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Chapter 1

Main classes of sets

1.1 Semiring and Semialgebra

Let X be a fixed nonempty set. Assume that X # (). We next consider different classes of subsets

of the set X. The set X is called a fundamental set.
Notation 1.1.1. 2% denotes the family of all subsets of the set X including X and 0.
Definition 1.1.2. A nonempty class of sets H C 2% is called a semiring if

(i) {A,B}CH=— ANDB¢€H,

() {A,B}CH=3neN 3{C1,...,Ch,} CH, C;NC,=0, j #k:
A\ B = U0k~
k=1

A class H is called a semialgebra if H is a semiring and X € H.
Exercise 1.1.3. Let H be a semiring. Prove that () € H.

Exercise 1.1.4. Prove that the following class H is a semialgebra:
a)H=2%, b)H={0,X}; o H={0A A X}, ACX.

Exercise 1.1.5. Let X = Rand H = {[a,b) : —00 < a < b < 400} U {0}. Prove that H is a

semiring.
Exercise 1.1.6. Let a; < by, ag < b be fixed numbers, X = [a1,b1) X [ag, b2) and
H = {[on,p1) X [a2,B2) : ar < o, < B < by, k=1,2} U{0}.

Show that H is a semiring.



Exercise 1.1.7. Let H;, C 2% for k = 1,2, be a semiring. Prove that the class of sets
Hy x Hy:={A; x Ag : Ay € Hy, k=1,2}
is a semiring of subsets in the Cartesian product of X; x Xs.
Exercise 1.1.8. Prove that the union of two sets from a semiring does not necessarily belong to

this semiring.

1.2 Ring and algebra

Definition 1.2.1. A nonempty class of sets H C 2% is called a ring if
(i) {A,B}Cc H= AUBecH; (i){A,BfC H=— A\BecH.
A class H is said to be an algebra if H isaringand X € H.

Exercise 1.2.2. Let H be a ring. Prove that:
a)le H; b){A,B}CcH=— ANBE€H,;
o) {A,...., A} CH = U;_, Ay € Hand (,_, Ay € H.

Exercise 1.2.3. Check that a ring of subsets is a semiring.

Exercise 1.2.4. Prove the following statements.
a) The class of all Jordan measurable subsets of X = R? is a ring.

b) The class of all Jordan measurable subsets of X = [0, 1]2 is an algebra.

Exercise 1.2.5. Prove that a nonempty class of sets H C 2% is aring if and only if H is a semiring
and {A,B} CH = AUB € H.

Exercise 1.2.6. Let H be an algebra and A € H. Show that A° € H.
Exercise 1.2.7. Prove that a nonempty class of sets H C 2% is an algebra if and only if
{A,B}CH=—=AUBecHadAc H=— A°c H.

Exercise 1.2.8. Let E be a class of subsets of X such that for any distinct sets A, B € E the
equality A N B = () holds. Set

H::{OAk: n € N, {Al,...,An}CE}U{(Z)}.

k=1

Prove that H is a ring.



1.3 o-ring and o-algebra

Definition 1.3.1. A nonempty class of sets H C 2% is called a o-ring if
i) {A1,A4s,...,Ap,...} CH=Jy2 | Ay € H;
(ii)) {A,B}CH=— A\B€H.
A class H is said to be a o-algebra if H isa o-ringand X € H.
Exercise 1.3.2. Check that the classes 2% and {{), X} are o-algebras.
Exercise 1.3.3. Check that a o-ring is a ring.

Exercise 1.3.4. Let H be a o-ring. Prove that

{A1,Ag, ... An,.. .} CH= [ Ay € H.

n=1
Hint: Consider the set Ay \ (U7, (A1 \ 4n)).
Exercise 1.3.5. A set A C R? is called symmetric if (z1,70) € A = (—x1,—12) € A.

We assume that the empty set is symmetric. Prove that the class of symmetric subsets of R? is a

o-algebra.
Exercise 1.3.6. Prove that there exists no o-algebra consisting of a countable number of elements.

Exercise 1.3.7. Let H, C 2%%, k = 1,2, be o-rings and Hy x Hy := {A; x Ay : Ap € Hy, k =
1,2}. Prove that the class H; x X3 is a semiring of subsets from X; x Xs. Give an example which

shows that the class H; x Hj is not always a ring.

1.4 Monotone class

Definition 1.4.1. A sequence of sets { A,,, n > 1} is called monotone increasing if A,, C 4,11,
n > 1. In that case, lim,, o0 A, := Jo7 | Ap.

A sequence of sets {A,, n > 1} is called monotone decreasing if A4, O A,+1,n > 1.In
that case, limy, 00 A, = (1 An.

Sequences which monotone increase or decrease are called monotone.
Exercise 1.4.2. Show that lim,,_,~,[0,n] = [0, +00); lim,—0[n, +00) = 0.

Definition 1.4.3. A nonempty class of sets I C 2% is said to be a monotone class if for every

monotone sequence {A,, n > 1} C H the set lim,,_,~, A4, belongs to H.

Exercise 1.4.4. Prove that a o-ring is a monotone class.



Exercise 1.4.5. Let X = R and
H:={[m,n]: {m,n} CZ, m<n}U{(—oc0,n]: ne€Z}U{n,+0): ne€Z}U{R}.
Check that H is a monotone class.
Theorem 1.4.6. A monotone ring is a o-ring.
Proof. Let H be a ring and a monotone class. Then Condition (ii) of Definition 1.3.1 is satisfied.

