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1 Riemann Integrals over n-Dimensional Rectangles (Lecture Notes)

1.1 One-Dimensional Case

Consider the interval [a, b] = {x ∈ R : a 6 x 6 b} and a function f : [a, b] 7→ R. A set of points

P := {x0, . . . , xn} such that a = x0 < · · · < xn = b is called a partition of [a, b]. We define the mesh of

the partition P as λ(P ) = max{∆xk : 1 6 k 6 n}, ∆xk = xk − xk−1. We consider points ξk ∈ [xk−1, xk].

We can then define the Riemann sum as

σ(f, P, ξ) :=
n∑
k=1

f(ξk)∆xk

A function f : [a, b] 7→ R is integrable on [a, b] if there exists a limit

J =

b∫
a

f(x) dx := lim
λ(P )→0

σ(f, P, ξ)

which does not depend on the choice of ξ. That is, for all ε > 0 there exists δ > 0 such that for any

partition P = {x0, . . . , xn} satisfying λ(P ) < δ ∀ ξk ∈ [xk−1, xk], k = 1, . . . , n we have

|J − σ(f, P, ξ)| < ε

This limit is called the Riemann integral of f over [a, b].

1.2 Definition of the Integral

We introduce the set

I = Ia,b = {x ∈ Rd : ai 6 x 6 bi, i = 1, . . . , d}

which is called a rectangle or an interval in Rd, and the volume or Lebesgue measure of the interval Ia,b

|Ia,b| =
n∏
i=1

(bi − ai)

Lemma 1.1 The Lebesgue measure of an interval in Rd has the following properties.

1. It is homogeneous, i.e. |λIa,b| = λd|Ia,b|, where λ > 0 and λIa,b := Iλa,λb.

2. It is additive, i.e. if I, I1, . . . , In are intervals in Rd such that I =

n⋃
i=1

Ii and no two intervals

I1, . . . , In have common interior points, then |I| =
n∑
i=1

|Ii|

3. If I ⊆
n⋃
i=1

Ii where I, I1, . . . , In are intervals, then |I| 6
n∑
i=1

|Ii|.
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Now we introduce partitions of an interval. Take I = {x ∈ Rd : ai 6 xi 6 bi, i = 1, . . . , d}. Partitions of

the coordinate intervals [ai, bi], i = 1, . . . , d induce a partition of the interval I:

I =
n⋃
j=1

Ij

We write P = {I1, . . . , In}. The quantity λ(P ) = max
j=1,...,n

d(Ij), where d(Ij) = max
x,y∈Ij

‖x− y‖, is called the

mesh of the partition P .

Definition 1.1 Let P = {I1, . . . , In} be a partition of the interval I. We consider a function f : I 7→ R
and points ξi ∈ Ii, i = 1, . . . , n. The sum

σ(f, P, ξ) :=

n∑
i=1

f(ξi)|Ii|

is called the Riemann sum of f .

Definition 1.2 A function f : I 7→ R is called Riemann integrable on I if there exists a limit

J =

∫
I

f(x) dx =

b1∫
a1

· · ·
bd∫
ad

f(x1, . . . , xd) dx1 . . . dxd := lim
λ(P )→0

σ(f, P, ξ)

that is, for all ε > 0 there exists δ > 0 such that for any partition P = {I1, . . . , In} of I satisfying

λ(P ) < δ ∀ ξk ∈ [xk−1, xk], k = 1, . . . , n we have

|J − σ(f, P, ξ)| < ε

In this case we write f ∈ R(I).

Proposition 1.1 (Necessary Condition of Integrability) If f ∈ R(I), then f is bounded.

1.3 Darboux Criterion of Integrability

Let the function f : I 7→ R and partition P = {I1, . . . , In} of the interval I be given.

Definition 1.3 The quantities

L(f, P ) :=
n∑
i=1

mi|Ii| U(f, P ) :=
n∑
i=1

Mi|Ii|

are called the lower and upper Darboux sums of f , where mi = inf
x∈Ii

f(x) and Mi = sup
x∈Ii

f(x).

Remark 1.1 L(f, P ) 6 σ(f, P, ξ) 6 U(f, P )

Definition 1.4 The quantities

J = sup
P
L(f, P ) J = inf

P
U(f, P )

are called the lower and upper Darboux integrals of f over the interval I.

Remark 1.2 L(f, P ) 6 J 6 J 6 U(f, P )
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Theorem 1.1 (Darboux Criterion) f ∈ R(I) if and only if J = J and if f is bounded on I.

Proposition 1.2 A function f : I 7→ R is integrable on I if and only if for all ε > 0 there exists a

partition P of I such that

U(f, P )− L(f, P ) < ε

1.4 Lebesgue Criterion of Integrability

Definition 1.5 A set E ⊆ Rd has Lebesgue measure zero if for every ε > 0 there exists at most a

countable system {Ii} of d-dimensional intervals such that E ⊆
⋃
i

Ii and
∑
i

|Ii| 6 ε.

Lemma 1.2 A union of a finite or countable number of sets of Lebesgue measure zero is a set of Lebesgue

measure zero. A subset of a Lebesgue measure zero set is itself of Lebesgue measure zero.

We say that f is continuous almost everywhere if the set of discontinuitiesDf = {x ∈ I : f is discontinuous atx}
has Lebesgue measure zero.

Theorem 1.2 (Lebesgue Criterion) f is Riemann integrable if and only if f is bounded and continuous

almost everywhere.
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2 Integrals over a Set (Lecture Notes)

2.1 The Measure of a Set

Let S ⊆ Rd be a bounded set and let I be an interval in Rd such that S ⊆ I. We can then define the

Jordan measure of S as

µ(S) =

∫
I

IS(x) dx

if the integral exists, where

IS(x) =

1, x ∈ S

0, x 6∈ S

By Th. 1.2, the integral exists if IS is continuous almost everywhere. We denote the set of discontinuities

of IS by DIS = {x : IS is discontinuous atx}.

Definition 2.1 The set

∂S = {x : ∀ ε > 0 Bε(x) ∩ S 6= ∅, Bε(x) ∩ Sc 6= ∅}

is called the boundary of S.

Lemma 2.1 The set DIS coincides with ∂S.

Hence, by Lem. 2.1, the Jordan measure µ(S) of a set S ⊆ Rd exists if and only if the boundary ∂S of

S has Lebesgue measure zero. If µ(S) exists, we call S a Jordan-measurable set.

2.2 Integrals over a Set

Definition 2.2 A set S ⊆ Rd is admissible if it is bounded in Rd and ∂S has Lebesgue measure zero.

Definition 2.3 The integral of f over S is given by∫
S

f(x) dx :=

∫
I

f(x)IS(x) dx

where I is some interval in Rd and S ⊆ I. If the integral exists, then f is said to be Riemann integrable

over S.

Lemma 2.2 For any S, S1, S2:

1. ∂S is closed in Rd

2. ∂(S1 ∪ S2) ⊂ ∂S1 ∪ ∂S2

3. ∂(S1 ∩ S2) ⊂ ∂S1 ∪ ∂S2

4. ∂(S1 \ S2) ⊂ ∂S1 ∪ ∂S2

Lemma 2.3 The union or intersection of a finite number of admissible sets is an admissible set. The

difference of admissible sets is also an admissible set.

Theorem 2.1 A function f : S 7→ R is integrable over an admissible set S if and only if it is bounded

and continuous almost everywhere.
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3 Fubini’s Theorem (Lecture Notes)

3.1 General Properties of the Integral

Proposition 3.1 If f, g ∈ R(S) and a ∈ R, then f + g, a · f, f · g ∈ R(S) and∫
S

(f + g) dx =

∫
S

f dx+

∫
S

g dx

∫
S

a f dx = a

∫
S

f dx

Proposition 3.2 Consider admissible sets S1, S2 and a function f : S1 ∪ S2 7→ R. Then f ∈ R(S1 ∪ S2)

if and only if f ∈ R(S1) ∩R(S2). If additionally µ(S1 ∩ S2) = 0, then∫
S1∪S2

f dx =

∫
S1

f dx+

∫
S2

f dx

Proposition 3.3 If f ∈ R(S), then |f | ∈ R(S) and

∣∣∣∣∣∣
∫
S

f dx

∣∣∣∣∣∣ 6
∫
S

|f | dx.

Proposition 3.4 If f ∈ R(S) and f > 0, ∀x ∈ S, then

∫
S

f dx > 0.

Corollary 3.1 If f, g ∈ R(S) and f 6 g, ∀x ∈ S, then

∫
S

f dx 6
∫
S

g dx.

Corollary 3.2 If f ∈ R(S), m 6 f 6M, ∀x ∈ S, then mµ(S) 6
∫
S

f dx 6M µ(S).

3.2 Fubini’s Theorem

Theorem 3.1 (Fubini’s Theorem) Let X ⊆ Rm and Y ⊆ Rn be intervals and let f : X × Y 7→ R be an

integrable function over the interval X × Y . Then∫∫
X×Y

f(x, y) dx dy =

∫
X

dx

∫
Y

f(x, y) dy =

∫
Y

dy

∫
X

f(x, y) dx

Corollary 3.3 If I = [a1, b1]× · · · × [ad, bd] = Ia,b, then

∫
I

f(x) dx =

bd∫
ad

dxd

bd−1∫
ad−1

dxd−1 · · ·
b1∫
a1

f(x1, . . . , xd) dx1

Corollary 3.4 If D is a bounded subset of Rd−1, S = {(x, y) ∈ Rd : x ∈ D, ϕ1(x) 6 y 6 ϕ2(x)}, and

f ∈ R(S), then ∫∫
S

f(x, y) dy dx =

∫
D

dx

ϕ2(x)∫
ϕ1(x)

f(x, y) dy

5
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Example Let S be bounded by y = x2 and y = x + 2, and let f(x, y) = x2. The two curves meet when

x2 = x+ 2. We then have

∫∫
S

f(x, y) dx dy =

2∫
−1

dx

x+2∫
x2

y2 dy =

2∫
−1

(
(x+ 2)3

3
− x6

3

)
dx =

423

28

Example Let S be bounded by y = 2x, y = x
2 , y = 6− x and let f(x, y) = 1

(1+x+y)2
. We split S into

S1 = {(x, y) : 0 6 x 6 2, x2 6 y 6 2x}

S2 = {(x, y) : 2 6 x 6 4, x2 6 y 6 6− x}

We then have

∫∫
S

f(x, y) dx dy =

2∫
0

dx

2x∫
x
2

dy

(1 + x+ y)2
+

4∫
2

dx

6−x∫
x
2

dy

(1 + x+ y)2
=

1

3
ln 7− 2

7

Example Let S = {(x, y, z) : |x| 6 z, 0 6 z 6 1, z 6 y 6
√

4− x2 − z2} and let f(x, y, z) = y. Then

∫∫∫
S

f(x, y, z) dx dy dz =

1∫
0

dz

z∫
−z

dx

√
4−x2−z2∫
z

y dy =
17

12
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4 Change of Variables (Lecture Notes)

4.1 Heuristic Derivation

We consider sets S ⊆ Rd and D ⊆ Rd, and a bijective map ϕ : D 7→ S. We are interested in finding out

if

∫
S

f dx can be rewritten as

∫
D

g dx, where g is some function. Let ϕ be an affine map such that

x(u, v) = a1 + a11u+ a12v

y(u, v) = a2 + a21u+ a22v

where (u, v) ∈ R2. We want to find how the volume of an interval I ⊆ D is changed under the map ϕ, i.e.

what the volume of ϕ(I) is. Let I = [0,∆u]× [0,∆v]. The interval I is mapped by ϕ to the parallelogram

Γ spanned by the vectors ~r1 = (a11∆u, a21∆u) and ~r2 = (a12∆v, a22∆v) applied at the point (a1, a2).

