Elements of General Measure Theory and Integral

Anatoliy Ya. Dorogovtsev

translated by Vitalii Konarovskyi
April 23, 2020

Chapter 1

Main classes of sets

1.1 Semiring and Semialgebra

Let X be a fixed nonempty set. Assume that $X \neq \emptyset$. We next consider different classes of subsets of the set X. The set X is called a fundamental set.

Notation 1.1.1. 2^{X} denotes the family of all subsets of the set X including X and \emptyset.
Definition 1.1.2. A nonempty class of sets $H \subset 2^{X}$ is called a semiring if
(i) $\{A, B\} \subset H \Longrightarrow A \cap B \in H$;
(ii) $\{A, B\} \subset H \Longrightarrow \exists n \in \mathbb{N} \exists\left\{C_{1}, \ldots, C_{n}\right\} \subset H, C_{j} \cap C_{k}=\emptyset, j \neq k$:

$$
A \backslash B=\bigcup_{k=1}^{n} C_{k}
$$

A class H is called a semialgebra if H is a semiring and $X \in H$.
Exercise 1.1.3. Let H be a semiring. Prove that $\emptyset \in H$.

Exercise 1.1.4. Prove that the following class H is a semialgebra:
a) $H=2^{X}$;
b) $H=\{\emptyset, X\}$;
c) $H=\left\{\emptyset, A, A^{c}, X\right\}, A \subset X$.

Exercise 1.1.5. Let $X=\mathbb{R}$ and $H=\{[a, b):-\infty<a<b<+\infty\} \cup\{\emptyset\}$. Prove that H is a semiring.

Exercise 1.1.6. Let $a_{1}<b_{1}, a_{2}<b_{2}$ be fixed numbers, $X=\left[a_{1}, b_{1}\right) \times\left[a_{2}, b_{2}\right)$ and

$$
H=\left\{\left[\alpha_{1}, \beta_{1}\right) \times\left[\alpha_{2}, \beta_{2}\right): a_{k} \leq \alpha_{k}<\beta_{k}<b_{k}, k=1,2\right\} \cup\{\emptyset\}
$$

Show that H is a semiring.

Exercise 1.1.7. Let $H_{k} \subset 2^{X_{k}}$ for $k=1,2$, be a semiring. Prove that the class of sets

$$
H_{1} \times H_{2}:=\left\{A_{1} \times A_{2}: A_{k} \in H_{k}, k=1,2\right\}
$$

is a semiring of subsets in the Cartesian product of $X_{1} \times X_{2}$.
Exercise 1.1.8. Prove that the union of two sets from a semiring does not necessarily belong to this semiring.

1.2 Ring and algebra

Definition 1.2.1. A nonempty class of sets $H \subset 2^{X}$ is called a ring if
(i) $\{A, B\} \subset H \Longrightarrow A \cup B \in H$;
(ii) $\{A, B\} \subset H \Longrightarrow A \backslash B \in H$.

A class H is said to be an algebra if H is a ring and $X \in H$.
Exercise 1.2.2. Let H be a ring. Prove that:
a) $\emptyset \in H ; \quad$ b) $\{A, B\} \subset H \Longrightarrow A \cap B \in H$;
c) $\left\{A_{1}, \ldots, A_{n}\right\} \subset H \Longrightarrow \bigcup_{k=1}^{n} A_{k} \in H$ and $\bigcap_{k=1}^{n} A_{k} \in H$.

Exercise 1.2.3. Check that a ring of subsets is a semiring.
Exercise 1.2.4. Prove the following statements.
a) The class of all Jordan measurable subsets of $X=\mathbb{R}^{2}$ is a ring.
b) The class of all Jordan measurable subsets of $X=[0,1]^{2}$ is an algebra.

Exercise 1.2.5. Prove that a nonempty class of sets $H \subset 2^{X}$ is a ring if and only if H is a semiring and $\{A, B\} \subset H \Longrightarrow A \cup B \in H$.

Exercise 1.2.6. Let H be an algebra and $A \in H$. Show that $A^{c} \in H$.
Exercise 1.2.7. Prove that a nonempty class of sets $H \subset 2^{X}$ is an algebra if and only if

$$
\{A, B\} \subset H \Longrightarrow A \cup B \in H \text { and } A \in H \Longrightarrow A^{c} \in H
$$

Exercise 1.2.8. Let E be a class of subsets of X such that for any distinct sets $A, B \in E$ the equality $A \cap B=\emptyset$ holds. Set

$$
H:=\left\{\bigcup_{k=1}^{n} A_{k}: n \in \mathbb{N},\left\{A_{1}, \ldots, A_{n}\right\} \subset E\right\} \cup\{\emptyset\} .
$$

Prove that H is a ring.

$1.3 \quad \sigma$-ring and σ-algebra

Definition 1.3.1. A nonempty class of sets $H \subset 2^{X}$ is called a σ-ring if
(i) $\left\{A_{1}, A_{2}, \ldots, A_{n}, \ldots\right\} \subset H \Longrightarrow \bigcup_{n=1}^{\infty} A_{n} \in H$;
(ii) $\{A, B\} \subset H \Longrightarrow A \backslash B \in H$.

A class H is said to be a σ-algebra if H is a σ-ring and $X \in H$.
Exercise 1.3.2. Check that the classes 2^{X} and $\{\emptyset, X\}$ are σ-algebras.
Exercise 1.3.3. Check that a σ-ring is a ring.
Exercise 1.3.4. Let H be a σ-ring. Prove that

$$
\left\{A_{1}, A_{2}, \ldots, A_{n}, \ldots\right\} \subset H \Longrightarrow \bigcap_{n=1}^{\infty} A_{n} \in H
$$

Hint: Consider the set $A_{1} \backslash\left(\bigcup_{n=2}^{\infty}\left(A_{1} \backslash A_{n}\right)\right)$.
Exercise 1.3.5. A set $A \subset \mathbb{R}^{2}$ is called symmetric if $\left(x_{1}, x_{2}\right) \in A \Longrightarrow\left(-x_{1},-x_{2}\right) \in A$. We assume that the empty set is symmetric. Prove that the class of symmetric subsets of \mathbb{R}^{2} is a σ-algebra.

Exercise 1.3.6.* Prove that there exists no σ-algebra consisting of a countable number of elements.
Exercise 1.3.7. Let $H_{k} \subset 2^{X_{k}}, k=1,2$, be σ-rings and $H_{1} \times H_{2}:=\left\{A_{1} \times A_{2}: A_{k} \in H_{k} k=\right.$ $1,2\}$. Prove that the class $H_{1} \times X_{2}$ is a semiring of subsets from $X_{1} \times X_{2}$. Give an example which shows that the class $H_{1} \times H_{2}$ is not always a ring.

1.4 Monotone class

Definition 1.4.1. A sequence of sets $\left\{A_{n}, n \geq 1\right\}$ is called monotone increasing if $A_{n} \subset A_{n+1}$, $n \geq 1$. In that case, $\lim _{n \rightarrow \infty} A_{n}:=\bigcup_{n=1}^{\infty} A_{n}$.

A sequence of sets $\left\{A_{n}, n \geq 1\right\}$ is called monotone decreasing if $A_{n} \supset A_{n+1}, n \geq 1$. In that case, $\lim _{n \rightarrow \infty} A_{n}:=\bigcap_{n=1}^{\infty} A_{n}$.

Sequences which monotone increase or decrease are called monotone.
Exercise 1.4.2. Show that $\lim _{n \rightarrow \infty}[0, n]=[0,+\infty) ; \lim _{n \rightarrow \infty}[n,+\infty)=\emptyset$.
Definition 1.4.3. A nonempty class of sets $H \subset 2^{X}$ is said to be a monotone class if for every monotone sequence $\left\{A_{n}, n \geq 1\right\} \subset H$ the set $\lim _{n \rightarrow \infty} A_{n}$ belongs to H.

Exercise 1.4.4. Prove that a σ-ring is a monotone class.

Exercise 1.4.5. Let $X=\mathbb{R}$ and

$$
H:=\{[m, n]:\{m, n\} \subset \mathbb{Z}, m<n\} \cup\{(-\infty, n]: n \in \mathbb{Z}\} \cup\{[n,+\infty): n \in \mathbb{Z}\} \cup\{\mathbb{R}\} .
$$

Check that H is a monotone class.
Theorem 1.4.6. A monotone ring is a σ-ring.
Proof. Let H be a ring and a monotone class. Then Condition (ii) of Definition 1.3.1 is satisfied. Let $\left\{A_{n}, n \geq 1\right\} \subset H$. Since H is a ring, we have

$$
\forall m \geq 1: \quad \bigcup_{k=1}^{m} A_{k} \in H
$$

Moreover,

$$
\forall m \geq 1: \quad \bigcup_{k=1}^{m} A_{k} \subset \bigcup_{k=1}^{m+1} A_{k}
$$

Since H is a monotone class,

$$
\lim _{m \rightarrow \infty}\left(\bigcup_{k=1}^{m} A_{k}\right) \in H \Longleftrightarrow \bigcup_{m=1}^{\infty}\left(\bigcup_{k=1}^{m} A_{k}\right)=\bigcup_{m=1}^{\infty} A_{m} \in H
$$

Consequently, Condition (i) of Definition 1.3.1 also holds.

1.5 Minimal classes of sets

1.5.1 Minimal ring, algebra, σ-ring, σ-algebra, monotone class containing a given class of sets

Let X be a fundamental set and H be a class of subsets of X.
Definition 1.5.1. The following class of sets

$$
r(H):=\bigcap_{K \text { is ring, } K \supset H} K
$$

is called the ring generated by the class H or the minimal ring containing the class H.
Remark 1.5.2. Rings containing the class H exists. For instance, the class 2^{X} is a ring and $2^{X} \supset$ H.