Let {A,, n> 1} C H.Since H is aring, we have

VYm>1: UAkEH.
k=1

Moreover,
m—+1

Vm >1: GAkC U Ak
k=1 k=1

Since H is a monotone class,

lim <6Ak> € H <~ EOJ (GAk> = [j A, € H.
meree k=1 m=1 \k=1 m=1

Consequently, Condition (i) of Definition 1.3.1 also holds. ]

1.5 Minimal classes of sets

1.5.1 Minimal ring, algebra, o-ring, o-algebra, monotone class containing a given
class of sets

Let X be a fundamental set and H be a class of subsets of X.

Definition 1.5.1. The following class of sets
r(H):= ﬂ K
K isring, KDH

is called the ring generated by the class H or the minimal ring containing the class H.

Remark 1.5.2. Rings containing the class H exists. For instance, the class 2% is a ring and 2% >
H.

Lemma 1.5.3. The intersection of any family of rings is also a ring.
Proof. Let {K;: t € T} be a family of rings. Then

{A,B}yc[|EKi=VteT: {AB}CK,
teT
—VteT: {AUB, A\B}CK,= {AUB, A\B}C (K.
teT

Thus, the class (), K; is a ring. O



Lemma 1.5.3 implies the correctness of Definition 1.5.1, i.e. that the class 7(H ) is a ring.

Exercise 1.5.4. Prove that statements similar to Lemma 1.5.3 are true for:

a) algebra; b) o-ring; c) o-algebra; d) monotone class.
Exercise 1.5.5. Show that the intersection of semirings is not necessarily a semiring.

Definition 1.5.6. The following classes of sets

a(H) := ﬂ G, or(H):= ﬂ G,
G is algebra, GDH G is o-ring, GDH
oa(H) := ﬂ m(H) := ﬂ G
G is o-algebra, GDH G is monotone class, GDH

are called the algebra a(H ), the o-ring or(H), the o-algebra ca(H) and the monotone class
m(H ) generated by H, respectively.
The classes a(H), or(H), ca(H) and m(H) are also called the minimal algebra, the mini-

mal o-ring, the minimal o-algebra and the minimal monotone class containing H, respectively.

Exercise 1.5.7. Let X be a finite set and H = {{z}: = € X}. Show that r(H) = a(H) =
or(H) = ca(H) = 2%,

Exercise 1.5.8. Prove that
a) H, C Hy C CL(Hl) — a(Hl) = CL(HQ);
b) Hy C Hy C oa(H) = ca(Hy) = ca(Ha2).

Exercise 1.5.9. Let aset B C X be fixed. Prove that or(H N B) = or(H) N B.Here EN B :=
{ANB: A< E} foraclass of sets E.
Hint: Check that or(H) N B D H N B and or(H) N B is a o-ring.

Exercise 1.5.10. Show that ca (ca(H)) = oa(H).

Theorem 1.5.11. Let H be a semiring. Then

r(H):{OAk: n €N, {Al,...,An}CH}.

k=1

Proof. Let M = {Jj_1 Ar: neN, {Ay,...,A,} C H}. Then we have H C M C r(H).
Let us prove that the class M is a ring. Indeed, for sets { A, B} C M the set A U B belongs to M
according to the definition of the class M. If {A, B} C M, then

n m
A=|JA,, B=JB;, {Ai,....AuBi,...,By} CH,
k=1 7=1



and

A\B = (U Ak)\ UBi| = U NAN\By.
k=1 j=

7=1 k=1j=1

Since H is a semiring, one can assume that
AkﬂAj:(Z), BkﬂBj:(Z), k # j.
Moreover,

I
A\ Bj =) Chjr, {Chjr} CH, 1=1(k,j); CirjrNCrjs=0, r+#s.

r=1
Thus, A\ B = Ug—; N2y Ufn:l Cljr- -

Exercise 1.5.12. Let H = {A;, A, ..., Ay} C X. Prove that:
a) a(H) consists of at most 22" sets; b) a(H) = ca(H).
Hint: Consider sets of the form /11 N /12 n---N An, where Ak equals Ay or X \ Ay forevery 1 < k <n.

Exercise 1.5.13. The minimal semiring p(H ) containing a class H is the semiring which con-
tains the class H and is contained in any semiring which contains the class H. Let H = {(—00, a] :
a € R}. Show that p(H) = {(a,b] : —o0o < a <b< +oo} U{0}.

1.5.2 Borel sets

Let (X, d) be a metric space, G be a class of all open in (X, d) subsets of X.

Definition 1.5.14. The o-algebra B(X) = ca(G) is called the o-algebra of Borel sets.

Exercise 1.5.15. Let (X, d) be a separable metric space and H = {B(z,r): z € X, r > 0},
where B(x,r) :={y € X : d(z,y) < r}.Prove that B(X) = oa(H).
Hint: Check that H C G C oa(H).

Exercise 1.5.16.* Let (X, d) be a separable metric space. Prove that there exists a countable class
of sets H C 2% such that oa(H) = B(X).

Exercise 1.5.17. Let (X, d) be a separable metric space and F be a class of all closed in (X, d)
subsets of X. Prove that

B(X) =oca(F)=0a({B(z,r): z € X, r>0}),
where B(z,r) = {y € X : d(x,y) <r}.

Exercise 1.5.18. Prove that:
a) any one-point set is a Borel set;

b) any countable set is a Borel set.



Exercise 1.5.19. Let B := B(R) be the o-algebra of Borel sets on R with the distance d(z,y) =
|z —y|, {z,y} C R. Prove the the following sets are Borel:

a) the set of rational numbers Q;

b) the set of irrational numbers R \ Q;

¢) (a,b], {a,b} CR,a < b;

d) The set of all real numbers whose decimal representation contains infinitely many times the

digits 4.
Exercise 1.5.20. Prove that

B=oca({(—00,a]: a€R}) =ca({—o0,a]: a €Q})
=oca({(a,b]: —00o <a <b< +4o0}).