Hence

µ(Γ) = ‖~r1 × ~r2‖ =

∣∣∣∣∣a11∆u a21∆u

a12∆v a22∆v

∣∣∣∣∣ = ∆u∆v

∣∣∣∣∣a11 a21

a12 a22

∣∣∣∣∣ =

∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ |I|
Similarly, for any interval I, we have

µ(Γ) =

∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ |I|
where Γ = ϕ(I). Now we consider a more general transformation ϕ. Givenx = x(u, v)

y = y(u, v)

we can make use of Taylor’s theorem to approximate

µ(Γ) ≈ µ(Γ′) =

∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ |I|
From there we can formally change variables from x and y to u and v:∫∫

S

f(x, y) dx dy ≈
∑
i

f
(
ϕ(ξi)

)
µ(Γi) ≈

∑
i

f
(
ϕ(ξi)

) ∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ |Ii| ≈ ∫∫
D

f
(
ϕ(u, v)

) ∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ du dv
4.2 Change of Variables

Theorem 4.1 (Change of Variables) Let S,D be admissible sets and let ϕ : D 7→ S be a continuously

differentiable bijection such that its Jacobian is non-zero in D. Then∫
S

f(x) dx =

∫
D

f
(
ϕ(u)

) ∣∣∣∣∂(x1, . . . , xd)

∂(u1, . . . , ud)

∣∣∣∣ du
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Example Let S be bounded by z = x2 + y2 and z = 1, and let f(x, y, z) = x2 + y2. Using cylindrical

coordinates: 
x = r cosϕ

y = r sinϕ

z = z

∂(x, y, z)

∂(r, ϕ, z)
= r

we have

0 6 ϕ 6 2π 0 6 z 6 1 0 6 r 6
√
z

and thus ∫∫∫
S

(x2 + y2) dx dy dz =

2π∫
0

dϕ

1∫
0

dz

√
z∫

0

r3 dr =
π

6

Example Let S be bounded by x2 + y2 + (z−1)2 = 1 and let f(x, y, z) =
√
x2 + y2 + z2. Using spherical

coordinates: 
x = r cosϕ cosψ

y = r sinϕ cosψ

z = r sinψ

∂(x, y, z)

∂(r, ϕ, ψ)
= r2 cosψ

we have

0 6 ϕ 6 2π 0 6 ψ 6
π

2
0 6 r 6 2 sinψ

and thus ∫∫∫
S

√
x2 + y2 + z2 dx dy dz =

2π∫
0

dϕ

π
2∫

0

dψ

2 sinψ∫
0

r3 cosψ dr =
8π

5
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5 Improper Integrals (Lecture Notes)

5.1 Improper Integrals

Definition 5.1 An exhaustion of a set S ⊆ Rd is a sequence of Jordan-measurable sets {Sn} such that

Sn ⊆ Sn+1 ⊆ S for any n > 1, and
∞⋃
i=1

Sn = S.

Lemma 5.1 If {Sn} is an exhaustion of a Jordan-measurable set S, then:

1. lim
n→∞

µ(Sn) = µ(S)

2. for every f ∈ R(S), f also belongs to R(Sn) and

lim
n→∞

∫
Sn

f(x) dx =

∫
S

f(x) dx

Definition 5.2 Let {Sn} be an exhaustion of a set S and let f : S 7→ R be integrable over all Sn. Then

the limit ∫
S

f(x) dx := lim
n→∞

∫
Sn

f(x) dx

is called the improper integral of f over S if it exists and does not depend on the choice of {Sn}. In this

case, we say that the integral converges.

Remark 5.1 If S is a Jordan-measurable set and f ∈ R(S), then the integral of f over S as in Def. 5.2

exists and has the same value as the proper integral of f over S. This follows from Lem. 5.1.

Proposition 5.1 If f : S 7→ R is non-negative and the limit in Def. 5.2 exists for one exhaustion {Sn}
of S, then the improper integral of f over S converges.

Example Consider the improper integral ∫∫
R2

e−x
2−y2 dx dy

We can define Sn = {(x, y) ∈ R2 : x2 + y2 < n2} and use polar coordinates to evaluate the integral:

∫∫
R2

e−x
2−y2 dx dy = lim

n→∞

∫∫
Sn

e−x
2−y2 dx dy = lim

n→∞

2π∫
0

dϕ

n∫
0

re−r
2
dr

= 2π lim
n→∞

n∫
0

re−r
2
dr = lim

n→∞
π(1− e−n2

) = π

Remark 5.2 Improper integrals can arise if S is unbounded or if f is unbounded. Various properties of

multiple integrals can be suitably extended to improper integrals.

Theorem 5.1 (Comparison Test) Let f and g be functions defined on S. Assume f and g are integrable

over exactly the same Jordan-measurable subsets of S, and |f(x)| 6 g(x) for all x ∈ S. Then if the

improper integral

∫
S

g(x) dx converges, the integrals

∫
S

|f(x)| dx and

∫
S

f(x) dx also converge.
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5.2 Curves in Rd

Definition 5.3 A curve in Rd is a continuous map γ : I 7→ Rd, where I is a closed interval consisting

of more than one point. The interval I could be [a,+∞), (−∞, b], [a, b] : a < b, R.

If I = [a, b], then a is called the initial point of γ and b is called the end point of γ. These two points

define a natural orientation of γ from γ(a) to γ(b). Replacing γ(t) with γ(a+ b− t) will yield the curve

with opposite orientation. If γ(a) = γ(b), γ is said to be a closed curve. If γ is differentiable, the curve

is said to be differentiable. If γ has no points of self-intersection, i.e. it is injective on I◦, then γ is said

to be simple.

Definition 5.4

1. A simple curve γ : I 7→ Rd is called regular at t0 if γ is continuously differentiable on I and

γ′(t0) 6= 0. γ is regular if γ is regular at any point t0 ∈ I.

2. The vector γ′(t0) is called the tangent vector and α(t) = γ(t0) + tγ′(t0) is called the tangent line to

γ at γ(t0).
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6 Line Integrals of Scalar Fields (Lecture Notes)

6.1 Rectifiable Curves

Consider a curve γ : [a, b] 7→ Rd and a partition P = {t0, . . . , tn}, where a = t0 < · · · < tn = b. We set

l(P, γ) :=
n∑
i=1

‖γ(ti)− γ(ti−1)‖

Definition 6.1 A curve γ is said to be rectifiable if

l(γ) := sup
P
l(P, γ)

is finite, where the supremum is taken over all partitions P of [a, b].

Proposition 6.1 If γ′ is continuous on [a, b], then γ is rectifiable and

l(γ) =

b∫
a

‖γ′(t)‖ dt

Remark 6.1 If d = 2 and γ(t) =
(
x(t), y(t)

)
, t ∈ [a, b], then

l(γ) =

b∫
a

√(
x′(t)

)2
+
(
y′(t)

)2
dt

In particular, if γ is the graph of a function f , i.e. γ(t) =
(
t, f(t)

)
, t ∈ [a, b], then

l(γ) =

b∫
a

√
1 +

(
f ′(t)

)2
dt

Example Let γ(t) be the graph of the function f(t) = a cosh
t

a
, t ∈ [0, b], b > 0, a 6= 0. Then we compute

l(γ) =

b∫
0

√
1 +

(
sinh

t

a

)2

dt =

b∫
0

cosh
t

a
dt = a sinh

t

a

∣∣∣∣b
0

= a sinh
b

a

Now let γ(θ) =
(
a(θ − sin θ), a(1− cos θ)

)
, θ ∈ [0, 2π]. Here, γ parametrizes a cycloid. We can compute

l(γ) =

2π∫
0

√
a2(1− cos θ)2 + a2 sin2 θ dθ = a

2π∫
0

√
2− 2 cos θ dθ

= a
√

2

2π∫
0

√
1− cos θ dθ = 2a

2π∫
0

sin
θ

2
dθ = 8a
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6.2 Natural Parametrization of Rectifiable Curves

Let γ : [a, b] 7→ Rd be a regular curve, that is, γ′(t) 6= 0 ∀ t ∈ [a, b]. We denote by

s(t) =

t∫
a

‖γ′(r)‖ dr =: lt(γ)

the length of a part of the curve γ(r), r ∈ [0, t]. Since γ′(t) 6= 0, ‖γ′(t)‖ > 0, the function s = s(t), t ∈ [a, b]

strictly increases. Consequently, s is invertible with inverse t = t(s), s ∈ [0, l], and l = l(γ) = s(b). We

then define the parametrization

x(s) = γ
(
t(s)

)
, s ∈ [0, l] (6.1)

of the curve γ.

Lemma 6.1 The length ls(x) of the curve given by x = x(r), r ∈ [0, s] equals s.

Definition 6.2 The parametrization x as defined in (6.1) is called the natural parametrization of the

curve γ.

We remark that any regular curve has a natural parametrization.

6.3 Line Integrals of Scalar Fields

Let γ be a rectifiable curve with length L. We assume that γ has a natural parametrization x(s), s ∈ [0, L].

We set

Γ = {x(s), s ∈ [0, L]} = {γ(t), t ∈ [a, b]}

Consider a function f : Γ 7→ R. We take a partition P = {s0, s1, . . . , sn} of [0, L] and define the line

integral as ∫
γ

f ds := lim
λ(P )→0

n∑
i=1

f
(
x(si)

)
(si − si−1)

if the limit exists.

Remark 6.2 The line integral

∫
γ

f ds coincides with the usual Riemann integral

L∫
0

f
(
x(s)

)
ds, where x

is a natural parametrization of γ.

12



7 Line Integrals of Scalar Fields and Vector Fields (Lecture Notes)

7.1 Line Integrals of Scalar Fields

Let γ : [a, b] 7→ Rd be a rectifiable curve with length L. We assume that γ has a natural parametrization

x(s), s ∈ [0, L]. Take Γ = {x(s), s ∈ [0, L]} = {γ(t), t ∈ [a, b]} and a partition P = {s0, s1, . . . , sn} of

[0, L].

Definition 7.1 The line integral of a function f : Γ 7→ R along γ is

∫
γ

f ds := lim
λ(P )→0

n∑
i=1

f
(
x(si)

)
(si − si−1) =

L∫
0

f
(
x(s)

)
ds

if the limit exists. If it exists, the line integral is equivalent to a Riemann integral.

Line integrals of scalar fields have the following properties:

1.

∫
γ

ds = L

2. If f is bounded and continuous, then the Riemann integral

∫
γ

f ds exists.

3. If γ̃(t), a 6 t 6 b is another regular parametrization of γ, then

∫
γ

f ds =

b∫
a

f
(
γ̃(t)

)
‖γ̃′(t)‖ dt

4. If γR is the time reversal of γ, then ∫
γR

f ds =

∫
γ

f ds

5. For a, b ∈ R and f, g : Γ 7→ R ∫
γ

(af + bg) ds = a

∫
γ

f ds+ b

∫
γ

g ds

6. Let l(γ) be the length of γ. Then ∣∣∣∣∣∣
∫
γ

f ds

∣∣∣∣∣∣ 6 l(γ) sup
Γ
|f |
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7.2 Line Integrals of Vector Fields

Let γ be a regular rectifiable curve on R2 with parametrization γ(t) =
(
x(t), y(t)

)
, a 6 t 6 b.

