Problem sheet 5

Solutions has to be uploaded into Moodle: https://moodle2. uni-leipzig.de/mod/assign/view. php? id=1049936 until 22:00, May 20.

Let (X, \mathcal{F}) denote a measurable space and λ be a measure on \mathcal{F}. All functions considered here are \mathcal{F}-measurable.

1. [3 points] Let $X=\mathbb{R}, \mathcal{F}=\mathcal{B}(\mathbb{R})$ and λ be the Lebesgue measure on \mathbb{R}. Let also $f \in L(\mathbb{R}, \lambda)$. Show that the function $\varphi(x):=\int_{(-\infty, x]} f(t) \lambda(d t), x \in \mathbb{R}$, is continuous on \mathbb{R}.
2. [3 points] Let $f \in L(X, \lambda)$ and $\int_{A} f d \lambda=0$ for all $A \in \mathcal{F}$. Show that $f=0 \lambda$-a.e.
3. [2 points] Let $f_{n} \rightarrow f \lambda$-a.e. and $f_{n} \rightarrow g \lambda$-a.e. Show that $f=g \lambda$-a.e.
4. [4 points] Assume that $f: X \rightarrow \mathbb{R}$ satisfies the following property: for every $a>0$

$$
\lambda(\{x \in X:|f(x)| \geq a\})=0
$$

Show that $f=0 \lambda$-a.e.
Hint: Prove and use the equality $\{x \in X: f(x) \neq 0\}=\bigcup_{n=1}^{\infty}\left\{x \in X:|f(x)| \geq \frac{1}{n}\right\}$.
5. $[3+\mathbf{3}$ points $]$ Let $f_{n} \xrightarrow{\lambda} f$.
(a) Show that $\left|\lambda_{n}\right| \xrightarrow{\lambda}|\lambda|$.
(b) Let additionally $\lambda(X)<+\infty$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function. Prove that $g\left(f_{n}\right) \xrightarrow{\lambda} g(f)$.
6. [3+3 points] Let $f_{n}, n \geq 1$, be non-negative functions.
(a) Show that for every $\varepsilon>0$

$$
\varepsilon \lambda\left(\left\{x \in X: f_{n}(x) \geq \varepsilon\right\}\right) \leq \int_{X} f_{n} d \lambda
$$

(b) Check that the convergence $\int_{X} f_{n} d \lambda \rightarrow 0$ implies $f_{n} \xrightarrow{\lambda} 0$.
7. [5+2 bonus points] Let $\lambda(X)<+\infty$.
(a) Prove that $f_{n} \rightarrow f \lambda$-a.e. if and only if

$$
\forall \varepsilon>0 \quad \lambda\left(\bigcup_{k=n}^{\infty}\left\{x \in X:\left|f_{k}(x)-f(x)\right| \geq \varepsilon\right\}\right) \rightarrow 0, \quad n \rightarrow \infty
$$

Hint: Consider the set $\bigcup_{k=1}^{\infty} \bigcap_{n=1}^{\infty} \bigcup_{j=n}^{\infty}\left\{x \in X:\left|f_{j}(x)-f(x)\right| \geq \frac{1}{k}\right\}$.
(b) Show that the convergence of the series $\sum_{n=1}^{\infty} \lambda\left(\left\{x \in X:\left|f_{n}(x)-f(x)\right| \geq \varepsilon\right\}\right)$ for all $\varepsilon>0$ implies that $f_{n} \rightarrow f \lambda$-a.e.