Exercise 1.5.21." Let (X, d) be a separable metric space. Prove that 3(X ) has at most continuum

cardinality.

1.5.3 Monotone class and o-ring generated by a ring

Theorem 1.5.22. Let H be a ring of subsets of X. Then or(H) = m(H).

Proof. Since or(H ) is a monotone class, we have the inclusion m(H) C or(H), according to the
definition of m(H).

Let us prove that m(H) is aring. For every B € m(H ) we consider the following class of sets
L(B)={CcX:{BUC,B\C,C\B}Ccm(H)}.
The following two statements hold.
(i) Since H isaringand H C m(H),onehasVA € H: H C L(A).
(i) VB € m(H) : L(B) is a monotone class.

Let us prove the second statement. Let {C), : n > 1} C L(B), C,, C Cy41, n > 1. Then for

every n > 1 we have

CnUBCCrH_lUB, Cn\BCCTH_l\B, B\CnCB\CnJ,_],
{BUCy, B\ Cpn, Cy\ B} C m(H).



Since m(H) is a monotone class, we have

m(H) 3 G(C’nUB) (fj cn> U B,
n=1 n=1
m(H) 3 | J(Cu\ B) = <U0n>\B,
m(H) > | J(B\Cn) =B\ <Uo)

Hence (2, C,, € L(B). Similarly, one can check that ()~ ; C,inL(B) for a decreasing se-
quence {C), : n > 1} from L(B). The statement (ii) is proved.
Since L(A) is a monotone class for all A € H, by (ii), and H C L(A), by (i), we obtain

VAe H: m(H) C L(A)
= VAVC, e m(H): {AUuCy, A\Cy, C1\ A} C m(H)
— H C L(Cl) = V(| € m(H) : m(H) C L(Cl)
- \V/{Cl, 02} C m(H) : {01 uCy, Cq \ Cy, O \ Cl} C m(H)
Thus, m(H) is a ring. By Theorem 1.4.6, m(H) is a o-ring. So, or(H) C m(H). Conse-

quently, or(H) = m(H). O

Exercise 1.5.23. Let H be an algebra of sets. Prove that ca(H) = m(H).



Chapter 2

Functions of sets. Measures

2.1 The main classes of functions of sets

Let X be a fixed nonempty set and H C 2% be a non-empty class of sets of X. The object of

investigation of the measure theory are functions of the form
w:H — (—o00,400)

which satisfy special requirements. Length, area, and volume defined for some classes of sets of
the line, plane, and space, respectively, are real examples of such functions. The charge of parts
of the space in an electric field is another type of example. Those examples lead to a narrow, but
important for mathematics, class of functions. For instance, the area is nonnegative, the area of a
figure consisting of a union of two nonintersecting parts is equal to the sum of areas of those parts
and so on. The special requirements for functions of sets mentioned above particularly consist
in the transfer of properties of real functions of sets to an abstract situation and particularly are
related to the mathematical necessity.

We will further consider functions taking the value +oo. For example, it is natural to assume

that the length of the real line equal +oc0. We will assume that
(+00) 4+ (+00) = +00; VaeR: a < 400, a+ 00 :=~+00 + a := +00.
Definition 2.1.1. A function p : H — (—o0, +00] is called:
(i) nonnegative, if VA€ H: pu(A)>0;

(ii) finitely semiadditive, (or simply semiadditive) if

VneN V{A4,,..., A} C H, UAkeH: M(U
k=1

10
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(iii) finitely additive (or simply additive) if

VneN V{Ay,..., A} CH | JA € H, AjnA,=0,j+#k:
k=1

n n
I (U Ak) = ul(A);
k=1 k=1
(iv) countably semiadditive (or o-semiadditive), if

V{4,: n>1} C H, GAneH: u(GAn>§iu(An>;
n=1 n=1

n=1

(v) countably additive (or o-additive), if

V{d,: n>1}CH, |JA,€H, AjnA,=0, j#k:

n=1
M (U An) = ZM(An)Q
n=1 n=1

(vi) monotone, if V{A, B} C H, AC B: u(A) < u(B);
(vii) finite, if VA€ H: p(A) < 4o0;

(viii) o-finite, if

3{4,: n>1} C H: UAn:Xanan21:u(An)<+oo.

n=1

Exercise 2.1.2. Assume that ) € H, a function y is additive and exists a set A € H such that
p(A) < +o0. Prove that p(@) = 0.

Exercise 2.1.3. Assume that ) € H, u(()) = 0 and p is o-additive on H. Prove that  is additive
on H.
Hint: Use the equality AUB=AUBUQU---UPU....

Remark 2.1.4. We will not consider functions y which take the value 4-co at every set from H.

2.2 Measures. Basic properties of measures

Definition 2.2.1. A nonnegative o-additive function defined on a semiring is called a measure.
Exercise 2.2.2. Let u be a measure. Prove that p(0)) = 0.

Exercise 2.2.3. Prove that a measure is an additive function.
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Exercise 2.2.4.* Let X = {x1,72,...,2p,...} and H = 2X. For a family of nonnegative
numbers p,,, n > 1, satisfying Y- | p, = 1 define u(A) := ", . -1 pn. A € H.Prove that

is a measure on H.