Definition 7.2 The line integral of a vector field ~F (x, y) =
(
P (x, y), Q(x, y)

)
along γ is

∫
γ

~F · ds :=

b∫
a

~F (γ(t)) · γ′(t) dt =

b∫
a

[
P (γ(t))x′(t) +Q(γ(t)) y′(t)

]
dt

Example Take γ1(t) = (t, t2), 0 6 t 6 1 and ~F (x, y) = (y, x). We calculate

∫
γ1

~F · ds =

1∫
0

(
y(t)x′(t) + x(t) y′(t)

)
dt =

1∫
0

(t2 + 2t2) dt = 1

Example Take γ2(t) = (1− cos t, sin t), 0 6 t 6
π

2
and ~F (x, y) = (y, x). We calculate

∫
γ2

~F · ds =

π
2∫

0

(
y(t)x′(t) + x(t) y′(t)

)
dt =

π
2∫

0

(
sin2 t+ (1− cos t) cos t

)
dt

=

π
2∫

0

cos t dt+

π
2∫

0

cos 2t dt = 1

Remark 7.1 Sometimes we write

∫
γ

~F · ds =

b∫
a

(P dx+Qdy).

Line integrals of vector fields have the following properties:

1. The definition of

∫
γ

~F · ds is independent of parametrization.

2. For the time reversal γR of γ, we have

∫
γR

~F · ds = −
∫
γ

~F · ds.
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8 Green’s Formula (Lecture Notes)

8.1 Green’s Formula

Consider a set S and let γ be such that γ = ∂S. We say that a curve γ is positively orientated if the set

S stays on the left when travelling along γ.

Theorem 8.1 (Green’s Formula) Let ~F (x, y) =
(
P (x, y), Q(x, y)

)
be such that P and Q are continuously

differentiable on S. Then ∫∫
S

(
∂Q

∂x
− ∂P

∂y

)
dx dy =

∫
γ

~F · ds

Example Take the set S = {(x, y) : x2 + y2 6 1}. Then γ is the positively orientated unit circle. Say

that for the field ~F (x, y) = (x2y, xy2) we want to calculate I =

∫
γ

~F · ds. Then we have

I =

∫
γ

(P dx+Qdy) =

∫
γ

(x2y dx− xy2 dy)

=

∫∫
S

(
∂Q

∂x
− ∂P

∂y

)
dx dy = −

∫∫
S

(x2 + y2) dx dy = −
2π∫
0

dθ

1∫
0

r3 dr = −π
2

8.2 Conservative Vector Fields

Definition 8.1 A vector field ~F : S ⊆ Rd 7→ Rd is conservative if for any two points a, b ∈ S and any

two curves γ1, γ2 connecting a and b we have∫
γ1

~F · ds =

∫
γ2

~F · ds

Definition 8.2 A vector field ~F : S ⊆ Rd 7→ Rd is called a gradient vector field or a potential field if

there exists a continuously differentiable function ϕ : S 7→ R such that ~F = ∇ϕ.
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9 Path Independence of Line Integrals (Lecture Notes)

9.1 Work of a Vector Field

Let S be a subset of Rd. We say that S is a domain if S is open and connected. A connected set S has

the property that any two points from S can be connected by a curve in S. Let ~F be a continuous force

field acting in the domain S. We want to find the work done by ~F when moving along a given trajectory

γ. If ~F is constant, the displacement described by a vector ~ξ is associated with an amount of work ~F · ~ξ.
Let the curve γ = γ(t), t ∈ [a, b] be naturally parametrized and differentiable. We take a partition P of

[a, b] such that a = t0 < · · · < tn = b. Then the work A is given by

A ≈
n∑
i=1

~F
(
γ(ti)

)
· γ′(ti)∆ti

In the limit, the work done by ~F over the curve γ becomes

A =

b∫
a

~F
(
γ(t)

)
· γ′(t) dt =

∫
γ

~F · ds

9.2 Conservative and Potential Vector Fields

Proposition 9.1 Let ~F : S 7→ Rd be a continuous vector field, where S ⊆ Rd is a domain. The following

statements are equivalent:

1. ~F is a potential vector field in S.

2. For any closed curve γ in S, we have

∫
γ

~F · ds = 0.

3. ~F is conservative in S.

Proof: We first prove that 1 implies 2. In this case, ~F = ∇ϕ is given. We take γ = γ(t), t ∈ [a, b] such

that γ(a) = γ(b) and compute

∫
γ

~F · ds =

b∫
a

~F
(
γ(t)

)
· γ′(t) dt =

b∫
a

∇ϕ
(
γ(t)

)
· γ′(t) dt =

b∫
a

d

dt

[
ϕ
(
γ(t)

)]
dt = ϕ

(
γ(b)

)
− ϕ

(
γ(a)

)
= 0

Next we prove that 2 implies 3. Here we take γ1, γ2 and γ = γ1 ∪ γR2 . Using 2, we have

0 =

∫
γ

~F · ds =

∫
γ1

~F · ds+

∫
γR2

~F · ds =

∫
γ1

~F · ds−
∫
γ2

~F · ds

Finally we prove that 3 implies 1. We take points a, x ∈ S, where a is fixed and x is a variable, and

define

ϕ(x) =

∫
γ

~F · ds =

x∫
a

~F · ds (9.1)

where γ is any curve connecting a and x. Using the definition of the gradient, we want to show that

lim
h→0

|ϕ(x+ h)− ϕ(x)− ~F (x) · h|
‖h‖

= 0
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First, using the fact that ~F is conservative, we calculate

ϕ(x+ h)− ϕ(x) =

x+h∫
a

~F · ds−
x∫
a

~F · ds =

x+h∫
x

~F · ds =

1∫
0

~F (x+ th) · h dt = ~F (x+ θh) · h

Here we have used the mean value theorem for integrals; in this case θ ∈ [0, 1]. We then have

|ϕ(x+ h)− ϕ(x)− ~F (x) · h|
‖h‖

=
|~F (x+ θh) · h− ~F (x) · h|

‖h‖
6 ‖~F (x+ θh)− ~F (x)‖

We see that indeed

lim
h→0

|ϕ(x+ h)− ϕ(x)− ~F (x) · h|
‖h‖

6 lim
h→0
‖~F (x+ θh)− ~F (x)‖ = 0

and thus ~F = ∇ϕ.

Remark 9.1 (9.1) can be used to find a potential of a potential vector field.

9.3 Curl-Free Vector Fields

Definition 9.1 The curl of a vector field ~F = (P,Q,R) in S ⊆ R3 is the vector field given by

∇× ~F =

∣∣∣∣∣∣∣
î ĵ k̂
∂
∂x

∂
∂y

∂
∂z

P Q R

∣∣∣∣∣∣∣ =

(
∂R

∂y
− ∂Q

∂z
,
∂P

∂z
− ∂R

∂x
,
∂Q

∂x
− ∂P

∂y

)

Definition 9.2 A vector field ~F is called irrotational or curl-free if ∇× ~F = 0 in S.

A domain S is called simply connected if any closed curve γ in S can be continuously transformed to a

point a ∈ S.

Proposition 9.2 Let ~F be a continuously differentiable vector field in a domain S ⊆ R3.

1. If ~F is conservative in S, it is curl-free in S.

2. If ~F is curl-free in S and S is simply connected, then ~F is conservative in S.
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10 Surface Integrals of Scalar Fields (Lecture Notes)

10.1 Surfaces

Definition 10.1 A surface S in R3 is a subset of R3 that can be parametrized by a continuous vector

function r:

S = {r(u, v) =
(
x(u, v), y(u, v), z(u, v)

)
, (u, v) ∈ D}

where D is a bounded domain of R2 and r(u, v) 6= r(u′, v′) for all (u, v) 6= (u′, v′) in D (r may not be

injective on the boundary of D).

Definition 10.2 If a surface is parametrized by a continuously differentiable vector function, then it is

called a continuously differentiable surface.

Definition 10.3 For a surface

S = {r(u, v) =
(
x(u, v), y(u, v), z(u, v)

)
, (u, v) ∈ D}

and a point (u0, v0) ∈ D, the lines

{r(u, v0), (u, v0) ∈ D} {r(u0, v), (u0, v) ∈ D}

are called u- and v-curvilinear coordinates on S at r(u0, v0). The tangent vectors to those lines are

denoted by

ru = ru(u0, v0) =
∂r

∂u
=

(
∂x

∂u
,
∂y

∂u
,
∂z

∂u

)
rv = rv(u0, v0) =

∂r

∂v
=

(
∂x

∂v
,
∂y

∂v
,
∂z

∂v

)
We will only consider surfaces such that ru× rv 6= 0. In this case, ru and rv span a plain in R3 called the

tangent plane to S at r(u0, v0).

Remark 10.1 The equation for the tangent plane to S at r(u0, v0) = (x0, y0, z0) is∣∣∣∣∣∣∣
x− x0 y − y0 z − z0

xu(u0, v0) yu(u0, v0) zu(u0, v0)

xv(u0, v0) yv(u0, v0) zv(u0, v0)

∣∣∣∣∣∣∣ = 0

Definition 10.4 The line orthogonal to the tangent plane at r0 = (x0, y0, z0) ∈ S is called the normal

line to S at r0. Every non-zero vector parallel to the normal line at r0 is called a normal vector to S at

r0.

10.2 Surface Area

Let Γi be a rectangle

[ui, ui + ∆ui]× [vi, vi + ∆vi]

in D and let Si be its image in S. The area of Si can be approximated by the area of the parallelogram in

R3 spanned by the vectors ru(ui, vi)∆ui and rv(ui, vi)∆vi as ∆ui,∆vi → 0. The area of the parallelogram

is given by

‖ru × rv‖∆u∆v

18

http://www.math.uni-leipzig.de/~konarovskyi/teaching/2019/Math3/pdf/notes/note10.pdf


Using the Riemann sum approximations, we have

Area(S) =

∫∫
D

‖ru × rv‖ du dv

Note that

‖ru × rv‖2 = ‖ru‖2‖rv‖2 sin2 θ = ‖ru‖2‖rv‖2 − ‖ru‖2‖rv‖2 cos2 θ = ‖ru‖2‖rv‖2 − (ru, rv)
2 = EG− F 2

where E := ‖ru‖2, F := (ru, rv), and G := ‖rv‖2, so

Area(S) =

∫∫
D

√
EG− F 2 du dv

Remark 10.2 The area does not depend on the parametrization.

10.3 Surface Integrals of Scalar Fields

Let S = {r(u, v), (u, v) ∈ D} be a continuously differentiable surface in R3 and let f be a real-valued

function defined on S.

Definition 10.5 The integral of f over S is denoted by and defined as∫∫
S

f dS =

∫∫
D

f
(
x(u, v), y(u, v), z(u, v)

)√
EG− F 2 du dv

Remark 10.3 A physical interpretation of the integral of f over S for non-negative f is the mass of the

surface S with density f .

Lemma 10.1 The definition of

∫∫
S

f dS is independent of the parametrization of S.

Example We compute

I =

∫∫
S

dS√
x2 + y2 + z2

where S is the lateral surface of the cylinder
x = a cosu

y = a sinu

z = v

0 6 u 6 2π, 0 6 v 6 H

We first compute
√
EG− F 2 = a and thus

I =

2π∫
0

H∫
0

a√
a2 + v2

du dv = 2πa ln

(
H +

√
a2 +H2

a

)
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11 Surface Integrals of Vector Fields (Lecture Notes)

11.1 Flux Across a Surface

Suppose there is a steady flow of liquid in a domain G and that x 7→ ~F (x) is the velocity field of this

flow. Let S be a smooth surface in G and let x 7→ ~n(x) be a field of normal vectors to S. We want to

determine the volume of fluid that flows across the surface S per unit time in the direction indicated by

the orienting field of normal vectors to the surface.