Lemma 1.5.3. The intersection of any family of rings is also a ring.
Proof. Let $\left\{K_{t}: t \in T\right\}$ be a family of rings. Then

$$
\begin{aligned}
\{A, B\} \subset \bigcap_{t \in T} K_{t} & \Longrightarrow \forall t \in T: \quad\{A, B\} \subset K_{t} \\
& \Longrightarrow \forall t \in T: \quad\{A \cup B, A \backslash B\} \subset K_{t} \Longrightarrow\{A \cup B, A \backslash B\} \subset \bigcap_{t \in T} K_{t}
\end{aligned}
$$

Thus, the class $\bigcap_{t \in T} K_{t}$ is a ring.

Lemma 1.5.3 implies the correctness of Definition 1.5.1, i.e. that the class $r(H)$ is a ring.
Exercise 1.5.4. Prove that statements similar to Lemma 1.5.3 are true for:
a) algebra; b) σ-ring; c) σ-algebra; d) monotone class.

Exercise 1.5.5. Show that the intersection of semirings is not necessarily a semiring.
Definition 1.5.6. The following classes of sets

$$
\begin{aligned}
a(H) & :=\bigcap_{G \text { is algebra, } G \supset H} G, \quad \sigma r(H):=\bigcap_{G \text { is } \sigma \text {-ring, } G \supset H} G, \\
\sigma a(H) & :=\bigcap_{G \text { is } \sigma \text {-algebra, } G \supset H} m(H):=\bigcap_{G \text { is monotone class, } G \supset H} G
\end{aligned}
$$

are called the algebra $a(H)$, the σ-ring $\sigma r(H)$, the σ-algebra $\sigma a(H)$ and the monotone class $m(H)$ generated by H, respectively.

The classes $a(H), \sigma r(H), \sigma a(H)$ and $m(H)$ are also called the minimal algebra, the minimal σ-ring, the minimal σ-algebra and the minimal monotone class containing H, respectively.

Exercise 1.5.7. Let X be a finite set and $H=\{\{x\}: x \in X\}$. Show that $r(H)=a(H)=$ $\sigma r(H)=\sigma a(H)=2^{X}$.

Exercise 1.5.8. Prove that
a) $H_{1} \subset H_{2} \subset a\left(H_{1}\right) \Longrightarrow a\left(H_{1}\right)=a\left(H_{2}\right)$;
b) $H_{1} \subset H_{2} \subset \sigma a\left(H_{1}\right) \Longrightarrow \sigma a\left(H_{1}\right)=\sigma a\left(H_{2}\right)$.

Exercise 1.5.9. Let a set $B \subset X$ be fixed. Prove that $\sigma r(H \cap B)=\sigma r(H) \cap B$. Here $E \cap B:=$ $\{A \cap B: A \in E\}$ for a class of sets E.

Hint: Check that $\sigma r(H) \cap B \supset H \cap B$ and $\sigma r(H) \cap B$ is a σ-ring.
Exercise 1.5.10. Show that $\sigma a(\sigma a(H))=\sigma a(H)$.
Theorem 1.5.11. Let H be a semiring. Then

$$
r(H)=\left\{\bigcup_{k=1}^{n} A_{k}: n \in \mathbb{N},\left\{A_{1}, \ldots, A_{n}\right\} \subset H\right\} .
$$

Proof. Let $M:=\left\{\bigcup_{k=1}^{n} A_{k}: n \in \mathbb{N},\left\{A_{1}, \ldots, A_{n}\right\} \subset H\right\}$. Then we have $H \subset M \subset r(H)$. Let us prove that the class M is a ring. Indeed, for sets $\{A, B\} \subset M$ the set $A \cup B$ belongs to M according to the definition of the class M. If $\{A, B\} \subset M$, then

$$
A=\bigcup_{k=1}^{n} A_{k}, \quad B=\bigcup_{j=1}^{m} B_{j}, \quad\left\{A_{1}, \ldots, A_{n} ; B_{1}, \ldots, B_{m}\right\} \subset H,
$$

and

$$
A \backslash B=\left(\bigcup_{k=1}^{n} A_{k}\right) \backslash\left(\bigcup_{j=1}^{m} B_{j}\right)=\bigcup_{k=1}^{n} \bigcap_{j=1}^{m}\left(A_{k} \backslash B_{j}\right)
$$

Since H is a semiring, one can assume that

$$
A_{k} \cap A_{j}=\emptyset, \quad B_{k} \cap B_{j}=\emptyset, \quad k \neq j .
$$

Moreover,

$$
A_{k} \backslash B_{j}=\bigcup_{r=1}^{l} C_{k j r}, \quad\left\{C_{k j r}\right\} \subset H, \quad l=l(k, j) ; \quad C_{k j r} \cap C_{k j s}=\emptyset, \quad r \neq s
$$

Thus, $A \backslash B=\bigcup_{k=1}^{n} \bigcap_{j=1}^{m} \bigcup_{r=1}^{l} C_{k j r}$.
Exercise 1.5.12. Let $H=\left\{A_{1}, A_{2}, \ldots, A_{n}\right\} \subset X$. Prove that:
a) $a(H)$ consists of at most $2^{2^{n}}$ sets; b) $a(H)=\sigma a(H)$.

Hint: Consider sets of the form $\hat{A}_{1} \cap \hat{A}_{2} \cap \cdots \cap \hat{A}_{n}$, where \hat{A}_{k} equals A_{k} or $X \backslash A_{k}$ for every $1 \leq k \leq n$.
Exercise 1.5.13. The minimal semiring $p(H)$ containing a class H is the semiring which contains the class H and is contained in any semiring which contains the class H. Let $H=\{(-\infty, a]$: $a \in \mathbb{R}\}$. Show that $p(H)=\{(a, b]:-\infty \leq a<b<+\infty\} \cup\{\emptyset\}$.

1.5.2 Borel sets

Let (X, d) be a metric space, \mathcal{G} be a class of all open in (X, d) subsets of X.
Definition 1.5.14. The σ-algebra $\mathcal{B}(X)=\sigma a(\mathcal{G})$ is called the σ-algebra of Borel sets.
Exercise 1.5.15. Let (X, d) be a separable metric space and $H=\{B(x, r): x \in X, r>0\}$, where $B(x, r):=\{y \in X: d(x, y)<r\}$. Prove that $\mathcal{B}(X)=\sigma a(H)$.

Hint: Check that $H \subset \mathcal{G} \subset \sigma a(H)$.
Exercise 1.5.16.* Let (X, d) be a separable metric space. Prove that there exists a countable class of sets $H \subset 2^{X}$ such that $\sigma a(H)=\mathcal{B}(X)$.

Exercise 1.5.17. Let (X, d) be a separable metric space and \mathcal{F} be a class of all closed in (X, d) subsets of X. Prove that

$$
\mathcal{B}(X)=\sigma a(\mathcal{F})=\sigma a(\{\bar{B}(x, r): x \in X, r>0\}),
$$

where $\bar{B}(x, r)=\{y \in X: d(x, y) \leq r\}$.
Exercise 1.5.18. Prove that:
a) any one-point set is a Borel set;
b) any countable set is a Borel set.

Exercise 1.5.19. Let $\mathcal{B}:=\mathcal{B}(\mathbb{R})$ be the σ-algebra of Borel sets on \mathbb{R} with the distance $d(x, y)=$ $|x-y|,\{x, y\} \subset \mathbb{R}$. Prove the the following sets are Borel:
a) the set of rational numbers \mathbb{Q};
b) the set of irrational numbers $\mathbb{R} \backslash \mathbb{Q}$;
c) $(a, b],\{a, b\} \subset \mathbb{R}, a<b$;
d) The set of all real numbers whose decimal representation contains infinitely many times the digits 4.

Exercise 1.5.20. Prove that

$$
\begin{aligned}
\mathcal{B} & =\sigma a(\{(-\infty, a]: a \in \mathbb{R}\})=\sigma a(\{-\infty, a]: a \in \mathbb{Q}\}) \\
& =\sigma a(\{(a, b]:-\infty<a<b<+\infty\}) .
\end{aligned}
$$

Exercise 1.5.21.* Let (X, d) be a separable metric space. Prove that $\mathcal{B}(X)$ has at most continuum cardinality.

1.5.3 Monotone class and σ-ring generated by a ring

Theorem 1.5.22. Let H be a ring of subsets of X. Then $\sigma r(H)=m(H)$.

Proof. Since $\sigma r(H)$ is a monotone class, we have the inclusion $m(H) \subset \sigma r(H)$, according to the definition of $m(H)$.

Let us prove that $m(H)$ is a ring. For every $B \in m(H)$ we consider the following class of sets

$$
L(B):=\{C \subset X:\{B \cup C, B \backslash C, C \backslash B\} \subset m(H)\} .
$$

The following two statements hold.
(i) Since H is a ring and $H \subset m(H)$, one has $\forall A \in H: H \subset L(A)$.
(ii) $\forall B \in m(H): L(B)$ is a monotone class.

Let us prove the second statement. Let $\left\{C_{n}: n \geq 1\right\} \subset L(B), C_{n} \subset C_{n+1}, n \geq 1$. Then for every $n \geq 1$ we have

$$
\begin{aligned}
& C_{n} \cup B \subset C_{n+1} \cup B, \quad C_{n} \backslash B \subset C_{n+1} \backslash B, \quad B \backslash C_{n} \subset B \backslash C_{n+1} ; \\
& \left\{B \cup C_{n}, B \backslash C_{n}, C_{n} \backslash B\right\} \subset m(H) .
\end{aligned}
$$

Since $m(H)$ is a monotone class, we have

$$
\begin{aligned}
& m(H) \ni \bigcup_{n=1}^{\infty}\left(C_{n} \cup B\right)=\left(\bigcup_{n=1}^{\infty} C_{n}\right) \cup B, \\
& m(H) \ni \bigcup_{n=1}^{\infty}\left(C_{n} \backslash B\right)=\left(\bigcup_{n=1}^{\infty} C_{n}\right) \backslash B \\
& m(H) \ni \bigcup_{n=1}^{\infty}\left(B \backslash C_{n}\right)=B \backslash\left(\bigcup_{n=1}^{\infty} C_{n}\right) .
\end{aligned}
$$

Hence $\bigcup_{n=1}^{\infty} C_{n} \in L(B)$. Similarly, one can check that $\bigcap_{n=1}^{\infty} C_{n} i n L(B)$ for a decreasing sequence $\left\{C_{n}: n \geq 1\right\}$ from $L(B)$. The statement (ii) is proved.