Exercise 2.2.5. Let X = [0, 1], H be an algebra of all Jordan measurable subsets of X and the

function  is the Jordan measure on H. Check that x4 is a nonnegative additive function on H.
Theorem 2.2.6. Let R be a ring and . be a measure on R. Then

1) p is monotone on R;
2) V{A,B} C R, AC B, u(A) < +oc:
u(B\ A) = pu(B) — p(A);
3) If {A, B} C R and at least one of the values j1(A), u(B) is finite, then
(AU B) = p(A) + u(B) — (AN B);

4) If {A,By,...,By,} C Rand A C | J;_, By, then

u(A) < p(By);
k=1

5) wis o-semiadditive on R.
Proof. 1)Let {A, B} C Rand A C B. Then
B=AU(B\A4), An(B\A) =0.
Using the additivity and the nonnegativity of the measure p, one has
w(B) = p(A) + (B \ A) > p(A). 22.1)
2) If u(A) < 400, then equality (2.2.1) yields
u(B\ A) = u(B) — u(A).
3)If u(A) < 400 and p(B) < +00, then (A N B) < +o0, according to 1). Moreover,
AUB=(A\(ANnB)UB, (A\(ANnB))NB=4.

Hence, using the additivity of the measure y and 2), we have

(AU B) = u(A\ (AN B)) + u(B) = p(A) — u(AN B) + u(B).
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4) By 1) and the additivity of i, we have

n

n—1
M(A)§M<U Bk> :M<31u(32\Bl)u(Bg\(BlLJBQ))u.-.u (Bn\ UBk>>

k=1

n—1
= p(B1) + p(Bz \ B1) + u(Bs \ (B1U Bz)) + -+ p <Bn \ (U Bk)) < ) w(Bk).
k=1

k=1

5) Similarly to the proof of 4), we obtain
00 [e'¢) n—1 00 n—1 ]
n=1 n=1 k=1 n=1 k=1 n=1
by the o-additivity of the measure p. Here we assume that ngl Ag = 0. 0

Remark 2.2.7. Properties 1)-4) of Theorem 2.2.6 is valid for any nonnegative and additive func-

tion .

Exercise 2.2.8. Prove that a nonnegative, additive and o-semiadditive function & on a ring R is a

measure on R.
Hint: Let {An : n>1} CR, U;_, An € R, An N Am =0, m # n.From the monotonicity and additivity

of u we have
(U] zu (U] - Suan. =
k=1 k=1 k=1

Exercise 2.2.9. Let i be a measure on a o-ring H and for {4,,: n>1} C H mu(A4,) = 0,

n > 1. Prove that
o0
7 <U An> =0.
n=1

Hint: Use the o-semiadditivity of a measure.

Exercise 2.2.10. Let x be a measure on a o-algebra H. Let u(X) = 1 and a family of sets
{4, : n>1} C H satisty u(A, = 1), n > 1. Prove that

’ (m) =

Hint: Use De Morgan’s law and Exercise 2.2.9.

Exercise 2.2.11. Let x4 be an additive finite function of aring R. Prove that for every sets A1, A, As
from R the following inequality

p(Ar U A U A3) = p(Ar) + p(A2) + p(As)
— ,u(Al N Ag) — M(Al N A3) — ,U(AQ N Ag) + /L(Al NAsnN Ag)

holds.
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Exercise 2.2.12. Let 1 be a measure on an algebra H C 2% and p(X) = 1. Prove the following
statement. If a family of sets { Ay, ..., A,,} C H satisfies the inequality

ALY + -+ p(Ag) > -1,

u(ﬂA) -0

Exercise 2.2.13.* Let 1 be a measure on a o-algebra H C 2%. Let also x1(X) = 1 and a family
of sets {4, : n > 1} C H satisfy

then

o0
Z p(Ay) < 4o0.
n=1

Consider the set

Bo— {:E cx. © belong to a finite number of }

sets Ap, n>1, orz & U, An
Prove that B € H and u(B) = 1.
Hint: Notice that B¢ = (>°_, |J>2, A, and use the monotonisity and the o-semiadditivity of the measure /.

The set B¢ is the set of all points = which belongs to the infinite number of sets from {A, : n > 1}.

2.3 Continuity of measure

Theorem 2.3.1 (Continuity from below). Let R be a ring and p be a measure on R. Then for

every increasing sequence { Ay : n > 1} such that | J,._; A, € R one has

Z (U An> = 425, #lAn).
n=1

Proof. 1.1f 3ng : p(An,) = +o0, then for every n > ng such that p(A,,) = +oo we have

1% (U An) = +00,
n=1

by the monotonicity of p on 2. Consequently, the statement holds.
IL. Let u(A,) < +oo forall n > 1. By the o-additivity of 1 and Property 2) of Theorem 2.2.6,

we obtain

M(U An> = (AU (A \ A U---U (A, \ A ) U..)
n=1

= (A1) + D p( A\ Agor) = p(An) + lim > (u(A) = p(A-)
k=2 k=2

= lim u(A4,).

n—o0
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Exercise 2.3.2. Prove that a nonnegative, additive and continuous from below function on a ring
is a measure.

Theorem 2.3.3. Let R be a ring and 1 is a measure on R. Then for every decreasing sequence
{Ay, : n > 1} such that i(A1) < 400 and (,_, A, € R one has

Z (ﬂ An) = L HlAn)
n=1

Proof. According to Theorem 2.3.1, we obtain

1 <A1 () An> = (U (A \An)> = lim (A1 )\ Ap).
n=1

n=2

Since p1(A1) < +oo, we get

n—oo

p(Ar) — p <ﬂ An> = lim (u(A1) — p(An)),
n=1
by Property 2) of Theorem 2.2.6. O

Exercise 2.3.4. Let X = N, R = 2" and z be a measure on R defined by the equalities y((})) = 0
and u({k}) = 1, k € N. We consider the following sets

A, ={n,n+1,...}, A, D Apt1, n>1; ﬂAn:Q).
n=1

Check that
ﬂ : 1
' ( 1An> 7 nh—?oloM(A”)'

Exercise 2.3.5. Prove that nonnegative and additive function defined on a ring which takes finite

values and is continuous from above at the set () is a measure.