We remark that if the velocity field is constant, then the flow per unit time across a parallelogram

Π is equal to the volume of the parallelepiped defined by the vectors ~F , ~ξ1, and ~ξ2. This volume is given

by ~F ·
(
~ξ1 × ~ξ2

)
=
(
~F , ~ξ1, ~ξ2

)
, which is the triple product of the vectors ~F , ~ξ1, and ~ξ2. If the orientation

is opposite to the direction of ~F , then the flow is −~F ·
(
~ξ1 × ~ξ2

)
.

Now take the surface S with smooth parametrization

S = {r = r(u, v) : (u, v) ∈ D}

In order to define the flux across S, we fix a partition {Di} of D and approximate the image r(Di) by

the parallelogram spanned by ~ξ1 = ru(ui, vi)∆ui and ~ξ2 = rv(ui, vi)∆vi. Assume that ~F (x) varies by

only small amounts inside r(Di) such that, replacing r(Di) by this parallelogram, we may assume that

the flux ∆Fi across the piece r(Di) of the surface is approximately equal to the flux of a constant field

~F (xi, yi, zi) = ~F
(
r(ui, vi)

)
across this parallelogram spanned by ~ξ1 and ~ξ2. So

∆Fi ≈
(
~F (xi, yi, zi), ~ξ1, ~ξ2

)
=
(
~F
(
r(ui, vi)

)
, ~ru(ui, vi), ~rv(ui, vi)

)
∆ui∆vi

Summing all these elementary fluxes, we obtain

F =
∑
i

∆Fi ≈
∑
i

(
~F
(
r(ui, vi)

)
, ~ru(ui, vi), ~rv(ui, vi)

)
∆ui∆vi

Hence we can define

F =

∫∫
D

~F
(
r(u, v)

)
·
(
~ru(u, v)× ~rv(u, v)

)
du dv

to be the flux of ~F across S in the direction ~n =
~ru × ~rv
‖~ru × ~rv‖

.

Remark 11.1 Using the definition of the surface integral of a scalar field, we have

F =

∫∫
D

~F · ~ru × ~rv
‖~ru × ~rv‖

‖~ru × ~rv‖ du dv =

∫∫
S

(
~F · ~n

)
dS
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11.2 Definition of the Surface Integral of a Vector Field

Let S = {r = r(u, v), (u, v) ∈ D} be a smooth (differentiable) surface in R3.

• S is orientable if the unit normal
~ru × ~rv
‖~ru × ~rv‖

is continuous in D.

• If ~n is a fixed continuous unit normal to S on D, then we say that S is oriented by the normal ~n.

So, let S be a smooth surface oriented by a unit normal ~n and let ~F = (P,Q,R) be a vector field defined

on S.

Definition 11.1 The integral of ~F over S is denoted by and defined as∫∫
S

~F · dS =

∫∫
S

(
~F · ~n

)
dS

where the right-hand side is the surface integral of the scalar field ~F · ~n over S.

Remark 11.2 If S is oriented by the normal ~n =
~ru × ~rv
‖~ru × ~rv‖

, then by Def. 10.5

∫∫
S

~F · dS =

∫∫
S

(
~F · ~n

)
dS =

∫∫
D

~F · ~ru × ~rv
‖~ru × ~rv‖

‖~ru × ~rv‖ du dv =

∫∫
D

~F ·
(
~ru × ~rv

)
du dv

=

∫∫
D

∣∣∣∣∣∣∣
P Q R

xu yu zu

xv yv zv

∣∣∣∣∣∣∣ du dv
Remark 11.3 The identity∣∣∣∣∣∣∣

P Q R

xu yu zu

xv yv zv

∣∣∣∣∣∣∣ = P
∂(y, z)

∂(u, v)
+Q

∂(z, x)

∂(u, v)
+R

∂(x, y)

∂(u, v)

motivates the following alternative notation for the integral of ~F over S when S is oriented by the normal

~n =
~ru × ~rv
‖~ru × ~rv‖

: ∫∫
S

~F · dS =

∫∫
S

P dy dz +Qdz dx+Rdxdy

If S is oriented by the normal ~n = − ~ru × ~rv
‖~ru × ~rv‖

, then

∫∫
S

~F · dS = −
∫∫
S

P dy dz +Qdz dx+Rdxdy

Example We compute

I =

∫∫
S

z dx dy

where S is the upper part of the lateral surface of the cone z =
√
x2 + y2, 0 6 z 6 H oriented outwards.
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We take the parametrization
x = u

y = v

z =
√
u2 + v2

(u, v) ∈ D = {(x, y) : x2 + y2 6 H2}

We note that the cross product of the vectors

~ru =

(
1, 0,

u√
u2 + v2

)
and ~rv =

(
0, 1,

v√
u2 + v2

)
points inwards, which is opposite to the orientation of S. So

I = −
∫∫
D

~F ·
(
~ru × ~rv

)
du dv = −

∫∫
D

∣∣∣∣∣∣∣∣
0 0

√
u2 + v2

1 0 u√
u2+v2

0 1 v√
u2+v2

∣∣∣∣∣∣∣∣ du dv = −
∫∫
D

√
u2 + v2 du dv

= −
2π∫
0

dϕ

H∫
0

r2 dr = −2

3
πH3

Example We compute

I =

∫∫
S

dy dz

x
+
dz dx

y
+
dx dy

z

where S is part of the ellipsoid
x = a cosu cos v

y = b sinu cos v

z = c sin v

π

4
6 u 6

π

3
,
π

6
6 v 6

π

4

oriented outwards. First we compute the cross product between the vectors

~ru = (−a sinu cos v, b cosu cos v, 0) and ~rv = (−a cosu sin v,−b sinu sin v, c cos v)

and notice that it is also oriented outwards. So

I =

∫∫
D

∣∣∣∣∣∣∣
1

a cosu cos v
1

b sinu cos v
1

c sin v

−a sinu cos v b cosu cos v 0

−a cosu sin v −b sinu sin v c cos v

∣∣∣∣∣∣∣ du dv

= p

∫∫
D

cos v du dv = p

π
3∫

π
4

du

π
4∫

π
6

cos v dv = p
π

12

(√
2

2
− 1

2

)

where p =
ab

c
+
bc

a
+
ca

b
.
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12 Gauss-Ostrogradskii Theorem (Lecture Notes)

Let S be a piecewise smooth surface surrounding a compact domain V in R3 oriented by the outgoing

normal vector (positive orientation). Let ~F = (P,Q,R) be a smooth vector field in the closed domain V .

Theorem 12.1 (Gauss-Ostrogradskii Theorem)∫∫
S

~F · dS =

∫∫∫
V

∇ · ~F dx dy dz (12.1)

Remark 12.1 Let Bε(p) and Sε(p) denote a ball and sphere respectively, both of center p ∈ R3 and

radius ε. The Gauss-Ostrogradskii theorem implies∫∫∫
Bε(p)

∇ · ~F dx dy dz =

∫∫
Sε(p)

~F · dS

Using the mean value theorem for domain integrals, we have

∇ · ~F (p̃) Vol
(
Bε(p)

)
=

∫∫
Sε(p)

~F · dS

where p̃ is a point from Bε(p). Then, by continuity of ∇ · ~F , we have

∇ · ~F (p) = lim
ε→0

1

Vol
(
Bε(p)

) ∫∫
Sε(p)

~F · dS (12.2)

In particular, ∇ · ~F is independent of the choice of coordinate system although it is defined as the sum of

partial derivatives with respect to a fixed Cartesian coordinate system.

Remark 12.2 The fraction in the right-hand side of (12.2) can be interpreted as the mean intensity per

unit volume of sources in the ball Bε(p), that is, ∇ · ~F (p) is the specific intensity per unit volume of the

source or sink at the point p.

Remark 12.3 If ∇ · ~F is positive for p ∈ R3, then p is a source. If ∇ · ~F is negative, then p is a sink.

The Gauss-Ostrogradskii theorem states that the flux of ~F across S equals the ‘sum’ of all flows from

sources in V minus the ‘sum’ of all flows to sinks in V .

Corollary 12.1 If V is a connected set whose boundary consists of piecewise smooth surfaces S, S1, . . . , Sk

(here S is the outer boundary and S1, . . . , Sk are boundaries of holes in V ) all oriented by outgoing

normals, then ∫∫∫
V

∇ · ~F dx dy dz =

∫∫
S

~F · dS +
k∑
i=1

∫∫
Si

~F · dS
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Example Let S1 be the lateral surface of the cone x2 + y2 6 z2 6 1 and let S2 be the upper surface such

that the whole surface of the cone is S = S1 ∪ S2 which is oriented outwards. We take ~F = (x3, y3, z3).

In order to compute ∫∫
S1

~F · dS

we use (12.1). Here V = {(x, y, z) : x2 + y2 6 z2 6 1}. Then, using cylindrical coordinates, we calculate∫∫
S

~F · dS =

∫∫∫
V

∇ · ~F dx dy dz = 3

∫∫∫
V

(x2 + y2 + z2) dx dy dz =
9π

10

Hence ∫∫
S1

~F · dS =
9π

10
−
∫∫
S2

~F · dS

The parametrization of S2 is
x = u

y = v

z = 1

(u, v) ∈ D = {(x, y) : x2 + y2 6 1}

so the normal vector is ~n = (0, 0, 1). Therefore∫∫
S2

~F · dS =

∫∫
S2

z3 dS =

∫∫
S2

dS = π

and thus ∫∫
S1

~F · dS =
9π

10
− π = − π

10
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13 Stokes’ Theorem (Lecture Notes)

13.1 Stokes’ Theorem

Let S be a piecewise smooth surface in R3 oriented by a unit normal ~n and let γ be the positively oriented

boundary of S with respect to the normal ~n. Let ~F be a continuously differentiable vector field on S.