Since $L(A)$ is a monotone class for all $A \in H$, by (ii), and $H \subset L(A)$, by (i), we obtain

$$
\begin{aligned}
\forall A \in H & : m(H) \subset L(A) \\
& \Longrightarrow \forall A \forall C_{1} \in m(H):\left\{A \cup C_{1}, A \backslash C_{1}, C_{1} \backslash A\right\} \subset m(H) \\
& \Longrightarrow H \subset L\left(C_{1}\right) \Longrightarrow \forall C_{1} \in m(H): m(H) \subset L\left(C_{1}\right) \\
& \Longrightarrow \forall\left\{C_{1}, C_{2}\right\} \subset m(H):\left\{C_{1} \cup C_{2}, C_{1} \backslash C_{2}, C_{2} \backslash C_{1}\right\} \subset m(H) .
\end{aligned}
$$

Thus, $m(H)$ is a ring. By Theorem 1.4.6, $m(H)$ is a σ-ring. So, $\sigma r(H) \subset m(H)$. Consequently, $\sigma r(H)=m(H)$.

Exercise 1.5.23. Let H be an algebra of sets. Prove that $\sigma a(H)=m(H)$.

Chapter 2

Functions of sets. Measures

2.1 The main classes of functions of sets

Let X be a fixed nonempty set and $H \subset 2^{X}$ be a non-empty class of sets of X. The object of investigation of the measure theory are functions of the form

$$
\mu: H \rightarrow(-\infty,+\infty)
$$

which satisfy special requirements. Length, area, and volume defined for some classes of sets of the line, plane, and space, respectively, are real examples of such functions. The charge of parts of the space in an electric field is another type of example. Those examples lead to a narrow, but important for mathematics, class of functions. For instance, the area is nonnegative, the area of a figure consisting of a union of two nonintersecting parts is equal to the sum of areas of those parts and so on. The special requirements for functions of sets mentioned above particularly consist in the transfer of properties of real functions of sets to an abstract situation and particularly are related to the mathematical necessity.

We will further consider functions taking the value $+\infty$. For example, it is natural to assume that the length of the real line equal $+\infty$. We will assume that

$$
(+\infty)+(+\infty)=+\infty ; \quad \forall a \in \mathbb{R}: a<+\infty, a+\infty:=+\infty+a:=+\infty
$$

Definition 2.1.1. A function $\mu: H \rightarrow(-\infty,+\infty]$ is called:
(i) nonnegative, if $\forall A \in H: \quad \mu(A) \geq 0$;
(ii) finitely semiadditive, (or simply semiadditive) if

$$
\forall n \in \mathbb{N} \forall\left\{A_{1}, \ldots, A_{n}\right\} \subset H, \quad \bigcup_{k=1}^{n} A_{k} \in H: \quad \mu\left(\bigcup_{k=1}^{n} A_{k}\right) \leq \sum_{k=1}^{n} \mu\left(A_{k}\right)
$$

(iii) finitely additive (or simply additive) if

$$
\begin{gathered}
\forall n \in \mathbb{N} \quad \forall\left\{A_{1}, \ldots, A_{n}\right\} \subset H, \bigcup_{k=1}^{n} A_{k} \in H, \quad A_{j} \cap A_{k}=\emptyset, j \neq k: \\
\mu\left(\bigcup_{k=1}^{n} A_{k}\right)=\sum_{k=1}^{n} \mu\left(A_{k}\right) ;
\end{gathered}
$$

(iv) countably semiadditive (or σ-semiadditive), if

$$
\forall\left\{A_{n}: n \geq 1\right\} \subset H, \quad \bigcup_{n=1}^{\infty} A_{n} \in H: \quad \mu\left(\bigcup_{n=1}^{\infty} A_{n}\right) \leq \sum_{n=1}^{\infty} \mu\left(A_{n}\right)
$$

(v) countably additive (or σ-additive), if

$$
\begin{gathered}
\forall\left\{A_{n}: n \geq 1\right\} \subset H, \bigcup_{n=1}^{\infty} A_{n} \in H, \quad A_{j} \cap A_{k}=\emptyset, \quad j \neq k: \\
\mu\left(\bigcup_{n=1}^{\infty} A_{n}\right)=\sum_{n=1}^{\infty} \mu\left(A_{n}\right)
\end{gathered}
$$

(vi) monotone, if $\forall\{A, B\} \subset H, A \subset B: \quad \mu(A) \leq \mu(B)$;
(vii) finite, if $\forall A \in H: \quad \mu(A)<+\infty$;
(viii) σ-finite, if

$$
\exists\left\{A_{n}: n \geq 1\right\} \subset H: \quad \bigcup_{n=1}^{\infty} A_{n}=X \text { and } \forall n \geq 1: \mu\left(A_{n}\right)<+\infty
$$

Exercise 2.1.2. Assume that $\emptyset \in H$, a function μ is additive and exists a set $A \in H$ such that $\mu(A)<+\infty$. Prove that $\mu(\emptyset)=0$.

Exercise 2.1.3. Assume that $\emptyset \in H, \mu(\emptyset)=0$ and μ is σ-additive on H. Prove that μ is additive on H.

Hint: Use the equality $A \cup B=A \cup B \cup \emptyset \cup \cdots \cup \emptyset \cup \ldots$
Remark 2.1.4. We will not consider functions μ which take the value $+\infty$ at every set from H.

2.2 Measures. Basic properties of measures

Definition 2.2.1. A nonnegative σ-additive function defined on a semiring is called a measure.
Exercise 2.2.2. Let μ be a measure. Prove that $\mu(\emptyset)=0$.
Exercise 2.2.3. Prove that a measure is an additive function.

Exercise 2.2.4.* Let $X=\left\{x_{1}, x_{2}, \ldots, x_{n}, \ldots\right\}$ and $H=2^{X}$. For a family of nonnegative numbers $p_{n}, n \geq 1$, satisfying $\sum_{n=1}^{\infty} p_{n}=1$ define $\mu(A):=\sum_{n: x_{n} \in A} p_{n}, A \in H$. Prove that μ is a measure on H.

Exercise 2.2.5. Let $X=[0,1]^{2}, H$ be an algebra of all Jordan measurable subsets of X and the function μ is the Jordan measure on H. Check that μ is a nonnegative additive function on H.

Theorem 2.2.6. Let R be a ring and μ be a measure on R. Then

1) μ is monotone on R;
2) $\forall\{A, B\} \subset R, A \subset B, \mu(A)<+\infty$:

$$
\mu(B \backslash A)=\mu(B)-\mu(A) ;
$$

3) If $\{A, B\} \subset R$ and at least one of the values $\mu(A), \mu(B)$ is finite, then

$$
\mu(A \cup B)=\mu(A)+\mu(B)-\mu(A \cap B) ;
$$

4) If $\left\{A, B_{1}, \ldots, B_{n}\right\} \subset R$ and $A \subset \bigcup_{k=1}^{n} B_{k}$, then

$$
\mu(A) \leq \sum_{k=1}^{n} \mu\left(B_{k}\right)
$$

5) μ is σ-semiadditive on R.

Proof. 1) Let $\{A, B\} \subset R$ and $A \subset B$. Then

$$
B=A \cup(B \backslash A), \quad A \cap(B \backslash A)=\emptyset .
$$

Using the additivity and the nonnegativity of the measure μ, one has

$$
\begin{equation*}
\mu(B)=\mu(A)+\mu(B \backslash A) \geq \mu(A) \tag{2.2.1}
\end{equation*}
$$

2) If $\mu(A)<+\infty$, then equality (2.2.1) yields

$$
\mu(B \backslash A)=\mu(B)-\mu(A)
$$

3) If $\mu(A)<+\infty$ and $\mu(B)<+\infty$, then $\mu(A \cap B)<+\infty$, according to 1$)$. Moreover,

$$
A \cup B=(A \backslash(A \cap B)) \cup B, \quad(A \backslash(A \cap B)) \cap B=\emptyset
$$

Hence, using the additivity of the measure μ and 2), we have

$$
\mu(A \cup B)=\mu(A \backslash(A \cap B))+\mu(B)=\mu(A)-\mu(A \cap B)+\mu(B) .
$$

4) By 1) and the additivity of μ, we have

$$
\begin{aligned}
\mu(A) & \leq \mu\left(\bigcup_{k=1}^{n} B_{k}\right)=\mu\left(B_{1} \cup\left(B_{2} \backslash B_{1}\right) \cup\left(B_{3} \backslash\left(B_{1} \cup B_{2}\right)\right) \cup \cdots \cup\left(B_{n} \backslash \bigcup_{k=1}^{n-1} B_{k}\right)\right) \\
& =\mu\left(B_{1}\right)+\mu\left(B_{2} \backslash B_{1}\right)+\mu\left(B_{3} \backslash\left(B_{1} \cup B_{2}\right)\right)+\cdots+\mu\left(B_{n} \backslash\left(\bigcup_{k=1}^{n-1} B_{k}\right)\right) \leq \sum_{k=1}^{n} \mu\left(B_{k}\right) .
\end{aligned}
$$

5) Similarly to the proof of 4), we obtain

$$
\mu\left(\bigcup_{n=1}^{\infty} A_{n}\right)=\mu\left(\bigcup_{n=1}^{\infty}\left(A_{n} \backslash\left(\bigcup_{k=1}^{n-1} A_{k}\right)\right)\right)=\sum_{n=1}^{\infty} \mu\left(A_{n} \backslash \bigcup_{k=1}^{n-1} A_{k}\right) \leq \sum_{n=1}^{\infty} \mu\left(A_{n}\right),
$$

by the σ-additivity of the measure μ. Here we assume that $\bigcup_{k=1}^{0} A_{k}:=\emptyset$.
Remark 2.2.7. Properties 1)-4) of Theorem 2.2 .6 is valid for any nonnegative and additive function μ.