Exercise 2.3.6. Give an example of a ring R and a measure p such that there exists decreasing
sequence {A, : n >} C R with u(A,) = 400 satisfying the following property:
a) 1 (nZy An) = +00; b) (72 An) = 05 ©) 0 < p (M2 An) < o0

Exercise 2.3.7.* Let u be a measure on a ring R and a sequence of sets {A,, : n >} C R satisfy

the following conditions

p(A1) < 400, [)An€R, Vning €N 3ng€N: Apy C Ay, N Ap,.

n=1

Prove that
(1) = ocao

'This shows that the condition p( A1) < 400 is essential in Theorem 2.3.3.
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Exercise 2.3.8. For any sequence {A,, : n > 1} of subsets of a set X

oo oo L oo oo
@AnIZUﬂAk, limAn::ﬂUAk
o n=1k=n e n=1k=n

are called lower and upper limits of the set {A,, : n > 1}, respectively. If

lim A, = lim A, =: lim A,,
n—oo n—oo n—oo

then the sequence {4, : n > 1} is called convergent. Let ;. be a measure on a o-algebra F of

subsets from X and {4, : n > 1} be a sequence of subsets from F. Prove that

M(lim An> < lim p(Ap).

n—00 n—oo

Under the additional condition x (|2 ; A,) < 400, prove that

I ( lim An) > lim p(Ay).

n—0o0

This implies that for a convergent sequence {4, : n > 1} satisfying p (J,~; 4,) < +oo one
has

I ( lim An) = lim u(A4,).

n—oo n—oo

2.4 Examples of measures

The example of a measure defined on a o-algebra of all subsets of a countable set X from Exer-
cise 2.2.4 is important for different fields of mathematics such as a probability theory.

In this section, we will consider other important examples of measures.

Theorem 2.4.1. Let R be a ring of all Jordan measurable subsets of R and . be a Jordan measure

on R. Then the function p is o-additive on R.

Proof. Let

{4,: n>1} CR, A::UAneR, AnNAp =0, n#m.

n=1

LLet{Jo2; A, C A, then

N
p (U An) < p(A),
n=1

by the monotonicity of i on R. Since p is additive on R,

N
S (An) < ulA).
n=1
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Hence

> u(An) < p(A). 24.1)

n=1
II. Let € > 0 be a fixed number. We consider R as a metric space with the Euclidean distance.
According to the construction of the Jordan measure, for a set A € R there exist a closed set

F € R and an open set G € R such that
FCACG, and p(G)—p(F)<e.

Moreover,
w(A) < p(F) +e. 2.4.2)

Similarly, for every n > 1 and A,, € R there exist an empty set G,, € R such that

Ap C G, and  u(Gr) — pu(Ay) < 2% (2.4.3)

Note that - ~
FcA=|JA.c|JGn
n=1 n=1

This implies that the closed and bounded set F', which is a compact set, is covered by {G,, : n > 1},
ie. F C |Jo2, Gy Since F is compact, there exists a number N € N such that F' C Ufl\;l Gp.

So, this inclusion, the monotonicity and the semiadditivity of y on R yield

n N
w(EF) < p <U An) < ZN(GH)-
n=1 n=1

Consequently, by (2.4.3),

N [e%S)
u(F) <37 (ulAn) + 57 ) < D2 1(An) +e.
n=1

n=1

From this inequality and (2.4.2) implies that

n(A) <3 p(Ay) + 2.
n=1

Since ¢ is any positive number, we can send ¢ to 0. Thus,

p(A) <D p(An). (2.4.4)
n=1

Using (2.4.1), and (2.4.4), we obtain

M(A) = Z M(An)
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Corollary 2.4.2. Let X = R. Define the sigma ring P1 as

P1={(a,b]: —co<a<b< +oo}U{0}.
Let the function p on Py be defined by the following equality

w(® :=0, wp((a,b]):=b—a, (a,b] € P.
Then y is a measure on P;.
Proof. i is the restriction of the one-dimensional Jordan measure on P;. O
Corollary 2.4.3. Let X = R Define the sigma ring P as

Pa = {(a1,b1] x (az,be] : —o0 < ap < b < +oo, k=1,2}U{0}.
Let the function p on 'Po be defined by the following equality
w(®) :=0, wp((ar,b1] x (az,b2]) := (by —a1)(b2 — az), (a1,b1] X (ag,bs] € Ps.
Then p is a measure on Pa.
Proof. p is the restriction of the two-dimensional Jordan measure on Ps. 0
Theorem 2.4.4. For X = R and the semiring P1 define
Ar(0) :=0,  Ar((a,b]) := F(b) = F(a), (a,b] € P,

where F'is a nondecreasing and right continuous function on R. Then the function \p is a measure

on Py.