Theorem 13.1 (Stokes’ Theorem) ∫
γ

~F · ds =

∫∫
S

(
∇× ~F

)
· dS

Remark 13.1

1. Let S be parametrized by {r(u, v), (u, v) ∈ D} and let Γ be the positively oriented boundary of

D ⊆ R2. Then γ = r(Γ) is positively oriented with respect to the normal ~n =
~ru × ~rv
‖~ru × ~rv‖

. If

~F = (P,Q,R), then Stokes’ theorem can be equivalently stated as∫
γ

P dx+Qdy +Rdz =

∫∫
S

(
∂R

∂y
− ∂Q

∂z

)
dy dz +

(
∂P

∂z
− ∂R

∂x

)
dz dx+

(
∂Q

∂x
− ∂P

∂y

)
dx dy

2. If ~n = (nx, ny, nz), then

∫∫
S

(
∇× ~F

)
· dS =

∫∫
S

(
∇× ~F

)
· ~n dS =

∫∫
S

∣∣∣∣∣∣∣
nx ny nz
∂
∂x

∂
∂y

∂
∂z

P Q R

∣∣∣∣∣∣∣ dS
Example Let γ be the curve describing the intersection between the paraboloid x2 + y2 + z = 3 and the

plane x + y + z = 2 oriented positively with respect to the vector (1, 1, 1). Let S be the surface in the

plane spanned by γ oriented by the unit normal ~n =
(

1√
3
, 1√

3
, 1√

3

)
. Note that γ is positively oriented with

respect to ~n. We want to find

I =

∫
γ

(y2 − z2) dx+ (z2 − x2) dy + (x2 − y2) dz

First, for P = y2 − z2, Q = z2 − x2, R = x2 − y2, we compute

∂R

∂y
− ∂Q

∂z
= −2(y + z)

∂P

∂z
− ∂R

∂x
= −2(x+ z)

∂Q

∂x
− ∂P

∂y
= −2(x+ y)

Thus by Stokes’ theorem

I =

∫∫
S

(
∇× ~F

)
· ~n dS = − 4√

3

∫∫
S

(x+ y + z) dS
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Since S is a subset of the plane x+ y + z = 2, we have

I = − 8√
3

∫∫
S

dS

The surface S can be parametrized as z = 2− x− y, (x, y) ∈ D. We calculate

√
EG− F 2 =

√
1 +

(
∂z

∂x

)2

+

(
∂z

∂y

)2

=
√

3

Therefore

I = −8 Area(D)

The boundary of D is the projection of γ onto the xy-plane. To find its equation, we eliminate z from

the system of equations x2 + y2 + z = 3

x+ y + z = 2

and obtain

(
x− 1

2

)2

+

(
y − 1

2

)2

=
3

2
which is a circle of radius

√
3

2
. Thus

I = −12π

13.2 Physical Meaning of the Curl

Suppose that the entire space, regarded as a rigid body, is rotating with constant angular velocity ω

about the z-axis. Let us find the curl of the vector field ~F of linear velocities of all points in space. In

cylindrical coordinates, we have ~F (r, ϕ, z) = ωr ~eϕ. Calculating the curl, we find ∇× ~F = 2ω~ez, where

~ez = (0, 0, 1). That is, ∇× ~F is a vector directed along the axis of rotation. The magnitude of ∇× ~F is

equivalent to the angular velocity up to a factor of 2 and its direction determines the direction of rotation.

Locally, the curl of a vector field at some point characterizes the degree of vorticity of the field in a

neighborhood of that point. Let ~n be a unit vector and let γε be a circle of radius ε centered at p ∈ R3,

lying in the plane perpendicular to ~n and positively oriented with respect to ~n. Then the projection of

∇× ~F onto ~n can be computed using Stokes’ theorem:

(
∇× ~F (p)

)
· ~n = lim

ε→0

1

πε2

∫
γε

~F · ds

where

∫
γε

~F · ds is the circulation of ~F along γ. The value of
(
∇× ~F

)
· ~n is maximal in the direction of

~n, coinciding with the direction of ∇× ~F .

13.3 Solenoidal Vector Fields

Definition 13.1 A vector field ~F in R3 is solenoidal or divergence-free in V ⊆ R3 if ∇ · ~F = 0 in V .

Proposition 13.1 Let V be a simply connected domain in R3 and let ~F be a smooth vector field on V .

Then ~F is solenoidal in V if and only if for any solid Ṽ ⊂ V with smooth boundary S̃, the flux of ~F

through S̃ is zero.
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14 Holomorphic Functions (Lecture Notes)

14.1 Basic Notions

For the complex number z = x+ yi ∈ C we define its

1. Real part: Re z = x

2. Imaginary part: Im z = y

3. Complex conjugate: z = x− yi

4. Absolute value: |z| =
√
zz =

√
x2 + y2

We will denote by

Br(z0) = {z ∈ C : |z − z0| < r} = {z = a+ bi : (x− x0)2 + (y − y0)2 < r}

the open ball in C with center z0 and radius r. We call a set U ⊆ C open if

∀ z0 ∈ U ∃ r > 0 : Br(z0) ⊆ U

14.2 Differentiable Functions

We will consider functions from C to C. Let U be an open subset of C and let f : U 7→ C be a complex

function.

Definition 14.1

1. If the limit

lim
z→z0

f(z)− f(z0)

z − z0
= f ′(z0)

exists, that is

∀ ε > 0 ∃ δ > 0 : ∀ z ∈ Bδ(z0), z 6= z0,

∣∣∣∣f(z)− f(z0)

z − z0
− f ′(z0)

∣∣∣∣ < ε

then f is called complex differentiable at z0 ∈ U and f ′(z0) is called the derivative of f at z0.

2. If f is complex differentiable for every z0 ∈ U , we say that f is holomorphic in U .

3. We say that f is holomorphic at z0 if f is complex differentiable in a neighborhood of z0 (some

open set U0 containing z0).

Example We check that f(z) = z2 = (x+ yi)2 = x2 − y2 + 2xyi, z = x+ yi ∈ C is differentiable on C:

lim
z→z0

z2 − z2
0

z − z0
= lim

z→z0

(z − z0)(z + z0)

z − z0
= lim

z→z0
(z + z0) = 2z0

The limit indeed exists and f ′(z) = 2z.
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Example We want to show that the function f(z) = |z|2 = x2 + y2, z = x+ yi ∈ C is not differentiable

at z0 = 1. We first consider

lim
ε→0

|1 + ε|2 − 1

ε
= lim

ε→0

2ε+ ε2

ε
= 2

Next we consider

lim
ε→0

|1 + iε|2 − 1

iε
= lim

ε→0

1 + ε2 − 1

iε
= 0

This shows that f ′(1) does not exist.

Proposition 14.1 If f is differentiable at z0 then f is continuous at z0.

Proposition 14.2

1. If f and g are holomorphic on U , then f ± g, fg, and f
g , g 6= 0 are holomorphic on U and

• (f ± g)′ = f ′ ± g′

• (fg)′ = f ′g + fg′

•
(
f

g

)′
=
f ′g − fg′

g2

2. If f : U 7→ V and g : V 7→ C, where U and V are open sets, are holomorphic, then g ◦ f is

holomorphic and (g ◦ f)′(z) = g′
(
f(z)

)
f ′(z).

14.3 Cauchy-Riemann Equations

Let every z ∈ C correspond to an ordered pair (x, y):

C 3 z = x+ yi↔ (x, y) ∈ R2

Then a complex function w = f(z) similarly corresponds to the functions u = u(x, y) = Re f(z) and

v = v(x, y) = Im f(z), that is f(z) = u(x, y) + iv(x, y).

Theorem 14.1 (Cauchy-Riemann) For a function f = u + iv : U 7→ C, where U ⊆ C is open, and a

point z0 = x0 + iy0 ∈ U the following statements are equivalent:

1. f is complex differentiable at z0.

2. u, v are real differentiable at (x0, y0) and the Cauchy-Riemann equations are satisfied:

∂u

∂x
(x0, y0) =

∂v

∂y
(x0, y0)

∂u

∂y
(x0, y0) = −∂v

∂x
(x0, y0)

If f is complex differentiable, then f ′(z0) =
∂u

∂x
(x0, y0) + i

∂v

∂x
(x0, y0) =

∂v

∂y
(x0, y0)− i∂u

∂y
(x0, y0).
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15 Properties of Holomorphic Functions (Lecture Notes)

15.1 Properties of Holomorphic Functions

Let U be an open subset of C. If f(z) = u(x, y) + iv(x, y) for z = x+ iy ∈ U is a function from U to C,

then it is called locally constant in U if for every z0 ∈ U there exists a ball Br(z0) ⊂ U such that f is

constant on Br(z0). We remark that if f is locally constant, it is constant on each connected component

of U .

Lemma 15.1 Let U be open in C and let f : U 7→ C, f(z) = u(x, y) + iv(x, y) be holomorphic on U .

1. If f ′(z) = 0 for all z ∈ U , then f is locally constant.

2. If f only takes real values, then f is locally constant.

3. The functions u, v are harmonic, i.e. 4u = 0, 4v = 0 on U .

Lemma 15.2 If u : U 7→ R is harmonic on a simply connected domain U in C, then there exists a

holomorphic function f : U 7→ C such that u = Re f .

15.2 Some Elementary Functions

1. Power Function

The function

f(z) = zn, z ∈ C, n ∈ N

is holomorphic. This follows from Prop. 14.2. Its derivative is

f ′(z) = nzn−1

If we write z = r(cosϕ+ i sinϕ) in polar coordinates, then by de Moivre’s formula

zn = rn(cosnϕ+ i sinnϕ)

Hence, if z1, z2 ∈ C are such that |z1| = |z2| and arg z1 = arg z2 + k 2π
n , then zn1 = zn2 . This

implies that f is not bijective on C. However, it is bijective from D = {z : 0 < arg z < 2π
n } to

C \ {z = x+ iy : x > 0}.

2. Exponential Function

We define the function

ez := lim
n→∞

(
1 +

z

n

)n
To show that the limit exists for any z = x+ iy ∈ C, we calculate

rn =
∣∣∣(1 +

z

n

)n∣∣∣ =
∣∣∣1 +

z

n

∣∣∣n =

∣∣∣∣1 +
x+ iy

n

∣∣∣∣ =

(√(
1 +

x

n

)2
+
y2

n2

)n
=

(
1 +

2x

n
+
x2 + y2

n2

)n
2

lim
n→∞

(
1 +

2x

n
+
x2 + y2

n2

)n
2

= e
limn→∞

n
2

ln

(
1+ 2x

n
+x2+y2

n2

)

lim
n→∞

n

2
ln

(
1 +

2x

n
+
x2 + y2

n2

)
=
n

2

(
2x

n
+
x2 + y2

n2

) ln
(

1 + 2x
n + x2+y2

n2

)
(

2x
n + x2+y2

n2

) = x
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Thus lim
n→∞

rn = ex. Next we calculate

ϕn = arg
(

1 +
z

n

)n
= n arg

(
1 +

z

n

)
= n arg

(
1 +

x+ iy

n

)
= n arctan

( y
n

1 + x
n

)

lim
n→∞

n arctan

( y
n

1 + x
n

)
= lim

n→∞
n

y
n

1 + x
n

arctan

( y
n

1 + x
n

)
1 + x

n
y
n

= lim
n→∞

y

1 + x
n

= y

and find lim
n→∞

ϕn = y. Thus

ez = ex+iy = ex(cos y + i sin y)

In particular, we obtain the Euler formula:

eiy = cos y + i sin y

3. Trigonometric Functions

Using eiy = cos y + i sin y and e−iy = cos y − i sin y for all y ∈ R, we obtain

cos y =
eiy + e−iy

2
sin y =

eiy − e−iy

2i

with which we can define the trigonometric functions for z ∈ C:

cos z =
eiz + e−iz

2
sin z =

eiz − e−iz

2i

These complex trigonometric functions are closely related to the hyperbolic trigonometric functions:

cosh z =
ez + e−z

2
sinh z =

ez − e−z

2

So

cosh z = cos iz

sinh z = −i sin iz

cos z = cosh iz

sin z = −i sinh iz
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16 Conformal Maps (Lecture Notes)

16.1 Geometric Meaning of arg f ′(z) and |f ′(z)|

Let γ(t) = x(t) + iy(t), t ∈ [α, β] be a continuous path in C that is also continuously differentiable. We

take a function f : U 7→ C such that f ′(z0) 6= 0. We denote w0 = f(z0) and assume γ(t0) = z0. We set

lz =
z − z0

|z − z0|
=

γ(t)− γ(t0)

|γ(t)− γ(t0)|

Then

lz0 = lim
z→z0

z − z0

|z − z0|
=

γ′(t)

|γ′(t)|

can be identified as the unit tangent vector to γ at z0. Next, we consider the image of γ under the map

f . We find the tangent vector to f(γ) at w0:

Lz0 = lim
w→w0

w − w0

|w − w0|
= lim

t→t0

f
(
γ(t)

)
− f

(
γ(t0)

)
|f
(
γ(t)

)
− f

(
γ(t0)

)
|

= lim
t→t0

f
(
γ(t)

)
− f

(
γ(t0)

)
γ(t)− γ(t0)

γ(t)− γ(t0)

|γ(t)− γ(t0)|
|γ(t)− γ(t0)|

|f
(
γ(t)

)
− f

(
γ(t0)

)
|

= f ′(z0) · lz0 ·
1

|f ′(z0)|
=

f ′(z0)

|f ′(z0)|
lz0

Next, we compute

argLz0 = arg
f ′(z0)

|f ′(z0)|
lz0 = arg f ′(z0) + arg lz0 − arg |f ′(z0)| = arg f ′(z0) + arg lz0

We see that under the map f , a tangent line to any curve at z0 is rotated on the angle arg f ′(z0).

