on M of dimension m.

The topological space M is called a differentiable manifold.

Definition 27.4 A point p ∈ U ⊂ M has the coordinates
(
ϕ1(p), . . . , ϕm(p)

)
with respect to the chart

(U,ϕ). The coordinates of p are often written as
(
x1(p), . . . , xm(p)

)
.

27.2 Some Example of Differentiable Manifolds

1. The circle S1 = {(x, y) ∈ R2 : x2 + y2 = 1} is a differentiable manifold. One can define the

differential structure on S1 by introducing the following charts:

U1 := {(x, y) ∈ S1 : x > 0}, ϕ1(x, y) := y

U2 := {(x, y) ∈ S1 : x < 0}, ϕ2(x, y) := y

U1 := {(x, y) ∈ S1 : y > 0}, ϕ3(x, y) := x

U1 := {(x, y) ∈ S1 : y < 0}, ϕ4(x, y) := x.

Let us show that the overlap functions are from C∞. Consider the overlap of U1 and U3:

ϕ1(x, y) = y, ϕ−1
3 (x) =

(
x,
√

1− x2
)
.

Hence

ϕ1 ◦ ϕ−1
3 =

√
1− x2, x ∈ (0, 1)

is infinitely differentiable on (0, 1).
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2. The n-sphere Sn = {x ∈ Rn+1 : |x|2 = 1} is a differentiable manifold. The differential structure

can be given by means of a stereographic projection from the north and south poles (ϕ1 and ϕ2

respectively):

ϕ1(x1, . . . , xn+1) :=

(
x1

1− xn+1
,

x2

1− xn+1
, . . . ,

xn
1− xn+1

)
∈ Rn

ϕ2(x1, . . . , xn+1) :=

(
x1

1 + xn+1
,

x2

1 + xn+1
, . . . ,

xn
1 + xn+1

)
∈ Rn.

27.3 Differentiable Maps and Tangent Spaces

Definition 27.5

• A local representative of a function f : M 7→ N with respect to coordinate charts (U,ϕ) and (V, ψ)

on M and N respectively is the map

ψ ◦ f ◦ ϕ−1 : ϕ(U) 7→ Rn.

• A map f : M 7→ N is a C2-function if for all covers of M and N , the local representatives are r

times continuously differentiable. If f is a C1 function, then f is called differentiable. If f is a C∞

function, then f is called smooth.

Definition 27.6

• A curve on a manifold M is a smooth map σ from some interval (−ε, ε) of the real line into M .

• Two curves σ1 and σ2 are tangent at a point p in M if σ1(0) = σ2(0) = p and if in some local

coordinate system (x1, . . . , xm) around the point p

dxi

dt

(
σ1(t)

)∣∣∣∣
t=0

=
dxi

dt

(
σ2(t)

)∣∣∣∣
t=0

, i = 1, . . . ,m.

Remark that if σ1 and σ2 are tangent in one coordinate system, then they are tangent in any other

coordinate system.

• A tangent vector at p ∈ M is an equivalence class of tangent curves in p. Then tangent class will

be denoted by [σ].

A tangent vector v = [σ] can be used as a directional derivative for functions f : M 7→ R by defining

v(f) :=
df
(
σ(t)

)

dt

∣∣∣∣
t=0

,

where σ is any curve from [σ]. Remark that v does not depend on the choice of σ from [σ]. Indeed, take

any chart (U,ϕ) such that p ∈ U . Let σ1 and σ2 be two curves such that

dxi

dt

(
σ1(t)

)∣∣∣∣
t=0

=
dxi

dt

(
σ2(t)

)∣∣∣∣
t=0

, σ1(0) = σ2(0) = p.
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Then

df
(
σ1(t)

)

dt

∣∣∣∣
t=0

=
d
(
f ◦ ϕ−1(ϕ ◦ σ1)

)

dt

∣∣∣∣
t=0

=

m∑

i=1

∂(f ◦ ϕ−1)

∂xi
dxi(σ1)

dt

∣∣∣∣
t=0

=

m∑

i=1

∂(f ◦ ϕ−1)

∂xi
dxi(σ2)

dt

∣∣∣∣
t=0

=
df
(
σ2(t)

)

dt

∣∣∣∣
t=0

.

Definition 27.7

The tangent space TpM to M at a point p ∈ M is the set of all tangent vectors at the point p. The

tangent bundle TM is defined as

TM =
⋃

p∈M
TpM.

Example 27.8 Take M = Sn = {x ∈ Rn+1 : |x|2 = 1}. Then

TpS
n = {v ∈ Rn+1 : p · v = 0}, TSn = {(p, v) ∈ Rn+1 × Rn+1 : |p|2 = 1, p · v = 0}

27.4 The Vector Space Structure on TpM

The set TpM can be made a vector space. Let v1 and v2 be two tangent vectors from TpM . Let σ1 and

σ2 be two representative curves for v1 and v2 respectively. σ1 and σ2 cannot be added directly since M

is not a vector space, but we can consider the sum

t 7→ ϕ ◦ σ1(t) + ϕ ◦ σ2(t),

which is a curve in Rm. So we can define

v1 + v2 :=
[
ϕ−1 ◦ (ϕ ◦ σ1 + ϕ ◦ σ2)

]
, rv1 :=

[
ϕ−1 ◦ (r · ϕ ◦ σ1)

]
, r ∈ R. (27.1)

This definition is independent of the choice of chart (U,ϕ) and representatives σ1 and σ2 of the tangent

vectors v1 and v2. Under the operations defined by (27.1), the set TpM is a vector space. A tangent

vector also can be defined as a derivative:

v(f) =
df
(
σ(t)

)

dt

∣∣∣∣
t=0

,

where [σ] = v.

Definition 27.9

• A derivation at a point p ∈M is a map v : C∞(M) 7→ R such that

1. v(f + g) = v(f) + v(g), v(rf) = rv(f), r ∈ R, f, g ∈ C∞(M)

2. v(fg) = f(p)v(g) + g(p)v(f), ∀ f, g ∈ C∞(M)

• The set of all derivations is denoted by DpM .

Theorem 27.10 The linear map L : TpM 7→ DpM defined by

L(v)(f) :=
df
(
σ(t)

)

dt

∣∣∣∣
t=0

, [σ] = v

is an isomorphism.
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