Proof. The function Ar is nonnegative and additive on P;. We prove that A\ is o-additive on P;.
Let

{(@n,bn] : n =1} C P, (an, bo] O (@ b] =0, n#m, | (an, ba] = (a,] € Py

n=1
I. Using the definition of a semiring, we obtain
N m
YN>1: (a,b)\ | J(an,bn] = Ck, {Cr:k=1,....m}CPi, CenCj=0, k#j.
n=1 k=1

Consequently, for each IV we have

Ch.

s

N
(a,0] = | (an, bu] U

n=1 k

Il
—_



Hence, by the additivity of Ar on P;, we obtain the equality

N m
b)) = > Ap((an,ba]) + > Ar(Ch).
n=1 k=1
Thus,
N
VN >1: Z ((an, bn)),

and, consequently,
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F((a,8]) = > Ap((an, bal) (2.4.5)
n=1
IL. Since F is right continuous, we obtain
Ve >0 3d' € (a,b): F(d')—F(a)<e
= Ar((a,8]) — Ap((d,b]) = F(b) — F(a) = (F(b) — F(a')) (2.4.6)
= F(d) - F(a) < ¢
Vn>1 36, > by F(Y,) — F(by) < 2%
= A\p((an, b)) — )\F((an, bn]) = F(b)) — F(an) — (F(b,) — F(an))  (2.4.7)
= F(b;l) - (bn) < 27
We note that the following inclusions
[a/,0] € (a,b] = | (an,bn] C | (an,B})
n=1 n=1
hold. Since [a/, b] is a compact set in R,
N N
EINEN:abCUan, CUan,
n=1 n=1
Next the semiadditivity Ar yields
N 0
<D Ar((an b)) <D Ar((an, b))
n=1 n=1
Using inequalities (2.4.6) and (2.4.7), we have the following inequality
Ar((a,b]) < A 3 © “3) b)) + 2
F((a,8]) < Ar( Z( (an, b)) + 57 ) &= D Ar((an, bal) + 22.

n=1

Making € — 04, we obtain

Ar((a,8]) <Y Ar((an, ba))-

n=1
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This together with (2.4.5) implies

Ap((a,b]) = D Ar((an, ba).
n=1

Exercise 2.4.5. Let G € C(R) N BV(R), and for X = R and the semiring P;
vo(0) =0, val(a,b]) = G(b) — Gla), (a,t] € Pr.

Prove that v is a o-additive function on P;.



Chapter 3

Extension of measures

3.1 Extension of a measure from semiring to the generated ring
Let X be a fundamental set.

Definition 3.1.1. Let & C 2%, ys, : & — (—o0, +00], k = 1,2. The function ys is called an

extension of the function 1 (¢ is called the restriction of p0), if
& C &, and VAe & : Ml(A) = ,MQ(A).

Theorem 3.1.2. Let i be a measure on a semiring P. The measure i can be extended to a measure

on r(P) by a unique way. Moreover, this extension is finite (o-finite) if (1 is finite (o-finite, resp.).

Proof. I. Definition of the extension. For A € r(P) we have

A=JC {C1,....C.}CP, CunCij=0, k+#j.
k=1

Set

n

A(A) = u(Cy).

k=1
The function [ is well-defined. Indeed, let us consider other representation of A
m
A=|JDj, {Di,....Dp}CP, DxND;=0, k#j.

J=1

Then forany 1 < k <n,1 < j < m we have

Cr=CinA=|]J(CnDy), Dj=AnD;=|]J(CknDy).
7j=1 k=1

21
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Furthermore, the sets {C}, N Dj:1<k<n, 1<j< m} C P are disjoint. Using the additivity

of 1 on P, we obtain

n

> @) => pn| JCnDy)
k=1

= ]:1

= Zu CkﬂD Z/,L(
j=1

k=1 j=1

3

=

(Ck N Dj)> =Y ulDy).

k=1

Note that the extension f is additive on r(P).
I1. Uniqueness of the extension. Let A be an additive extension of the measure y to r(P). Then

for every set A € r(P) we have an expression

A=JCr {Cr....C.}CP, CenCy=0, k#j.
k=1

Consequently,

1I1. o-additivity of the extension. Let

{Ap: =1} Cr(P), AnNA,=0, m#n; A:=|] A, er(P).

n=1
Then

m
=|JBj, {Bi,....Bu}CP, BiNB; =0, k+#j,
j=1

and forany n > 1

r(n)
An=JCuts {Cutro o, Crpy} CP, CopgNCrj =0, k#j.
k=1

Using first the o-additivity of p on P and then the additivity of iz on r(P), we get

m m m oo 7(n)
=y uB) =Y uB;nA)=>p|BnJ U Cur
j=1 j=1 j=1 n=1k=1
m [e'e) r(n m o0 ’r‘(n) [e'e]
=2 (U UBNCuw) | =223 wBinCur) =Y a(4n)
j=1 n=1 k=1 j=1n=1k=1 n=1
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3.2 Outer measure

Definition 3.2.1. A function \* : 2% — (—oc0, +-c] is called the outer measure, if
(i) \*(0) = 0 and \* is a nonnegative function
(i) V{4, Ap, n>1}C 2%, ACUS, A A(A) < il N (Ay).
ne
Exercise 3.2.2. Prove that an outer measure is monotone and semiadditive on 2%
Hint: For A/ Be€ 2X, AC Bwehave AC BUJU---UQU...
Definition 3.2.3. Let 1 be a measure on a ring R of subsets of X . For every set A € 2% we set

0 if A=10,

oo
inf > u(A,) if there exists at least one such a sequence,
{An: n>1}CR, ACUpZ; An n=1

400 otherwise.

p(A) ==

Theorem 3.2.4. The function i* from Definition 3.2.3 is an outer measure.