Let us now consider two paths γ1 and γ2 that pass through z0. The angle between these two paths

at z0 is defined as the angle ϕ between their tangent vectors l1 and l2 at that point. Then the angle ψ

between the tangent vectors L1 and L2 of the images of γ1 and γ2 is given by

ψ = argL2 − argL1 = arg f ′(z0) + arg l2 − arg f ′(z0)− arg l1 = arg l2 − arg l1 = ϕ

Corollary 16.1 If f ′(z0) 6= 0, then f preserves the angles between curves which pass through z0.

Definition 16.1

1. A continuous map f : U 7→ C which preserves the angles between curves that pass through z0 ∈ U
is called conformal at z0.

2. If f is conformal at any point of U , then f is called conformal on U .

Theorem 16.1 A holomorphic function f is conformal at any point where its derivative is non-zero.

Let us now interpret the meaning of |f ′(z0)|. We write

|f ′(z0)| = lim
z→z0

∣∣∣∣f(z)− f(z0)

z − z0

∣∣∣∣ = lim
z→z0

|w − w0|
|z − z0|

So |f ′(z0)| is equal to the dilation coefficient at z0 under the map f .
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16.2 Fractional Linear Transformations

Fractional linear transformations are functions of the form

w =
az + b

cz + d
, ad− bc 6= 0

where a, b, c, d are fixed complex numbers and z is the complex variable. The condition ad − bc 6= 0 is

imposed to exclude the degenerate case where w is constant. This function is defined for all z 6= −d
c if

c 6= 0. We set w =∞ at z = −d
c .

Theorem 16.2 A fractional linear transformation is a homeomorphism, that is, it is a continuous

bijective map, from C to C, where C = C ∪ {∞}.

Definition 16.2 Let γ1 and γ2 be two paths that pass through the point z = ∞. The angle between γ1

and γ2 at z =∞ is the angle between their images Γ1 and Γ2 under the map z 7→ 1
z at the point 0.

Theorem 16.3 A fractional linear map is conformal on C.

16.3 Geometric Properties

We first introduce the convention that a circle in C is either a circle or a straight line on the complex

plane C.

Theorem 16.4 Fractional linear transformations map a circle in C to a circle in C.

Remark 16.1 Let l be a circle in C and let L be its image under a fractional linear transformation.

1. −d
c
∈ l is equivalent to L being a straight line.

2.
a

c
∈ L is equivalent to l being a straight line.
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f(z) = sin z f(z) = z2

f(z) = z3 f(z) = ez

f(z) =
z

z − 1
f(z) = z +

1

z
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17 Cauchy’s Theorem (Lecture Notes)

17.1 Integration

Let U be an open set in C. Let γ be a piecewise continuously differentiable path in U and take a

continuous function f : γ 7→ C.

Definition 17.1 If there exists

lim
λ→0

n∑
k=1

f(ξk)∆zk =:

∫
γ

f(z) dz

where λ = max
k
|∆zk| and ∆zk = zk − zk−1, that does not depend on the choice of the points {ξk} and

partition {zk}, then this limit is called the integral of f along γ.

To make a connection between this integral and the known line integral, we rewrite the integral sum.

First, we rewrite ∆zk = ∆xk + i∆yk and take f(z) = u(x, y) + iv(x, y). Let ξk = ηk + iζk. Then

n∑
k=1

f(ξk)∆zk =
n∑
k=1

(
u(ηk, ζk) + iv(ηk, ζk)

)(
∆xk + i∆yk

)

=
n∑
k=1

(
u(ηk, ζk)∆xk − v(ηk, ζk)∆yk

)
+ i

n∑
k=1

(
v(ηk, ζk)∆xk + u(ηk, ζk)∆yk

)
This immediately implies∫

γ

f(z) dz =

∫
γ

u(x, y) dx− v(x, y) dy + i

∫
γ

v(x, y) dx+ u(x, y) dy

17.2 Properties of the Integral

1. For α, β ∈ C ∫
γ

(αf + βg) dz = α

∫
γ

f dz + β

∫
γ

g dz

2. If γ− is obtained from γ by a change in orientation, then∫
γ

f dz = −
∫
γ−

f dz

3. If γ1 ∪ γ2 is a path such that the end point of γ1 is the initial point of γ2, then∫
γ1∪γ2

f dz =

∫
γ1

f dz +

∫
γ2

f dz
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4. From the inequality ∣∣∣∣∣
n∑
k=1

f(ξk)∆zk

∣∣∣∣∣ 6
n∑
k=1

|f(ξk)||∆zk| 6
n∑
k=1

|f(ξk)|∆sk

where ∆sk is the length of γ between zk−1 and zk, follows∣∣∣∣∣∣
∫
γ

f(z) dz

∣∣∣∣∣∣ 6
∫
γ

|f(z)| ds

5. Let L(γ) be the length of γ. Then∣∣∣∣∣∣
∫
γ

f(z) dz

∣∣∣∣∣∣ 6 max
z∈γ
|f(z)|L(γ)

follows from the previous result

Now let γ(t) = x(t) + iy(t), t ∈ [α, β]. Then∫
γ

f(z) dz =

∫
γ

u(x, y) dx− v(x, y) dy + i

∫
γ

v(x, y) dx+ u(x, y) dy

=

β∫
α

[
u
(
x(t), y(t)

)
x′(t)− v

(
x(t), y(t)

)
y′(t)

]
dt+ i

β∫
α

[
v
(
x(t), y(t)

)
x′(t) + u

(
x(t), y(t)

)
y′(t)

]
dt

=

β∫
α

[
u
(
x(t), y(t)

)
+ iv

(
x(t), y(t)

)][
x′(t) + iy′(t)

]
dt

=

β∫
α

f
(
γ(t)

)
γ′(t) dt

Consequently, we have obtained ∫
γ

f(z) dz =

β∫
α

f
(
γ(t)

)
γ′(t) dt

where γ = γ(t), t ∈ [α, β].
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Example Let γ(t) = a+Reit, t ∈ [0, 2π]. We compute∫
|z−a|=R

dz

(z − a)n
=

∫
γ

dz

(z − a)n

where n ∈ Z. If n 6= 1, then

∫
|z−a|=R

dz

(z − a)n
=

2π∫
0

iReit

Rneint
dt =

i

Rn−1

2π∫
0

e−i(n−1)t dt = − 1

Rn−1

1

(n− 1)
e−i(n−1)t

∣∣∣∣2π
0

= 0

using e−i(n−1)t = cos
(
(n− 1)t

)
− i sin

(
(n− 1)t

)
. If n = 1, then

∫
|z−a|=R

dz

z − a
= i

2π∫
0

dt = 2πi

Hence ∫
|z−a|=R

dz

(z − a)n
=

0 if n 6= 1

2πi if n = 1

17.3 Cauchy’s Theorem

Proposition 17.1 Suppose that a function F : U 7→ C is holomorphic and is an antiderivative of a

continuous function f : U 7→ C such that F ′(z) = f(z). Then for any piecewise continuously differentiable

path γ joining z1 and z2 in U ∫
γ

f(z) dz = F (z2)− F (z1)

Moreover, if γ is closed in U , then ∮
γ

f(z) dz = 0

Example
1−i∫

2+3i

z3 dz =
z4

4

∣∣∣∣1−i
2+3i

=
(1− i)4 − (2 + 3i)4

4

Theorem 17.1 (Cauchy’s Theorem) Let U be a simply connected domain in C and let f : U 7→ C be

a holomorphic function in U . Assume that the path γ joining z1 and z2 in U is piecewise continuously

differentiable in U . Then ∫
γ

f(z) dz

depends only on z1 and z2 and not the choice of the path γ. In particular, if γ is closed, then∮
γ

f(z) dz = 0
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18 The Cauchy Integral Formula (Lecture Notes)

18.1 Consequences of Cauchy’s Theorem

Proposition 18.1 Any holomorphic function f in a simply connected domain U has an antiderivative

in this domain.

We say that f is holomorphic on U if there exists an open set G such that U ⊆ G, and if f can be

extended into this domain G, that is, there exists a holomorphic function f̃ on G such that f̃ = f on U .

Proposition 18.2 (Generalization of Cauchy’s Theorem) Let f be holomorphic on U , where U is simply

connected and ∂U is a piecewise continuously differentiable curve. Then∫
∂U

f(z) dz = 0

Definition 18.1 Let the boundary of a bounded domain U consist of a finite number of closed curves

γk, k = 0, 1, . . . , n which are piecewise continuously differentiable. The boundary of U for which the

orientations of γk are positive is called the oriented boundary of U and is denoted by ∂U .

Proposition 18.3 Let U be a bounded domain with oriented boundary and let f be a holomorphic function

on U . Then ∫
∂U

f(z) dz =

∫
γ0

f(z) dz +

n∑
k=1

∫
γk

f(z) dz = 0

18.2 The Cauchy Integral Formula

Theorem 18.1 Let f be a holomorphic function on U , where U is bounded by a finite number of piecewise

continuously differentiable curves. Then for every z ∈ U

f(z) =
1

2πi

∫
∂U

f(ξ)

ξ − z
dξ

Consequence 18.1 Let f be holomorphic in U , where U is an open set. Let γ be a simple continuously

differentiable curve in U surrounding a set D contained in U . Then for any z ∈ D

f(z) =
1

2πi

∫
γ

f(ξ)

ξ − z
dξ

18.3 Series

Let an, n > 1 be complex numbers. We say that a series
∞∑
n=0

an is convergent if the sequence of its partial

sums Sn =

n∑
k=0

ak has a finite limit S. This limit is called the sum of the series. A functional series

∞∑
n=0

fn(z), where the functions fn are defined on a set M ⊆ C, converges uniformly on M if

∀ ε > 0 ∃N ∈ N : ∀n > N, ∀ z ∈M∣∣∣∣∣
∞∑

k=n+1

fk(z)

∣∣∣∣∣ =

∣∣∣∣∣f(z)−
n∑
k=0

fk(z)

∣∣∣∣∣ < ε, f(z) =

∞∑
n=0

fn(z)
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19 The Taylor Series (Lecture Notes)

19.1 Uniform Convergence of Series

Recall the definitions from 18.3.