Exercise 2.2.8. Prove that a nonnegative, additive and σ-semiadditive function μ on a ring R is a measure on R.

Hint: Let $\left\{A_{n}: n \geq 1\right\} \subset R, \bigcup_{n=1}^{\infty} A_{n} \in R, A_{n} \cap A_{m}=\emptyset, m \neq n$. From the monotonicity and additivity of μ we have

$$
\mu\left(\bigcup_{k=1}^{\infty} A_{k}\right) \geq \mu\left(\bigcup_{k=1}^{n} A_{k}\right)=\sum_{k=1}^{n} \mu\left(A_{k}\right), \quad n \geq 1 .
$$

Exercise 2.2.9. Let μ be a measure on a σ-ring H and for $\left\{A_{n}: n \geq 1\right\} \subset H m u\left(A_{n}\right)=0$, $n \geq 1$. Prove that

$$
\mu\left(\bigcup_{n=1}^{\infty} A_{n}\right)=0 .
$$

Hint: Use the σ-semiadditivity of a measure.
Exercise 2.2.10. Let μ be a measure on a σ-algebra H. Let $\mu(X)=1$ and a family of sets $\left\{A_{n}: n \geq 1\right\} \subset H$ satisfy $\mu\left(A_{n}=1\right), n \geq 1$. Prove that

$$
\mu\left(\bigcap_{n=1}^{\infty} A_{n}\right)=1
$$

Hint: Use De Morgan's law and Exercise 2.2.9.
Exercise 2.2.11. Let μ be an additive finite function of a ring R. Prove that for every sets A_{1}, A_{2}, A_{3} from R the following inequality

$$
\begin{aligned}
\mu\left(A_{1} \cup A_{2} \cup A_{3}\right) & =\mu\left(A_{1}\right)+\mu\left(A_{2}\right)+\mu\left(A_{3}\right) \\
& -\mu\left(A_{1} \cap A_{2}\right)-\mu\left(A_{1} \cap A_{3}\right)-\mu\left(A_{2} \cap A_{3}\right)+\mu\left(A_{1} \cap A_{2} \cap A_{3}\right)
\end{aligned}
$$

holds.

Exercise 2.2.12. Let μ be a measure on an algebra $H \subset 2^{X}$ and $\mu(X)=1$. Prove the following statement. If a family of sets $\left\{A_{1}, \ldots, A_{n}\right\} \subset H$ satisfies the inequality

$$
\mu\left(A_{1}\right)+\cdots+\mu\left(A_{n}\right)>n-1,
$$

then

$$
\mu\left(\bigcap_{k=1}^{n} A_{k}\right)>0
$$

Exercise 2.2.13.* Let μ be a measure on a σ-algebra $H \subset 2^{X}$. Let also $\mu(X)=1$ and a family of sets $\left\{A_{n}: n \geq 1\right\} \subset H$ satisfy

$$
\sum_{n=1}^{\infty} \mu\left(A_{n}\right)<+\infty
$$

Consider the set

$$
B:=\left\{x \in X: \begin{array}{l}
x \text { belong to a finite number of } \\
\text { sets } A_{n}, n \geq 1, \text { or } x \notin \bigcup_{n=1}^{\infty} A_{n}
\end{array}\right\} .
$$

Prove that $B \in H$ and $\mu(B)=1$.
Hint: Notice that $B^{c}=\bigcap_{m=1}^{\infty} \bigcup_{n=m}^{\infty} A_{n}$ and use the monotonisity and the σ-semiadditivity of the measure μ. The set B^{c} is the set of all points x which belongs to the infinite number of sets from $\left\{A_{n}: n \geq 1\right\}$.

2.3 Continuity of measure

Theorem 2.3.1 (Continuity from below). Let R be a ring and μ be a measure on R. Then for every increasing sequence $\left\{A_{n}: n \geq 1\right\}$ such that $\bigcup_{n=1}^{\infty} A_{n} \in R$ one has

$$
\mu\left(\bigcup_{n=1}^{\infty} A_{n}\right)=\lim _{n \rightarrow \infty} \mu\left(A_{n}\right)
$$

Proof. I. If $\exists n_{0}: \mu\left(A_{n_{0}}\right)=+\infty$, then for every $n \geq n_{0}$ such that $\mu\left(A_{n}\right)=+\infty$ we have

$$
\mu\left(\bigcup_{n=1}^{\infty} A_{n}\right)=+\infty
$$

by the monotonicity of μ on R. Consequently, the statement holds.
II. Let $\mu\left(A_{n}\right)<+\infty$ for all $n \geq 1$. By the σ-additivity of μ and Property 2) of Theorem 2.2.6, we obtain

$$
\begin{aligned}
\mu\left(\bigcup_{n=1}^{\infty} A_{n}\right) & =\mu\left(A_{1} \cup\left(A_{2} \backslash A_{1}\right) \cup \cdots \cup\left(A_{n} \backslash A_{n-1}\right) \cup \ldots\right) \\
& =\mu\left(A_{1}\right)+\sum_{k=2}^{\infty} \mu\left(A_{k} \backslash A_{k-1}\right)=\mu\left(A_{1}\right)+\lim _{n \rightarrow \infty} \sum_{k=2}^{n}\left(\mu\left(A_{k}\right)-\mu\left(A_{k-1}\right)\right) \\
& =\lim _{n \rightarrow \infty} \mu\left(A_{n}\right) .
\end{aligned}
$$

Exercise 2.3.2. Prove that a nonnegative, additive and continuous from below function on a ring is a measure.

Theorem 2.3.3. Let R be a ring and μ is a measure on R. Then for every decreasing sequence $\left\{A_{n}: n \geq 1\right\}$ such that $\mu\left(A_{1}\right)<+\infty$ and $\bigcap_{n=1}^{\infty} A_{n} \in R$ one has

$$
\mu\left(\bigcap_{n=1}^{\infty} A_{n}\right)=\lim _{n \rightarrow \infty} \mu\left(A_{n}\right) .
$$

Proof. According to Theorem 2.3.1, we obtain

$$
\mu\left(A_{1} \backslash \bigcap_{n=1}^{\infty} A_{n}\right)=\mu\left(\bigcup_{n=2}^{\infty}\left(A_{1} \backslash A_{n}\right)\right)=\lim _{n \rightarrow \infty} \mu\left(A_{1} \backslash A_{n}\right) .
$$

Since $\mu\left(A_{1}\right)<+\infty$, we get

$$
\mu\left(A_{1}\right)-\mu\left(\bigcap_{n=1}^{\infty} A_{n}\right)=\lim _{n \rightarrow \infty}\left(\mu\left(A_{1}\right)-\mu\left(A_{n}\right)\right),
$$

by Property 2) of Theorem 2.2.6.
Exercise 2.3.4. Let $X=\mathbb{N}, R=2^{\mathbb{N}}$ and μ be a measure on R defined by the equalities $\mu(\emptyset)=0$ and $\mu(\{k\})=1, k \in \mathbb{N}$. We consider the following sets

$$
A_{n}=\{n, n+1, \ldots\}, A_{n} \supset A_{n+1}, n \geq 1 ; \quad \bigcap_{n=1}^{\infty} A_{n}=\emptyset
$$

Check that

$$
\mu\left(\bigcap_{n=1}^{\infty} A_{n}\right) \neq \lim _{n \rightarrow \infty} \mu\left(A_{n}\right) \cdot{ }^{1}
$$

Exercise 2.3.5. Prove that nonnegative and additive function defined on a ring which takes finite values and is continuous from above at the set \emptyset is a measure.

Exercise 2.3.6. Give an example of a ring R and a measure μ such that there exists decreasing sequence $\left\{A_{n}: n \geq\right\} \subset R$ with $\mu\left(A_{n}\right)=+\infty$ satisfying the following property:

$$
\text { a) } \mu\left(\bigcap_{n=1}^{\infty} A_{n}\right)=+\infty ; \text { b) } \mu\left(\bigcap_{n=1}^{\infty} A_{n}\right)=0 ; \text { c) } 0<\mu\left(\bigcap_{n=1}^{\infty} A_{n}\right)<+\infty \text {. }
$$

Exercise 2.3.7.* Let μ be a measure on a ring R and a sequence of sets $\left\{A_{n}: n \geq\right\} \subset R$ satisfy the following conditions

$$
\mu\left(A_{1}\right)<+\infty, \quad \bigcap_{n=1}^{\infty} A_{n} \in R, \quad \forall n_{1}, n_{2} \in \mathbb{N} \exists n_{3} \in \mathbb{N}: \quad A_{n_{3}} \subset A_{n_{1}} \cap A_{n_{2}}
$$

Prove that

$$
\mu\left(\bigcap_{n=1}^{\infty} A_{n}\right)=\inf _{n \geq 1} \mu\left(A_{n}\right) .
$$

[^0]Exercise 2.3.8. For any sequence $\left\{A_{n}: n \geq 1\right\}$ of subsets of a set X

$$
\underline{\lim _{n \rightarrow \infty}} A_{n}:=\bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_{k}, \quad \varlimsup_{n \rightarrow \infty} A_{n}:=\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_{k}
$$

are called lower and upper limits of the set $\left\{A_{n}: n \geq 1\right\}$, respectively. If

$$
\varliminf_{n \rightarrow \infty} A_{n}=\varlimsup_{n \rightarrow \infty} A_{n}=: \lim _{n \rightarrow \infty} A_{n}
$$

then the sequence $\left\{A_{n}: n \geq 1\right\}$ is called convergent. Let μ be a measure on a σ-algebra \mathcal{F} of subsets from X and $\left\{A_{n}: n \geq 1\right\}$ be a sequence of subsets from \mathcal{F}. Prove that

$$
\mu\left(\underline{\lim _{n \rightarrow \infty}} A_{n}\right) \leq \underline{\lim _{n \rightarrow \infty}} \mu\left(A_{n}\right) .
$$

Under the additional condition $\mu\left(\bigcup_{n=1}^{\infty} A_{n}\right)<+\infty$, prove that

$$
\mu\left(\varlimsup_{n \rightarrow \infty} A_{n}\right) \geq \varlimsup_{n \rightarrow \infty} \mu\left(A_{n}\right)
$$

This implies that for a convergent sequence $\left\{A_{n}: n \geq 1\right\}$ satisfying $\mu\left(\bigcup_{n=1}^{\infty} A_{n}\right)<+\infty$ one has

$$
\mu\left(\lim _{n \rightarrow \infty} A_{n}\right)=\lim _{n \rightarrow \infty} \mu\left(A_{n}\right)
$$

2.4 Examples of measures

The example of a measure defined on a σ-algebra of all subsets of a countable set X from Exercise 2.2.4 is important for different fields of mathematics such as a probability theory.