Proof. Condition (i) of Definition 3.2.1 is satisfied. We check Condition (ii). Let
oo
{A, Ay, n>1yc 2%, Ac | A
n=1

It is enough to consider the case where p*(A,,) < +00, n > 1. According to Definition 3.2.3 and

the definition of the infimum, we have

(0.9]
Ve>0Vn>13{Bn;: j =1} CR, | JBn; D An:

j=1
> €
ZH(Bn,j) < N*(An) + 27
j=1
Hence, using the inclusion
o0 [e.9] o0
UUB”J lim > | |4,D> A
n—oo
n=1j=1 n=1

and Definition 3.2.3, we obtain

W) < 30D ilBag) < 0w (An) + e
n=1

n=1 j=1

Making ¢ — 04, we get the following inequality

(A <3 ().
n=1
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Remark 3.2.5. The function p* from Definition 3.2.3 is called the outer measure generated by

the measure p.
Exercise 3.2.6. Let X =R, P = {(k,k+1]: k€ Z} U{0} and
A0):=0, X(k,k+1]):=1, keZ.
Prove that ) is a measure on P. Let \ be the extension of A to (). Construct the outer measure
A* generated by the measure X. Find A\* ({3}), A* ((3,2)), and A*(N).
3.3 )\*-measurable sets. Carathéodory theorem
Definition 3.3.1. Let A* be an outer measure on 2. A set A C 2% is called \*-measurable, if
VBC X: N(B)=X(BNA)+ X (B\A).
Remark 3.3.2. 1. Wenote that B\ A= BN A°and A° = X \ A.
2. For any sets A, B C X wehave B= (BN A)U (B \ A), and, consequently,
A(B) < AX(BNA)+X(B\A), (3.3.1)
by the semiadditivity of the outer measure \*.
Exercise 3.3.3. Show that a set A is \*-measurable if and only if
YVUCAVV CA: X(UUV)=X(U)+ (V).

Exercise 3.3.4. Define a class of all \* measurable sets for the outer measure \* from Exer-
cise 3.2.6.

Answer: It is the class consisting of at most countable union of sets from P. The set (%, 1] is not A\*-measurable.

Theorem 3.3.5. Let \* be an outer measure on 2* and S be the class of all \*-measurable sets.

Then the class S is a o-algebra and the restriction of \* to S is a measure.

Proof. 1. S is an algebra. We note that () € S because
VB C X : M(BNO)+X(B\0) =0+ \(B) = \(B).
Let A € S. Then A€ € S also because

VB C X : M(BNA®)+X(B\AY) =\ (BN A+ X (BNA) = \(B).
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Take G, F' € §. Then for every B C X we have
A*(B) = |\*-measurability of G| = \*(BN G) + \*(B N G°)
= |A\*-measurability of F'| = A*(BNG) + A" (BNG°NF)+ A" (BNG°N F°),
(3.3.2)
A (BN (GUF)) = |\*-measurability of G| = A" (BN (GUF)NG) + X (BN (GUF)NG°)

=\ (BNG)+ X (BNFNG°.
(3.3.3)
By (3.3.2) and (3.3.3), we obtain the following equality

AN(B)=X(BN(GUF))+ X (BN (GUF)°).
Thus, GU F' € S, and, consequently,
GNF=(G°UF)°eS, G\F=(GNF°eS.

II. S is a o-algebra and the restriction of \* to S is a measure. Let {A, : n>1} C S. We
need to prove that | J7” ; A, € S. Since S is an algebra, without loss of generality we may assume
that A,,, N A,, = ), m # n. For every B C X we have

A (BN(A1UA)) =X (BN (A1 UA)NA) + X (BN (AU Ay) N AS)
=N(BNA)+ N(BNA,),

by the \*-measurability of A;. The latter equality and the A*-measurability of A3 yield

3
N (BN (A1 U Ay U Az)) = X(B N As) + M (BN (A UAg)) = Y X (BN Ay).
k=1

Similarly, for each n > 1 we have the equality
n n
A (B nUJ Ak> => A(BNAy). (3.3.4)
k=1 k=1

Using now the A\*-measurability of | J;_, Ay, equality (3.3.4) and the monotonicity of the outer

measure, we obtain

A(B) = \* (Bm Lnj Ak> +A* <Bm (CJ Ak> ) > n N (BNAg)+* <Bm (CJ Ak> ) :
k=1 k=1 k=1 k=1

Thus,

A*(B) > i (BN Ag) + A* (B N <G Ak> ) . (3.3.5)

k=1 k=1



26

The latter inequality is based on Property (ii) of Definition 3.2.1. According to (3.3.1), we can

v (s00a) o (50 () ).
k=1 k=1

Hence, UZil A € S, and inequality (3.3.4) becomes the equality. Setting in (3.3.4) B = UZO:1 Ag,

conclude that

we get

A (U Ak> = N (A).
k=1 k=1

Exercise 3.3.6. Give an example of outer measure A\* on 2% such that S = {0, X'}.

3.4 Complete measures
Definition 3.4.1. Let i be a measure on a o-algebra S. The measure p is called complete, if

VAeS, u(A)=0 VBCA: BeS.

Remark 3.4.2. If A € S, u(A) =0, B C Aand B € S, then u(B) = 0, by the monotonicity of

measure.
Corollary 3.4.3. Under the conditions of Theorem 3.3.5, the measure \* is complete of S.