Example Consider the series
∞∑
n=0

zn

We remark that this series converges for every z ∈M = {z : |z| < 1}. We show this by first calculating

Sn =
n∑
k=0

zk = 1 + z + z2 + · · ·+ zn

then

zSn = z + z2 + · · ·+ zn+1

Subtraction of these two equations yields

Sn =
1− zn+1

1− z
=

1− rn+1
[

cos
(
(n+ 1)ϕ

)
+ i sin

(
(n+ 1)ϕ

)]
1− z

→ S =
1

1− z
, n→∞

However, the series converges uniformly only on Mδ = {z : |z| < 1− δ} for any δ > 0:∣∣∣∣∣
∞∑

k=n+1

zk

∣∣∣∣∣ =

∣∣∣∣ 1

1− z
− 1− zn+1

1− z

∣∣∣∣ =
|zn+1|
|1− z|

=
|z|n+1

|1− z|
6

(1− δ)n+1

δ
→ 0, n→∞ ∀ z ∈Mδ

Assume that the series converges uniformly on M , then for any ε > 0 there exists N ∈ N such that for

all n > N and for all |z| < 1 ∣∣∣∣∣
∞∑

k=n+1

zk

∣∣∣∣∣ =
|z|n+1

|1− z|
< ε

Take z = x+ 0 · i = x, x > 0. Then ∣∣∣∣∣
∞∑

k=n+1

zk

∣∣∣∣∣ =
xn+1

1− x
< ε

Notice that the above inequality does not hold for x close to 1. Consequently, the series does not uniformly

converge on M .

19.2 The Taylor Series

Theorem 19.1 Let f be a holomorphic function in U and take z0 ∈ U . Then f can be represented as

the following sum:

f(z) =
∞∑
n=0

cn(z − z0)n

inside any disk BR = {z : |z − z0| < R} ⊂ U .

Proof: Let z ∈ BR be an arbitrary point. Choose r > 0 such that |z − z0| < r < R. We denote

γr = {ξ : |ξ − z0| = r}
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The Cauchy integral formula implies that

f(z) =
1

2πi

∫
γr

f(ξ)

ξ − z
dξ

We write
1

ξ − z
=

[
(ξ − z0)

(
1− z − z0

ξ − z0

)]−1

=
∞∑
n=0

(z − z0)n

(ξ − z0)n+1

then multiply both sides by 1
2πif(ξ) and integrate term-wise along γr:∫

γr

1

2πi

f(ξ) dξ

ξ − z
=

∫
γr

∞∑
n=0

1

2πi

f(ξ)(z − z0)n dξ

(ξ − z0)n+1
=

∞∑
n=0

1

2πi

∫
γr

f(ξ) dξ

(ξ − z0)n+1
(z − z0)n =

∞∑
n=0

cn(z − z0)n

The above series converges uniformly since∣∣∣∣z − z0

ξ − z0

∣∣∣∣ =
|z − z0|

r
= q < 1

and
∞∑
n=0

qn <∞

Consequently, the term-wise integration is legitimate and we obtain

f(z) =

∞∑
n=0

cn(z − z0)n

where

cn =
1

2πi

∫
γr

f(ξ) dξ

(ξ − z0)n+1
, n = 0, 1, 2, . . .

Definition 19.1 The power series

f(z) =
∞∑
n=0

cn(z − z0)n

where

cn =
1

2πi

∫
γr

f(ξ) dξ

(ξ − z0)n+1

is the Taylor series of the function f at the point z0.

If the function f is holomorphic in a closed disk

Br = {z : |z − z0| 6 r}

and its absolute value on the circle γr = ∂Br is bounded by a constant M , then we have the Cauchy

inequality:

|cn| 6
M

rn
, n = 0, 1, . . .

Theorem 19.2 (Liouville’s Theorem) If the function f is holomorphic and bounded in the whole complex

plane, then it is constant.
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20 Taylor Series and Further Properties of Holomorphic Functions
(Lecture Notes)

20.1 Differentiability of the Taylor Series

We recall that any function f that is holomorphic on U can be expanded into a Taylor series, that is, it

can be expressed as a sum:

f(z) =

∞∑
n=0

cn(z − z0)n

in any disk BR = {z : |z − z0| < R} ⊂ U for some z0 ∈ U . The coefficients are given by

cn =
1

2πi

∫
γr

f(ξ) dξ

(ξ − z0)n+1

where γr = {z : |z − z0| = r}.

Remark 20.1 Let γ be any simple and positively oriented path around the point z0. Then

cn =
1

2πi

∫
γ

f(ξ) dξ

(ξ − z0)n+1

Rem. 20.1 follows from Prop. 18.3. We will now discuss the radius of convergence of the power series.

We will assume further that cn, n > 0 are any complex numbers.

Theorem 20.1 (Cauchy-Hadamard Formula) Let the coefficients of the power series

∞∑
n=0

cn(z − a)n (20.1)

satisfy

lim
n→∞

n
√
|cn| =

1

R

where 0 6 R 6 +∞. Then (20.1) converges at all z such that |z − a| < R and diverges at all z such that

|z − a| > R.

Th. 20.1 implies that the set BR = {z : |z − a| < R} is the domain of convergence of (20.1).

Theorem 20.2 The sum of a power series

f(z) =

∞∑
n=0

cn(z − a)n

is holomorphic in its domain of convergence. Moreover

f ′(z) =

∞∑
n=1

ncn(z − a)n
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20.2 Properties of Holomorphic Functions

Theorem 20.3 If f is holomorphic in an open subset U ⊆ C, then f ′ is also holomorphic in U.

Theorem 20.4 Any holomorphic function f in U has derivatives of all orders in U which are also

holomorphic in U .

Theorem 20.5 Assume that a function f can be represented by

f(z) =

∞∑
n=0

cn(z − z0)n

in a disk BR = {z : |z − z0| < R}. Then the coefficients cn are uniquely determined:

cn =
f (n)(z0)

n!
, n = 0, 1, . . .

The Cauchy integral formula for derivatives of a holomorphic function f in U is given by

f (n)(z) =
n!

2πi

∫
γ

f(ξ) dξ

(ξ − z)n+1
, n = 1, 2, . . .

where γ is a simple and positively oriented path in U around z. This follows from Th. 18.1 and Th. 20.5.

20.3 Zeros of Holomorphic Functions

Definition 20.1 A zero of a function f is a point a ∈ C such that f(a) = 0.

Theorem 20.6 Let a point a ∈ C be a zero of a function f that is holomorphic at a. Assume that f is

not equal to zero in a neighborhood of a. Then there exists n ∈ N such that

f(z) = (z − a)nϕ(z)

where ϕ is holomorphic at a and ϕ(z) 6= 0 for all z in a neighborhood of a.
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21 The Laurent Series (Lecture Notes)

21.1 Uniqueness of Holomorphic Functions

Theorem 21.1 (Uniqueness) Let f1 and f2 be holomorphic in a connected open set U ⊂ C. Then if

f1(z) = f2(z) for all z ∈ E ⊆ U , where E has a limit point in U , then f1(z) = f2(z) for all z ∈ U .

Theorem 21.2 (Morera) If a function f is continuous in U and∫
∂∆

f(z) dz = 0

for any triangle ∆ ⊆ U , then f is holomorphic.

Theorem 21.3 (Weierstrass) If the series

f(z) =

∞∑
n=0

fn(z)

of holomorphic functions fn in U converges uniformly on any compact subset of U , then the function f

is also holomorphic and

f (m)(z) =

∞∑
n=0

f (m)
n (z)

for any m ∈ N.

21.2 The Laurent Series

Theorem 21.4 (Laurent) Any holomorphic function f in an annulus

V = {z ∈ C : r < |z − a| < R}

may be represented in V as

f(z) =
∞∑

n=−∞
cn(z − a)n (21.1)

where

cn =
1

2πi

∫
γρ

f(ξ) dξ

(ξ − a)n+1
, n = 0, ±1, ±2, . . . (21.2)

γρ = {z : |z − a| = ρ}, r < ρ < R

Definition 21.1 The series (21.1) with coefficients (21.2) is called the Laurent series of the function f

in the annulus V . The term
∞∑
n=0

cn(z − a)n

is called the regular part and
−1∑

n=−∞
cn(z − a)n

is called the principal part.
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Let us understand how the domain of convergence of

∞∑
n=−∞

cn(z − a)n

can be defined. By Th. 20.1, the series
∞∑
n=0

cn(z − a)n

converges in the disk {z : |z − a| < R}, where
1

R
= lim

n→∞
n
√
|cn|. Next we consider the series

−1∑
n=−∞

cn(z − a)n

We replace w :=
1

z − a
and obtain

−1∑
n=−∞

cn(z − a)n = c−1w + c−2w
2 + c−3w

3 + . . .

This series converges for all |w| < ρ, where
1

ρ
= lim

n→∞
n
√
|c−n|, or for |z − a| > 1

ρ
=: r. Consequently, the

domain of convergence of
∞∑

n=−∞
cn(z − a)n

is the annulus V = {z : r < |z − a| < R}, where

r = lim
n→∞

n
√
|c−n|

1

R
= lim

n→∞
n
√
|cn|

Example The function f(z) = 1
(z−1)(z−2) is holomorphic in the disk V1 = {z : |z| < 1} and annuli

V2 = {z : 1 < |z| < 2} and V3 = {z : 2 < |z| <∞}. In order to obtain its Laurent (or Taylor) series, we

represent f as

f(z) =
1

z − 2
− 1

z − 1

Consider the domain V1. The following:

1

z − 2
= −1

2

1

1− z
2

= −1

2

∞∑
n=0

(z
2

)n
= −

∞∑
n=0

1

2n+1
zn

converges for |z| < 2, and

− 1

z − 1
=

1

1− z
=

∞∑
n=0

zn

converges for |z| < 1. Therefore

f(z) =
∞∑
n=0

(
1− 1

2n+1

)
zn, |z| < 1
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Now consider V2. The following:

1

z − 2
= −

∞∑
n=0

1

2n+1
zn

again converges for |z| < 2, and

− 1

z − 1
= −1

z

1

1− 1
z

= −1

z

∞∑
n=0

1

zn
= −

−1∑
n=−∞

zn

converges for |z| > 1. Therefore

f(z) = −
−∞∑
n=−1

zn −
∞∑
n=0

1

2n+1
zn

Similarly, for V3

1

z − 2
=

1

z

1

1− 2
z

=
1

2

−∞∑
n=−1

1

2n
zn

converges for |z| > 2, so

f(z) =

−∞∑
n=−1

(
1

2n+1
− 1

)
zn

Example We write the expansion of f(z) = 1
(1−z)(2+z) in the annulus V = {z : 0 < |z − 1| < 3}. We

rewrite

f(z) =
1

(1− z)(2 + z)
= − 1

(z − 1)(z − 1 + 3)
= − 1

z − 1
· 1

3
· 1

1 + z−1
3

= − 1

z − 1
· 1

3
·
∞∑
n=0

(−1)n
(z − 1)n

3n

=
∞∑

n=−1

(−1)n+1

3n+1
(z − 1)n, z ∈ V

Example Let f(z) = 1
(z−i)3 . We want to write the Laurent series for f with a = 0. We will use the

formula

(1 + z)α = 1 +
∞∑
n=1

α(α− 1) . . . (α− n+ 1)

n!
zn, |z| < 1

Then
1

(z − i)3
= (z − i)−3 = (−i)−3

(
z

−i
+ 1

)−3

=
1

i

(
z

−i
+ 1

)−3

=
1

i

(
1 +

∞∑
n=1

(−3)(−4) . . . (−3− n+ 1)

n!

(
z

−i

)n)

=
1

i

(
1 +

∞∑
n=1

(3)(4) . . . (n+ 2)

n!

zn

in

)

=
1

i

(
1 +

∞∑
n=1

(n+ 1)(n+ 2)

2

zn

in

)

1

i

∞∑
n=0

(n+ 1)(n+ 2)

2

zn

in

=

∞∑
n=0

(n+ 1)(n+ 2)

2in+1
zn, |z| < 1
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22 Residues (Lecture Notes)

22.1 Isolated Singular Points

Definition 22.1 A point a ∈ C is an isolated singular point of a function f if there exists a punctured

neighborhood {z : 0 < |z − a| < r} if a 6=∞, or {z : R < |z| <∞} if a =∞, on which f is holomorphic.