In this section, we will consider other important examples of measures.
Theorem 2.4.1. Let R be a ring of all Jordan measurable subsets of \mathbb{R}^{d} and μ be a Jordan measure on R. Then the function μ is σ-additive on R.

Proof. Let

$$
\left\{A_{n}: n \geq 1\right\} \subset R, \quad A:=\bigcup_{n=1}^{\infty} A_{n} \in R, \quad A_{n} \cap A_{m}=\emptyset, \quad n \neq m .
$$

I. Let $\bigcup_{n=1}^{\infty} A_{n} \subset A$, then

$$
\mu\left(\bigcup_{n=1}^{N} A_{n}\right) \leq \mu(A)
$$

by the monotonicity of μ on R. Since μ is additive on R,

$$
\sum_{n=1}^{N} \mu\left(A_{n}\right) \leq \mu(A)
$$

Hence

$$
\begin{equation*}
\sum_{n=1}^{\infty} \mu\left(A_{n}\right) \leq \mu(A) \tag{2.4.1}
\end{equation*}
$$

II. Let $\varepsilon>0$ be a fixed number. We consider \mathbb{R}^{d} as a metric space with the Euclidean distance. According to the construction of the Jordan measure, for a set $A \in R$ there exist a closed set $F \in R$ and an open set $G \in R$ such that

$$
F \subset A \subset G, \quad \text { and } \quad \mu(G)-\mu(F)<\varepsilon
$$

Moreover,

$$
\begin{equation*}
\mu(A)<\mu(F)+\varepsilon \tag{2.4.2}
\end{equation*}
$$

Similarly, for every $n \geq 1$ and $A_{n} \in R$ there exist an empty set $G_{n} \in R$ such that

$$
\begin{equation*}
A_{n} \subset G_{n}, \quad \text { and } \quad \mu\left(G_{n}\right)-\mu\left(A_{n}\right)<\frac{\varepsilon}{2^{n}} \tag{2.4.3}
\end{equation*}
$$

Note that

$$
F \subset A=\bigcup_{n=1}^{\infty} A_{n} \subset \bigcup_{n=1}^{\infty} G_{n} .
$$

This implies that the closed and bounded set F, which is a compact set, is covered by $\left\{G_{n}: n \geq 1\right\}$, i.e. $F \subset \bigcup_{n=1}^{\infty} G_{n}$. Since F is compact, there exists a number $N \in \mathbb{N}$ such that $F \subset \bigcup_{n=1}^{N} G_{n}$. So, this inclusion, the monotonicity and the semiadditivity of μ on R yield

$$
\mu(F) \leq \mu\left(\bigcup_{n=1}^{n} A_{n}\right) \leq \sum_{n=1}^{N} \mu\left(G_{n}\right)
$$

Consequently, by (2.4.3),

$$
\mu(F) \leq \sum_{n=1}^{N}\left(\mu\left(A_{n}\right)+\frac{\varepsilon}{2^{n}}\right)<\sum_{n=1}^{\infty} \mu\left(A_{n}\right)+\varepsilon .
$$

From this inequality and (2.4.2) implies that

$$
\mu(A)<\sum_{n=1}^{\infty} \mu\left(A_{n}\right)+2 \varepsilon .
$$

Since ε is any positive number, we can send ε to 0 . Thus,

$$
\begin{equation*}
\mu(A)<\sum_{n=1}^{\infty} \mu\left(A_{n}\right) . \tag{2.4.4}
\end{equation*}
$$

Using (2.4.1), and (2.4.4), we obtain

$$
\mu(A)=\sum_{n=1}^{\infty} \mu\left(A_{n}\right)
$$

Corollary 2.4.2. Let $X=\mathbb{R}$. Define the sigma ring \mathcal{P}_{1} as

$$
\mathcal{P}_{1}=\{(a, b]:-\infty<a<b<+\infty\} \cup\{\emptyset\} .
$$

Let the function μ on \mathcal{P}_{1} be defined by the following equality

$$
\mu(\emptyset):=0, \quad \mu((a, b]):=b-a, \quad(a, b] \in \mathcal{P}_{1} .
$$

Then μ is a measure on \mathcal{P}_{1}.
Proof. μ is the restriction of the one-dimensional Jordan measure on \mathcal{P}_{1}.
Corollary 2.4.3. Let $X=\mathbb{R}^{d}$. Define the sigma ring \mathcal{P}_{2} as

$$
\mathcal{P}_{2}=\left\{\left(a_{1}, b_{1}\right] \times\left(a_{2}, b_{2}\right]:-\infty<a_{k}<b_{k}<+\infty, k=1,2\right\} \cup\{\emptyset\} .
$$

Let the function μ on \mathcal{P}_{2} be defined by the following equality

$$
\mu(\emptyset):=0, \quad \mu\left(\left(a_{1}, b_{1}\right] \times\left(a_{2}, b_{2}\right]\right):=\left(b_{1}-a_{1}\right)\left(b_{2}-a_{2}\right), \quad\left(a_{1}, b_{1}\right] \times\left(a_{2}, b_{2}\right] \in \mathcal{P}_{2} .
$$

Then μ is a measure on \mathcal{P}_{2}.
Proof. μ is the restriction of the two-dimensional Jordan measure on \mathcal{P}_{2}.
Theorem 2.4.4. For $X=\mathbb{R}$ and the semiring \mathcal{P}_{1} define

$$
\lambda_{F}(\emptyset):=0, \quad \lambda_{F}((a, b]):=F(b)-F(a), \quad(a, b] \in \mathcal{P}_{1},
$$

where F is a nondecreasing and right continuous function on \mathbb{R}. Then the function λ_{F} is a measure on \mathcal{P}_{1}.

Proof. The function λ_{F} is nonnegative and additive on \mathcal{P}_{1}. We prove that λ_{F} is σ-additive on \mathcal{P}_{1}. Let

$$
\left\{\left(a_{n}, b_{n}\right]: n \geq 1\right\} \subset \mathcal{P}_{1}, \quad\left(a_{n}, b_{n}\right] \cap\left(a_{m}, b_{m}\right]=\emptyset, \quad n \neq m, \quad \bigcup_{n=1}^{\infty}\left(a_{n}, b_{n}\right]=(a, b] \in \mathcal{P}_{1}
$$

I. Using the definition of a semiring, we obtain

$$
\forall N \geq 1: \quad(a, b] \backslash \bigcup_{n=1}^{N}\left(a_{n}, b_{n}\right]=\bigcup_{k=1}^{m} C_{k}, \quad\left\{C_{k}: k=1, \ldots, m\right\} \subset \mathcal{P}_{1}, \quad C_{k} \cap C_{j}=\emptyset, \quad k \neq j .
$$

Consequently, for each N we have

$$
(a, b]=\bigcup_{n=1}^{N}\left(a_{n}, b_{n}\right] \cup \bigcup_{k=1}^{m} C_{k} .
$$

Hence, by the additivity of λ_{F} on \mathcal{P}_{1}, we obtain the equality

$$
\lambda_{F}((a, b])=\sum_{n=1}^{N} \lambda_{F}\left(\left(a_{n}, b_{n}\right]\right)+\sum_{k=1}^{m} \lambda_{F}\left(C_{k}\right) .
$$

Thus,

$$
\forall N \geq 1: \quad \lambda_{F}((a, b]) \geq \sum_{n=1}^{N} \lambda_{F}\left(\left(a_{n}, b_{n}\right]\right)
$$

and, consequently,

$$
\begin{equation*}
\lambda_{F}((a, b]) \geq \sum_{n=1}^{\infty} \lambda_{F}\left(\left(a_{n}, b_{n}\right]\right) . \tag{2.4.5}
\end{equation*}
$$

II. Since F is right continuous, we obtain

$$
\begin{align*}
& \begin{aligned}
\forall \varepsilon>0 & \exists a^{\prime} \in(a, b): F\left(a^{\prime}\right)-F(a)<\varepsilon \\
& \Longrightarrow \lambda_{F}((a, b])-\lambda_{F}\left(\left(a^{\prime}, b\right]\right)=F(b)-F(a)-\left(F(b)-F\left(a^{\prime}\right)\right) \\
& =F\left(a^{\prime}\right)-F(a)<\varepsilon ; \\
\forall n \geq 1 \quad \exists b_{n}^{\prime} & >b_{n}: F\left(b_{n}^{\prime}\right)-F\left(b_{n}\right)<\frac{\varepsilon}{2^{n}} \\
& \Longrightarrow \lambda_{F}\left(\left(a_{n}, b_{n}^{\prime}\right]\right)-\lambda_{F}\left(\left(a_{n}, b_{n}\right]\right)=F\left(b_{n}^{\prime}\right)-F\left(a_{n}\right)-\left(F\left(b_{n}\right)-F\left(a_{n}\right)\right) \\
= & F\left(b_{n}^{\prime}\right)-F\left(b_{n}\right)<\frac{\varepsilon}{2^{n}} .
\end{aligned}
\end{align*}
$$

We note that the following inclusions

$$
\left[a^{\prime}, b\right] \subset(a, b]=\bigcup_{n=1}^{\infty}\left(a_{n}, b_{n}\right] \subset \bigcup_{n=1}^{\infty}\left(a_{n}, b_{n}^{\prime}\right)
$$

hold. Since $\left[a^{\prime}, b\right]$ is a compact set in \mathbb{R},

$$
\exists N \in \mathbb{N}: \quad\left[a^{\prime}, b\right] \subset \bigcup_{n=1}^{N}\left(a_{n}, b_{n}^{\prime}\right) \subset \bigcup_{n=1}^{N}\left(a_{n}, b_{n}^{\prime}\right] .
$$