Proof. Let A € S, \*(A) = 0and C' C A. By the monotonicity of the outer measure A* and the
A*-measureability of A, we have that for every B C X

AN(B) > M(BNCY) > X (BNAY) = N(BNA) + \(BNA°) = \(B),

since 0 < A\*(BNA) < A*(A) = 0. Similarly, we can obtain the equality \*(B N C') = 0. Hence,
Ces. O

Exercise 3.4.4. Let ;4 be a measure on a o-algebra S, and
S'={AUd: AcS,IBcS, u(B)=0,dC B}, pl(AU®d):=pu(A), AUDc S

Prove that S¥ is a o-algebra and 1 is a complete measure on S°.
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3.5 Measurability of sets of the initial ring

If \* is a measure, then the class S of all \*-measurable sets is a o-algebra, according to Theo-
rem 3.3.5. However this o-algebra can be very poor. It is possible that S = {0, X }.
We now consider the case, where the outer measure p* is generated by a measure  defined on

aring R. As above, S will be the class of all ;*-measurable subsets of X. Denote also
[(A) == p*(4), AeS.
The measure i is the extension of the measure p from the ring R to the o-algebra Sif R C S.

Theorem 3.5.1. R C S and the measure [i is the extension of the measure p from the ring R to

the o-algebra S.

Proof. 1. We first prove that
VAe R: u*(A) = pu(A).

Indeed, 1*(A) < u(A) since A € AUQUPU. . .. Moreover, for each sequence {4,, : n > 1} C R,
Ac U, A, wehave A = | J;2 | (ANA,). The o-additivity and the monotonicity of the measure
won R yield the inequality

<ZMA0A gi
n=1 n=1

Thus, according to Definition 3.2.3, u(A) < p*(A).
II. R C S.Let A € Rand e > 0 be fixed. We consider an arbitrary set B C X, u*(B) < +oc.
According to Definition 3.2.3

oo
{An: n> 1} CR: @' (B)+e> ) p(Ay)
Hence, by the additivity of the measure i+ on R and Definition 3.2.3, we get
)+ e > Z (Ay N A) + (A, NA)) > (BN A) 4 " (BN A°).

Making now € — 0+,
WH(B) = pf (BN A) + (B 0 A°).

This inequality and the simiadditivity of outer measure (3.3.1) implies the p*-measurability of the
set A. O

Exercise 3.5.2. Check that or(R) C ca(R) C S.

Exercise 3.5.3. Let : be a o-finite measure on a ring R. Then the outer measure 4* on 2% and the

measure it on S are o-finite.
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Exercise 3.5.4.* For A € 2% we set

wr ::inf{Zﬁ(An): {4,: n>1} CS, UAHDA}.
n=1

n=1

*

Prove that p** = p*.

3.6 Uniqueness of extension

Let [z be the extension of a measure y from a ring R to the o-algebra S of all *-measurable sets.
Since S is a o-algebra and R C S, we have that or(R) C S.

Theorem 3.6.1. The extension of o-finite measure i from a ring R to or(R) is unique and o-finite.

Proof. Let a measure A be an extension of y to or(R). We first assume that A and [ are finite of
or(R). Set
Q:={Acor(R): \MA)=pn(A)}.

Then R C @ C or(R). The family of sets ) is a monotone class. Indeed, for a sequence
{4,: n>1}CcQ A,CA,41, n>1,

we have
’ <U1 An) - nh_{go)‘(An) - nh_)ngoﬂ(An) - <U1 An) ,

by Theorem 2.3.1. Hence | J;2 | A,, € Q. Similarly, using the assumption of finiteness of one of
the measures A, fi and Theorem 2.3.1, one can check that the limit of a decreasing sequence of
sets from () also belongs to Q.

Thus, m(R) C Q C or(R). Moreover, m(R) = or(R), according to Theorem 1.4.6.

II. Let A € R be a set such that A(A) or i(A) is finite. Then according to Part I. of the proof,
the measures A and /i coincide on A N or(R) = or(A N R). Moreover, each set from or(R) is

contained in an union of countable number of sets from 2 which have a finite measure /. O

Exercise 3.6.2. Prove that the measure i on S is the complement of the measure fi considered
on or(R).

Remark 3.6.3. The condition of o-finiteness of the measure ;1 on R in Theorem 3.6.1 is essential.

See, e.g. The example in [Hal50, Section 3.13].
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Appendix

4.1 Structure of o-algebra

Here we discuss the equivalence which is defined on the universal set X by the o-algebra of its
subsets. This will lead to the description of the finite o-algebra and can be a starting point for

studying of conditional measures.

Exercise 4.1.1. Let M be a class of subsets of X. We will say that z ~; y if and only if there
exists no such A € M that only one from x, y belongs to A. Prove that ~,; is an equivalence

relation on X.

Exercise 4.1.2. Suppose that M is finite. Prove that all equivalence classes with respect to ~

can be expressed as [ A%, wheree = +land Al := A, A~ := A°= X\ A.
AeM

Exercise 4.1.3. Assume that M is finite o-algebra. Prove that all equivalence classes with respect

to ~ s belongs to M.
Let us denote by Hy, ..., H, the equivalence classes from the previous exercise.

Exercise 4.1.4. Check that under condition of the Exercise 4.1.3 every element of M is a union

of certain elements from Hy, ..., H,,.

Exercise 4.1.5. Prove that for any finite o-algebra M there exists a natural number 7 such that the

number of sets in M equals 2".

Exercise 4.1.6. Let X be the Euclidean space R? and B(R?) be a Borel o-algebra in R?. Prove

that equivalence classes for ~pa) are one-point sets.
Let f be a function from X to Y and .A be a o-algebra of subsets in Y.

Exercise 4.1.7. Check that the family
I'= {f‘l(A): AGA}

is a o-algebra of subsets in X.

29



30

Exercise 4.1.8. Prove that equivalence classes for ~p can be described as f~1(Z), where Z are

equivalence classes for ~ 4.

Exercise 4.1.9.* Give an example of a set X and a o-algebra M of its subsets such that the

equivalence classes with respect to ~ ;s do not belong to M.
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