Next the semiadditivity λ_{F} yields

$$
\lambda_{F}\left(\left(a^{\prime}, b\right]\right) \leq \sum_{n=1}^{N} \lambda_{F}\left(\left(a_{n}, b_{n}^{\prime}\right]\right) \leq \sum_{n=1}^{\infty} \lambda_{F}\left(\left(a_{n}, b_{n}^{\prime}\right]\right) .
$$

Using inequalities (2.4.6) and (2.4.7), we have the following inequality

$$
\lambda_{F}((a, b])<\lambda_{F}\left(\left(a^{\prime}, b\right]\right)+\varepsilon \leq \sum_{n=1}^{\infty}\left(\lambda_{F}\left(\left(a_{n}, b_{n}\right]\right)+\frac{\varepsilon}{2^{n}}\right)+\varepsilon=\sum_{n=1}^{\infty} \lambda_{F}\left(\left(a_{n}, b_{n}\right]\right)+2 \varepsilon .
$$

Making $\varepsilon \rightarrow 0+$, we obtain

$$
\lambda_{F}((a, b]) \leq \sum_{n=1}^{\infty} \lambda_{F}\left(\left(a_{n}, b_{n}\right]\right) .
$$

This together with (2.4.5) implies

$$
\lambda_{F}((a, b])=\sum_{n=1}^{\infty} \lambda_{F}\left(\left(a_{n}, b_{n}\right]\right) .
$$

Exercise 2.4.5. Let $G \in \mathrm{C}(\mathbb{R}) \cap \mathrm{BV}(\mathbb{R})$, and for $X=\mathbb{R}$ and the semiring \mathcal{P}_{1}

$$
\nu_{G}(\emptyset):=0, \quad \nu_{G}((a, b]):=G(b)-G(a), \quad(a, b] \in \mathcal{P}_{1} .
$$

Prove that ν_{G} is a σ-additive function on \mathcal{P}_{1}.

Chapter 3

Extension of measures

3.1 Extension of a measure from semiring to the generated ring

Let X be a fundamental set.

Definition 3.1.1. Let $\mathcal{E}_{k} \subset 2^{X}, \mu_{k}: \mathcal{E}_{k} \rightarrow(-\infty,+\infty], k=1,2$. The function μ_{2} is called an extension of the function μ_{1} (μ_{1} is called the restriction of μ_{2}), if

$$
\mathcal{E}_{1} \subset \mathcal{E}_{2}, \quad \text { and } \quad \forall A \in \mathcal{E}_{1}: \quad \mu_{1}(A)=\mu_{2}(A)
$$

Theorem 3.1.2. Let μ be a measure on a semiring \mathcal{P}. The measure μ can be extended to a measure on $r(\mathcal{P})$ by a unique way. Moreover, this extension is finite (σ-finite) if μ is finite (σ-finite, resp.).

Proof. I. Definition of the extension. For $A \in r(\mathcal{P})$ we have

$$
A=\bigcup_{k=1}^{n} C_{k}, \quad\left\{C_{1}, \ldots, C_{n}\right\} \subset \mathcal{P}, \quad C_{k} \cap C_{j}=\emptyset, \quad k \neq j
$$

Set

$$
\bar{\mu}(A):=\sum_{k=1}^{n} \mu\left(C_{k}\right)
$$

The function $\bar{\mu}$ is well-defined. Indeed, let us consider other representation of A

$$
A=\bigcup_{j=1}^{m} D_{j}, \quad\left\{D_{1}, \ldots, D_{m}\right\} \subset \mathcal{P}, \quad D_{k} \cap D_{j}=\emptyset, \quad k \neq j
$$

Then for any $1 \leq k \leq n, 1 \leq j \leq m$ we have

$$
C_{k}=C_{k} \cap A=\bigcup_{j=1}^{m}\left(C_{k} \cap D_{j}\right), \quad D_{j}=A \cap D_{j}=\bigcup_{k=1}^{n}\left(C_{k} \cap D_{j}\right)
$$

Furthermore, the sets $\left\{C_{k} \cap D_{j}: 1 \leq k \leq n, 1 \leq j \leq m\right\} \subset \mathcal{P}$ are disjoint. Using the additivity of μ on \mathcal{P}, we obtain

$$
\begin{aligned}
\sum_{k=1}^{n} \mu\left(C_{k}\right) & =\sum_{k=1}^{n} \mu\left(\bigcup_{j=1}^{m}\left(C_{k} \cap D_{j}\right)\right) \\
& =\sum_{k=1}^{n} \sum_{j=1}^{m} \mu\left(C_{k} \cap D_{j}\right)=\sum_{j=1}^{m} \mu\left(\bigcup_{k=1}^{n}\left(C_{k} \cap D_{j}\right)\right)=\sum_{j=1}^{m} \mu\left(D_{j}\right) .
\end{aligned}
$$

Note that the extension $\bar{\mu}$ is additive on $r(\mathcal{P})$.
II. Uniqueness of the extension. Let λ be an additive extension of the measure μ to $r(\mathcal{P})$. Then for every set $A \in r(\mathcal{P})$ we have an expression

$$
A=\bigcup_{k=1}^{n} C_{k}, \quad\left\{C_{1}, \ldots, C_{n}\right\} \subset \mathcal{P}, \quad C_{k} \cap C_{j}=\emptyset, \quad k \neq j .
$$

Consequently,

$$
\lambda(A)=\sum_{k=1}^{n} \lambda\left(C_{k}\right)=\sum_{k=1}^{n} \mu\left(C_{k}\right)=\bar{\mu}(A) .
$$

III. σ-additivity of the extension. Let

$$
\left\{A_{n}: n \geq 1\right\} \subset r(\mathcal{P}), \quad A_{m} \cap A_{n}=\emptyset, \quad m \neq n ; \quad A:=\bigcup_{n=1}^{\infty} A_{n} \in r(\mathcal{P})
$$

Then

$$
A=\bigcup_{j=1}^{m} B_{j}, \quad\left\{B_{1}, \ldots, B_{m}\right\} \subset \mathcal{P}, \quad B_{k} \cap B_{j}=\emptyset, \quad k \neq j,
$$

and for any $n \geq 1$

$$
A_{n}=\bigcup_{k=1}^{r(n)} C_{n k}, \quad\left\{C_{n, 1}, \ldots, C_{n, r(n)}\right\} \subset \mathcal{P}, \quad C_{n, k} \cap C_{n, j}=\emptyset, \quad k \neq j .
$$

Using first the σ-additivity of μ on \mathcal{P} and then the additivity of $\bar{\mu}$ on $r(\mathcal{P})$, we get

$$
\begin{aligned}
\bar{\mu} & =\sum_{j=1}^{m} \mu\left(B_{j}\right)=\sum_{j=1}^{m} \mu\left(B_{j} \cap A\right)=\sum_{j=1}^{m} \mu\left(B_{j} \cap \bigcup_{n=1}^{\infty} \bigcup_{k=1}^{r(n)} C_{n, k}\right) \\
& =\sum_{j=1}^{m} \mu\left(\bigcup_{n=1}^{\infty} \bigcup_{k=1}^{r(n)}\left(B_{j} \cap C_{n, k}\right)\right)=\sum_{j=1}^{m} \sum_{n=1}^{\infty} \sum_{k=1}^{r(n)} \mu\left(B_{j} \cap C_{n, k}\right)=\sum_{n=1}^{\infty} \bar{\mu}\left(A_{n}\right) .
\end{aligned}
$$

3.2 Outer measure

Definition 3.2.1. A function $\lambda^{*}: 2^{X} \rightarrow(-\infty,+\infty]$ is called the outer measure, if
(i) $\lambda^{*}(\emptyset)=0$ and λ^{*} is a nonnegative function
(ii) $\forall\left\{A, A_{n}, n \geq 1\right\} \subset 2^{X}, A \subset \bigcup_{n=1}^{\infty} A_{n}: \quad \lambda^{*}(A) \leq \sum_{n=1}^{\infty} \lambda^{*}\left(A_{n}\right)$.

Exercise 3.2.2. Prove that an outer measure is monotone and semiadditive on 2^{X}.
Hint: For $A, B \in 2^{X}, A \subset B$ we have $A \subset B \cup \emptyset \cup \cdots \cup \emptyset \cup \ldots$
Definition 3.2.3. Let μ be a measure on a ring R of subsets of X. For every set $A \in 2^{X}$ we set $\mu^{*}(A):= \begin{cases}0 & \text { if } A=\emptyset, \\ \inf _{\left\{A_{n}: n \geq 1\right\} \subset R, A \subset \cup_{n=1}^{\infty} A_{n}} \sum_{n=1}^{\infty} \mu\left(A_{n}\right) & \text { if there exists at least one such a sequence, } \\ +\infty & \text { otherwise. }\end{cases}$
Theorem 3.2.4. The function μ^{*} from Definition 3.2.3 is an outer measure.
Proof. Condition (i) of Definition 3.2.1 is satisfied. We check Condition (ii). Let

$$
\left\{A, A_{n}, n \geq 1\right\} \subset 2^{X}, \quad A \subset \bigcup_{n=1}^{\infty} A_{n}
$$

It is enough to consider the case where $\mu^{*}\left(A_{n}\right)<+\infty, n \geq 1$. According to Definition 3.2.3 and the definition of the infimum, we have

$$
\begin{gathered}
\forall \varepsilon>0 \forall n \geq 1 \exists\left\{B_{n, j}: j \geq 1\right\} \subset R, \bigcup_{j=1}^{\infty} B_{n, j} \supset A_{n}: \\
\sum_{j=1}^{\infty} \mu\left(B_{n, j}\right)<\mu^{*}\left(A_{n}\right)+\frac{\varepsilon}{2^{n}} .
\end{gathered}
$$

Hence, using the inclusion

$$
\bigcup_{n=1}^{\infty} \bigcup_{j=1}^{\infty} B_{n, j} \lim _{n \rightarrow \infty} \supset \bigcup_{n=1}^{\infty} A_{n} \supset A
$$

and Definition 3.2.3, we obtain

$$
\mu^{*}(A) \leq \sum_{n=1}^{\infty} \sum_{j=1}^{\infty} \mu\left(B_{n, j}\right)<\sum_{n=1}^{\infty} \mu^{*}\left(A_{n}\right)+\varepsilon .
$$

Making $\varepsilon \rightarrow 0+$, we get the following inequality

$$
\mu^{*}(A) \leq \sum_{n=1}^{\infty} \mu^{*}\left(A_{n}\right)
$$

Remark 3.2.5. The function μ^{*} from Definition 3.2 .3 is called the outer measure generated by the measure μ.

Exercise 3.2.6. Let $X=\mathbb{R}, \mathcal{P}=\{(k, k+1]: k \in \mathbb{Z}\} \cup\{\emptyset\}$ and

$$
\lambda(\emptyset):=0, \quad \lambda((k, k+1]):=1, \quad k \in \mathbb{Z} .
$$

Prove that λ is a measure on \mathcal{P}. Let $\bar{\lambda}$ be the extension of λ to $r(\mathcal{P})$. Construct the outer measure λ^{*} generated by the measure $\bar{\lambda}$. Find $\lambda^{*}\left(\left\{\frac{1}{2}\right\}\right), \lambda^{*}\left(\left(\frac{1}{2}, \frac{3}{2}\right)\right)$, and $\lambda^{*}(\mathbb{N})$.

$3.3 \lambda^{*}$-measurable sets. Carathéodory theorem

Definition 3.3.1. Let λ^{*} be an outer measure on 2^{X}. A set $A \subset 2^{X}$ is called λ^{*}-measurable, if

$$
\forall B \subset X: \quad \lambda^{*}(B)=\lambda^{*}(B \cap A)+\lambda^{*}(B \backslash A) .
$$

Remark 3.3.2. 1. We note that $B \backslash A=B \cap A^{c}$ and $A^{c}=X \backslash A$.
2. For any sets $A, B \subset X$ we have $B=(B \cap A) \cup(B \backslash A)$, and, consequently,

$$
\begin{equation*}
\lambda^{*}(B) \leq \lambda^{*}(B \cap A)+\lambda^{*}(B \backslash A) \tag{3.3.1}
\end{equation*}
$$

by the semiadditivity of the outer measure λ^{*}.
Exercise 3.3.3. Show that a set A is λ^{*}-measurable if and only if

$$
\forall U \subset A \forall V \subset A^{c}: \quad \lambda^{*}(U \cup V)=\lambda^{*}(U)+\lambda^{*}(V) .
$$

Exercise 3.3.4. Define a class of all λ^{*} measurable sets for the outer measure λ^{*} from Exercise 3.2.6.

Answer: It is the class consisting of at most countable union of sets from \mathcal{P}. The set $\left(\frac{1}{2}, 1\right]$ is not λ^{*}-measurable.
Theorem 3.3.5. Let λ^{*} be an outer measure on 2^{X} and \mathcal{S} be the class of all λ^{*}-measurable sets. Then the class \mathcal{S} is a σ-algebra and the restriction of λ^{*} to \mathcal{S} is a measure.

Proof. I. \mathcal{S} is an algebra. We note that $\emptyset \in \mathcal{S}$ because

$$
\forall B \subset X: \quad \lambda^{*}(B \cap \emptyset)+\lambda^{*}(B \backslash \emptyset)=\lambda^{*}(\emptyset)+\lambda^{*}(B)=\lambda^{*}(B) .
$$

Let $A \in \mathcal{S}$. Then $A^{c} \in \mathcal{S}$ also because

$$
\forall B \subset X: \quad \lambda^{*}\left(B \cap A^{c}\right)+\lambda^{*}\left(B \backslash A^{c}\right)=\lambda^{*}\left(B \cap A^{c}\right)+\lambda^{*}(B \cap A)=\lambda^{*}(B) .
$$

Take $G, F \in \mathcal{S}$. Then for every $B \subset X$ we have

$$
\begin{align*}
\lambda^{*}(B) & =\mid \lambda^{*} \text {-measurability of } G \mid=\lambda^{*}(B \cap G)+\lambda^{*}\left(B \cap G^{c}\right) \\
& =\mid \lambda^{*} \text {-measurability of } F \mid=\lambda^{*}(B \cap G)+\lambda^{*}\left(B \cap G^{c} \cap F\right)+\lambda^{*}\left(B \cap G^{c} \cap F^{c}\right), \tag{3.3.2}
\end{align*}
$$

$$
\begin{align*}
\lambda^{*}(B \cap(G \cup F)) & =\mid \lambda^{*} \text {-measurability of } G \mid=\lambda^{*}(B \cap(G \cup F) \cap G)+\lambda^{*}\left(B \cap(G \cup F) \cap G^{c}\right) \\
& =\lambda^{*}(B \cap G)+\lambda^{*}\left(B \cap F \cap G^{c}\right) . \tag{3.3.3}
\end{align*}
$$

By (3.3.2) and (3.3.3), we obtain the following equality

$$
\lambda^{*}(B)=\lambda^{*}(B \cap(G \cup F))+\lambda^{*}\left(B \cap(G \cup F)^{c}\right) .
$$

Thus, $G \cup F \in \mathcal{S}$, and, consequently,

$$
G \cap F=\left(G^{c} \cup F^{c}\right)^{c} \in \mathcal{S}, \quad G \backslash F=\left(G \cap F^{c}\right) \in \mathcal{S}
$$

II. \mathcal{S} is a σ-algebra and the restriction of λ^{*} to \mathcal{S} is a measure. Let $\left\{A_{n}: n \geq 1\right\} \subset \mathcal{S}$. We need to prove that $\bigcup_{n=1}^{\infty} A_{n} \in \mathcal{S}$. Since \mathcal{S} is an algebra, without loss of generality we may assume that $A_{m} \cap A_{n}=\emptyset, m \neq n$. For every $B \subset X$ we have
$\lambda^{*}\left(B \cap\left(A_{1} \cup A_{2}\right)\right)=\lambda^{*}\left(B \cap\left(A_{1} \cup A_{2}\right) \cap A_{1}\right)+\lambda^{*}\left(B \cap\left(A_{1} \cup A_{2}\right) \cap A_{1}^{c}\right)$

$$
=\lambda^{*}\left(B \cap A_{1}\right)+\lambda^{*}\left(B \cap A_{2}\right),
$$

by the λ^{*}-measurability of A_{1}. The latter equality and the λ^{*}-measurability of A_{3} yield

$$
\lambda^{*}\left(B \cap\left(A_{1} \cup A_{2} \cup A_{3}\right)\right)=\lambda^{*}\left(B \cap A_{3}\right)+\lambda^{*}\left(B \cap\left(A_{1} \cup A_{2}\right)\right)=\sum_{k=1}^{3} \lambda^{*}\left(B \cap A_{k}\right) .
$$

Similarly, for each $n \geq 1$ we have the equality

$$
\begin{equation*}
\lambda^{*}\left(B \cap \bigcup_{k=1}^{n} A_{k}\right)=\sum_{k=1}^{n} \lambda^{*}\left(B \cap A_{k}\right) \tag{3.3.4}
\end{equation*}
$$

Using now the λ^{*}-measurability of $\bigcup_{k=1}^{n} A_{k}$, equality (3.3.4) and the monotonicity of the outer measure, we obtain

$$
\lambda^{*}(B)=\lambda^{*}\left(B \cap \bigcup_{k=1}^{n} A_{k}\right)+\lambda^{*}\left(B \cap\left(\bigcup_{k=1}^{n} A_{k}\right)^{c}\right) \geq \sum_{k=1}^{n} \lambda^{*}\left(B \cap A_{k}\right)+\lambda^{*}\left(B \cap\left(\bigcup_{k=1}^{n} A_{k}\right)^{c}\right)
$$

Thus,

$$
\begin{equation*}
\lambda^{*}(B) \geq \sum_{k=1}^{\infty} \lambda^{*}\left(B \cap A_{k}\right)+\lambda^{*}\left(B \cap\left(\bigcup_{k=1}^{\infty} A_{k}\right)^{c}\right) \tag{3.3.5}
\end{equation*}
$$

The latter inequality is based on Property (ii) of Definition 3.2.1. According to (3.3.1), we can conclude that

$$
\lambda^{*}(B)=\lambda^{*}\left(B \cap \bigcup_{k=1}^{\infty} A_{k}\right)+\lambda^{*}\left(B \cap\left(\bigcup_{k=1}^{\infty} A_{k}\right)^{c}\right) .
$$

Hence, $\bigcup_{k=1}^{\infty} A_{k} \in \mathcal{S}$, and inequality (3.3.4) becomes the equality. Setting in (3.3.4) $B=\bigcup_{k=1}^{\infty} A_{k}$, we get

$$
\lambda^{*}\left(\bigcup_{k=1}^{\infty} A_{k}\right)=\sum_{k=1}^{\infty} \lambda^{*}\left(A_{k}\right) .
$$

Exercise 3.3.6. Give an example of outer measure λ^{*} on 2^{X} such that $\mathcal{S}=\{\emptyset, X\}$.

3.4 Complete measures

Definition 3.4.1. Let μ be a measure on a σ-algebra \mathcal{S}. The measure μ is called complete, if

$$
\forall A \in \mathcal{S}, \mu(A)=0 \quad \forall B \subset A: \quad B \in \mathcal{S} .
$$

Remark 3.4.2. If $A \in \mathcal{S}, \mu(A)=0, B \subset A$ and $B \in \mathcal{S}$, then $\mu(B)=0$, by the monotonicity of measure.

Corollary 3.4.3. Under the conditions of Theorem 3.3.5, the measure λ^{*} is complete of \mathcal{S}.

Proof. Let $A \in \mathcal{S}, \lambda^{*}(A)=0$ and $C \subset A$. By the monotonicity of the outer measure λ^{*} and the λ^{*}-measureability of A, we have that for every $B \subset X$

$$
\lambda^{*}(B) \geq \lambda^{*}\left(B \cap C^{c}\right) \geq \lambda^{*}\left(B \cap A^{c}\right)=\lambda^{*}(B \cap A)+\lambda^{*}\left(B \cap A^{c}\right)=\lambda^{*}(B)
$$

since $0 \leq \lambda^{*}(B \cap A) \leq \lambda^{*}(A)=0$. Similarly, we can obtain the equality $\lambda^{*}(B \cap C)=0$. Hence, $C \in \mathcal{S}$.

Exercise 3.4.4. Let μ be a measure on a σ-algebra \mathcal{S}, and

$$
\mathcal{S}^{0}=\{A \cup \Phi: A \in \mathcal{S}, \exists B \in \mathcal{S}, \mu(B)=0, \Phi \subset B\}, \quad \mu^{0}(A \cup \Phi):=\mu(A), \quad A \cup \Phi \in \mathcal{S}^{0} .
$$

Prove that \mathcal{S}^{0} is a σ-algebra and μ^{0} is a complete measure on \mathcal{S}^{0}.

3.5 Measurability of sets of the initial ring

If λ^{*} is a measure, then the class \mathcal{S} of all λ^{*}-measurable sets is a σ-algebra, according to Theorem 3.3.5. However this σ-algebra can be very poor. It is possible that $\mathcal{S}=\{\emptyset, X\}$.

We now consider the case, where the outer measure μ^{*} is generated by a measure μ defined on a ring R. As above, \mathcal{S} will be the class of all μ^{*}-measurable subsets of X. Denote also

$$
\bar{\mu}(A):=\mu^{*}(A), \quad A \in \mathcal{S} .
$$

The measure $\bar{\mu}$ is the extension of the measure μ from the ring R to the σ-algebra \mathcal{S} if $R \subset \mathcal{S}$.
Theorem 3.5.1. $R \subset \mathcal{S}$ and the measure $\bar{\mu}$ is the extension of the measure μ from the ring R to the σ-algebra \mathcal{S}.

Proof. I. We first prove that

$$
\forall A \in R: \quad \mu^{*}(A)=\mu(A) .
$$

Indeed, $\mu^{*}(A) \leq \mu(A)$ since $A \subset A \cup \emptyset \cup \emptyset \cup \ldots$. Moreover, for each sequence $\left\{A_{n}: n \geq 1\right\} \subset R$, $A \subset \bigcup_{n=1}^{\infty} A_{n}$ we have $A=\bigcup_{n=1}^{\infty}\left(A \cap A_{n}\right)$. The σ-additivity and the monotonicity of the measure μ on R yield the inequality

$$
\mu(A) \leq \sum_{n=1}^{\infty} \mu\left(A \cap A_{n}\right) \leq \sum_{n=1}^{\infty} \mu\left(A_{n}\right) .
$$

Thus, according to Definition 3.2.3, $\mu(A) \leq \mu^{*}(A)$.
II. $R \subset \mathcal{S}$. Let $A \in R$ and $\varepsilon>0$ be fixed. We consider an arbitrary set $B \subset X, \mu^{*}(B)<+\infty$. According to Definition 3.2.3

$$
\exists\left\{A_{n}: n \geq 1\right\} \subset R: \mu^{*}(B)+\varepsilon>\sum_{n=1}^{\infty} \mu\left(A_{n}\right) .
$$

Hence, by the additivity of the measure μ on R and Definition 3.2.3, we get

$$
\mu^{*}(B)+\varepsilon>\sum_{n=1}^{\infty}\left(\mu\left(A_{n} \cap A\right)+\mu\left(A_{n} \cap A^{c}\right)\right) \geq \mu^{*}(B \cap A)+\mu^{*}\left(B \cap A^{c}\right)
$$

Making now $\varepsilon \rightarrow 0+$,

$$
\mu^{*}(B) \geq \mu^{*}(B \cap A)+\mu^{*}\left(B \cap A^{c}\right) .
$$

This inequality and the simiadditivity of outer measure (3.3.1) implies the μ^{*}-measurability of the set A.

Exercise 3.5.2. Check that $\sigma r(R) \subset \sigma a(R) \subset \mathcal{S}$.
Exercise 3.5.3. Let μ be a σ-finite measure on a ring R. Then the outer measure μ^{*} on 2^{X} and the measure $\bar{\mu}$ on \mathcal{S} are σ-finite.

Exercise 3.5.4.* For $A \in 2^{X}$ we set

$$
\mu^{* *}:=\inf \left\{\sum_{n=1}^{\infty} \bar{\mu}\left(A_{n}\right):\left\{A_{n}: n \geq 1\right\} \subset \mathcal{S}, \bigcup_{n=1}^{\infty} A_{n} \supset A\right\}
$$

Prove that $\mu^{* *}=\mu^{*}$.

3.6 Uniqueness of extension

Let $\bar{\mu}$ be the extension of a measure μ from a ring R to the σ-algebra \mathcal{S} of all μ^{*}-measurable sets. Since \mathcal{S} is a σ-algebra and $R \subset \mathcal{S}$, we have that $\sigma r(R) \subset \mathcal{S}$.

Theorem 3.6.1. The extension of σ-finite measure μ from a ring R to $\sigma r(R)$ is unique and σ-finite.
Proof. Let a measure λ be an extension of μ to $\sigma r(R)$. We first assume that λ and $\bar{\mu}$ are finite of $\sigma r(R)$. Set

$$
Q:=\{A \in \sigma r(R): \lambda(A)=\bar{\mu}(A)\} .
$$

Then $R \subset Q \subset \sigma r(R)$. The family of sets Q is a monotone class. Indeed, for a sequence

$$
\left\{A_{n}: n \geq 1\right\} \subset Q \quad A_{n} \subset A_{n+1}, \quad n \geq 1
$$

we have

$$
\lambda\left(\bigcup_{n=1}^{\infty} A_{n}\right)=\lim _{n \rightarrow \infty} \lambda\left(A_{n}\right)=\lim _{n \rightarrow \infty} \bar{\mu}\left(A_{n}\right)=\bar{\mu}\left(\bigcup_{n=1}^{\infty} A_{n}\right),
$$

by Theorem 2.3.1. Hence $\bigcup_{n=1}^{\infty} A_{n} \in Q$. Similarly, using the assumption of finiteness of one of the measures $\lambda, \bar{\mu}$ and Theorem 2.3.1, one can check that the limit of a decreasing sequence of sets from Q also belongs to Q.

Thus, $m(R) \subset Q \subset \sigma r(R)$. Moreover, $m(R)=\sigma r(R)$, according to Theorem 1.4.6.
II. Let $A \in R$ be a set such that $\lambda(A)$ or $\bar{\mu}(A)$ is finite. Then according to Part I. of the proof, the measures λ and $\bar{\mu}$ coincide on $A \cap \sigma r(R)=\sigma r(A \cap R)$. Moreover, each set from $\sigma r(R)$ is contained in an union of countable number of sets from R which have a finite measure $\bar{\mu}$.

Exercise 3.6.2.* Prove that the measure $\bar{\mu}$ on \mathcal{S} is the complement of the measure $\bar{\mu}$ considered on $\sigma r(R)$.

Remark 3.6.3. The condition of σ-finiteness of the measure μ on R in Theorem 3.6.1 is essential. See, e.g. The example in [Hal50, Section 3.13].

Chapter 4

Appendix

4.1 Structure of σ-algebra

Here we discuss the equivalence which is defined on the universal set X by the σ-algebra of its subsets. This will lead to the description of the finite σ-algebra and can be a starting point for studying of conditional measures.

Exercise 4.1.1. Let M be a class of subsets of X. We will say that $x \sim_{M} y$ if and only if there exists no such $A \in M$ that only one from x, y belongs to A. Prove that \sim_{M} is an equivalence relation on X.

Exercise 4.1.2. Suppose that M is finite. Prove that all equivalence classes with respect to \sim_{M} can be expressed as $\bigcap_{A \in M} A^{\varepsilon}$, where $\varepsilon= \pm 1$ and $A^{1}:=A, A^{-1}:=A^{c}=X \backslash A$.
Exercise 4.1.3. Assume that M is finite σ-algebra. Prove that all equivalence classes with respect to \sim_{M} belongs to M.

Let us denote by H_{1}, \ldots, H_{n} the equivalence classes from the previous exercise.
Exercise 4.1.4. Check that under condition of the Exercise 4.1.3 every element of M is a union of certain elements from H_{1}, \ldots, H_{m}.

Exercise 4.1.5. Prove that for any finite σ-algebra M there exists a natural number n such that the number of sets in M equals 2^{n}.

Exercise 4.1.6. Let X be the Euclidean space \mathbb{R}^{d} and $\mathcal{B}\left(\mathbb{R}^{d}\right)$ be a Borel σ-algebra in \mathbb{R}^{d}. Prove that equivalence classes for $\sim_{\mathcal{B}\left(\mathbb{R}^{d}\right)}$ are one-point sets.

Let f be a function from X to Y and \mathcal{A} be a σ-algebra of subsets in Y.
Exercise 4.1.7. Check that the family

$$
\Gamma=\left\{f^{-1}(A): A \in \mathcal{A}\right\}
$$

is a σ-algebra of subsets in X.

Exercise 4.1.8. Prove that equivalence classes for \sim_{Γ} can be described as $f^{-1}(Z)$, where Z are equivalence classes for $\sim_{\mathcal{A}}$.

Exercise 4.1.9.* Give an example of a set X and a σ-algebra M of its subsets such that the equivalence classes with respect to \sim_{M} do not belong to M.

Bibliography

[Hal50] Paul R. Halmos, Measure Theory, D. Van Nostrand Company, Inc., New York, N. Y., 1950. MR 0033869

[^0]: ${ }^{1}$ This shows that the condition $\mu\left(A_{1}\right)<+\infty$ is essential in Theorem 2.3.3.