Definition 22.2 An isolated singular point a of a function f is said to be

1. removable if lim
z→a

f(z) exists and is finite

2. a pole if lim
z→a

f(z) =∞ exists

3. an essential singularity of f if f has neither a finite nor infinite limit as z → a

Example

1. The function f(z) =
sin z

z
has a removable singularity since

f(z) =
sin z

z
= 1− z2

3!
+
z4

5!
− · · · ⇒ lim

z→0
f(z) = 1

2. The function f(z) =
1

zn
, where n ∈ N, has a pole at z = 0.

3. The function f(z) = e
1
z has an essential singularity at z = 0. If z = x ∈ R, then indeed

0 = lim
x→0−

e
1
x 6= lim

x→0+
e

1
x =∞

It also has no limit along the imaginary axis:

lim
y→0

eiy = lim
y→0

(
cos

1

y
+ i sin

1

y

)

Theorem 22.1 An isolated singular point a ∈ C of a function f is a removable singularity if and only

if its Laurent expansion

f(z) =
∞∑

n=−∞
cn(z − a)n

has no principal part.

Theorem 22.2 An isolated singular point a of a function f is removable if and only if f is bounded in

a neighborhood of the point a.

Theorem 22.3 An isolated singular point a ∈ C is a pole of f if its Laurent expansion near a has the

form

f(z) =
∞∑

n=−N
cn(z − a)n

for some N ∈ N and cN 6= 0.

Definition 22.3 The number N in Th. 22.3 is called the order of a pole of f .

Theorem 22.4 a ∈ C is a pole of the function f if and only if the function ϕ =
1

f
is holomorphic in a

neighborhood of a and ϕ(a) = 0.
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Definition 22.4 The order of a zero a ∈ C of a function ϕ that is holomorphic at this point is the order

k of the first non-zero derivative ϕ(k)(a) 6= 0.

Proposition 22.1 The order of a pole a of a function f is the order of a as a zero of the function ϕ =
1

f
.

Theorem 22.5 An isolated singular point a of f is an essential singularity if and only if the principal

part of the Laurent expansion

f(z) =

∞∑
n=−∞

cn(z − a)n

of f near a contains infinitely many non-zero terms.

Theorem 22.6 If a is an essential singularity of a function f , then for any A ∈ C we may find a

sequence {zn}n>1 such that lim
n→∞

zn = a and lim
n→∞

f(zn) = A.

22.2 Residues

Definition 22.5 Let a ∈ C be an isolated singular point of f . The number

resaf =
1

2πi

∫
γρ

f(z) dz

is called the residue of f at a. Here we define γρ = {z : |z − a| = ρ}, 0 < ρ < R and assume f is

holomorphic in {z : 0 < |z − a| < R}.

Proposition 22.2 The residue of a function f at an isolated singular point a ∈ C is equal to the

coefficient c−1 of the term (z − a)−1 in the Laurent expansion of f around a.

Theorem 22.7 Let the function f be holomorphic everywhere in a domain U , which is an open and

connected subset of C, except at an isolated set of singular points a1, . . . , an. Let γ be a positively oriented,

simply connected path in U surrounding a1, . . . , an. Then∫
γ

f(z) dz = 2πi

n∑
k=1

resakf

22.3 Computation of Residues

1. If a is removable then

resaf = 0

2. If a is a pole of order 1 then

resaf = lim
z→a

(z − a)f(z)

3. If f(z) =
ϕ(z)

ψ(z)
, where ϕ and ψ are holomorphic, ψ(a) = 0, ψ′(a) 6= 0, ϕ(a) 6= 0, then

resaf =
ϕ(a)

ψ′(a)

4. If a is a pole of order n, then

resaf =
1

(n− 1)!
lim
z→a

dn−1

dzn−1

(
(z − a)nf(z)

)
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23 Application of Residues to Computations of Integrals (Lecture Notes)

23.1 Computation of Residues

Recall that

1. If a is removable then

resaf = 0

2. If a is a pole of order 1 then

resaf = lim
z→a

(z − a)f(z)

3. If f(z) =
ϕ(z)

ψ(z)
, where ϕ and ψ are holomorphic, ψ(a) = 0, ψ′(a) 6= 0, ϕ(a) 6= 0, then

resaf =
ϕ(a)

ψ′(a)

4. If a is a pole of order n, then

resaf =
1

(n− 1)!
lim
z→a

dn−1

dzn−1

(
(z − a)nf(z)

)
Example

1. Consider f(z) =
z

(z − 1)(z − 2)2
. Then a1 = 1 and a2 = 2 are poles of order 1 and 2 respectively.

res1f = lim
z→1

(z − 1)
z

(z − 1)(z − 2)2
= 1

res2f = lim
z→2

d

dz

(
(z − 2)2f(z)

)
= lim

z→2

d

dz

z

z − 1
= lim

z→2

−1

(z − 1)2
= −1

2. Consider f(z) =
sin z

cos z
. Then a =

π

2
is a pole of order 1.

resπ
2
f =

sin π
2

d
dz cos z

∣∣
z=π

2

= −1

3. Consider f(z) =
1

z + 2
cos

1

z
. Then a = 0 is an essential singularity. We rewrite

cos
1

z
= 1− 1

2! · z2
+

1

4! · z4
− . . .

1

z + 2
=

1

2

1

1 + z
2

=
1

2

(
1− z

2
+
z2

4
− z3

8
+ . . .

)
Multiplying these series together, we find the coefficients of

1

z
:

f(z) =
1

2

1

z

(
1

21 · 2!
− 1

23 · 4!
+

1

25 · 6!
− 1

27 · 8!
+ . . .

)
+ . . .

which we use to obtain c−1 = resaf .
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23.2 ∞ as an Isolated Singular Point

We recall that ∞ is an isolated singularity of f if f is holomorphic in {z : |z| > R} for some large R > 0.

Similarly

• ∞ is removable if lim
z→∞

f(z) exists and is finite

• ∞ is a pole if lim
z→∞

f(z) =∞

• ∞ is an essential singularity if lim
z→∞

f(z) does not exist

We remark that ∞ is an isolated singular point of f if and only if 0 is an isolated singular point of

f̃(z) = f
(

1
z

)
. We define the Laurent expansion of f at ∞ as

f(z) =

∞∑
n=−∞

cnz
n (23.1)

where the series converges for R < |z| < ∞. Next we characterize the type of singularity at ∞ via the

Laurent expansion. We write the Laurent series of f̃ at 0:

f̃(z) =

∞∑
n=−∞

c̃nz
n

Hence

f(z) = f̃
(

1
z

)
=

∞∑
n=−∞

c̃nz
−n =

∞∑
n=−∞

c̃−nz
n =

∞∑
n=−∞

cnz
n (23.2)

where cn = c̃−n. We will call

0∑
n=−∞

cnz
n the regular part of the Laurent series, and

∞∑
n=1

cnz
n its principal

part. The equality (23.2) immediately implies that ∞ is

• removable if the principal part of (23.1) equals zero

• a pole if the principal part has a finite number of non-zero terms

• an essential singularity if the principal part consists of an infinite number of non-zero terms

Definition 23.1 If ∞ is an isolated singular point of the function f , then

res∞f =
1

2πi

∫
γ−ρ

f(z) dz

where γ−ρ = {z : |z| = ρ} is a circle of a sufficiently large radius oriented clockwise. From Th. 21.4, we

obtain res∞f = −c−1.

Theorem 23.1 If the function f is holomorphic in C \ {a1, . . . , an}, then

n∑
k=1

resakf + res∞f = 0
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Example We compute ∫
|z|=2

dz

(z8 + 1)2
= 2πi

8∑
k=1

resakf = −2πi res∞f

We first find c−1 in the Laurent series at ∞:

1

(z8 + 1)2
=

1

z16

1(
1 + 1

z8

)2 =
1

z16

1

1 + 1
z8

1

1 + 1
z8

=
1

z16

(
1− 1

z8
+ . . .

)(
1− 1

z8
+ . . .

)

Hence c−1 = 0, and ∫
|z|=2

dz

(z8 + 1)2
= 0

23.3 Application to Riemann Integrals

We first consider
2π∫
0

R(cosϕ, sinϕ) dϕ

where R(t, s) =
P (t, s)

Q(t, s)
, and P and Q are polynomials of t and s. We recall that

z = eiϕ = cosϕ+ i sinϕ

z = e−iϕ = cosϕ− i sinϕ

cosϕ =
z + z

2

sinϕ =
z − z

2i

If ϕ ∈ [0, 2π], then z = eiϕ defines the circle |z| = 1. With

dz = ieiϕ dϕ = iz dϕ⇒ dϕ =
dz

iz

we can compute
2π∫
0

R(cosϕ, sinϕ) dϕ =

∫
|z|=1

R

(
z + z

2
,
z − z

2i

)
dz

iz

Example We compute

2π∫
0

dϕ

5− 4 cosϕ
=

∫
|z|=1

dz

iz
(
5− 4 · z+z2

) =
1

i

∫
|z|=1

dz

5z − 2z2 − 2zz
= −1

i

∫
|z|=1

dz

2z2 − 5z + 2

= −1

i
· 2πi res 1

2

1

2z2 − 5z + 2
= −2π

1
d
dz (2z2 − 5z + 2)

∣∣
z= 1

2

=
2π

(4z − 5)
∣∣
z= 1

2

=
−2π

2− 5
=

2

3
π
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Next consider
∞∫
−∞

R(x) dx

where R(t) =
P (t)

Q(t)
, and P and Q are polynomials such that degP 6 degQ − 2 and Q(t) 6= 0, ∀ t ∈ R.

Then
∞∫
−∞

R(x) dx = 2πi
n∑
k=1

resakR

where ak are zeros of Q such that Im ak > 0.

Example We compute

∞∫
−∞

dx

(1 + x2)3
= 2πi resi

1

(1 + z2)3
= 2πi · 1

2!
lim
z→i

d2

dz2

(
(z − i)3

(z2 + i)3

)
= πi lim

z→i

d2

dz2

(
1

(z + i)3

)

= πi lim
z→i

(−3)(−4)(z + i)−5 =
12πi

(2i)5
=

3

8
π

50



24 Introduction to Partial Differential Equations (Lecture Notes)

24.1 Transport Equation

Let us consider a wave moving with a constant speed c. Let u(t, x) be the wave profile at point x and

time t. The lines x − ct = x0, on which u is constant, are called characteristic lines. This implies that

the directional derivative of u in the direction of x− ct = x0 is zero. So for l = (1, c) we have

∂u

∂l
= (1, c) · ∇u = ut + cux = 0

where ut =
∂u

∂t
and ux =

∂u

∂x
. With the initial condition u(0, x) = f(x), we obtain

ut + cux = 0, t > 0, x ∈ R

u(0, x) = f(x), x ∈ R
(24.1)

which is a transport equation with constant coefficients. Next we will find a function u : [0,∞)×R 7→ R
which is differentiable in t and x, and satisfies (24.1).

Method of Characteristics

We assume that x = x(t), which we can interpret as the coordinate of a moving observer. Then u
(
t, x(t)

)
is the point which the observer sees at time t. We compute

d

dt
u
(
t, x(t)

)
= ut +

dx

dt
ux

Then u satisfies (24.1) if
dx

dt
= c and

d

dt
u
(
t, x(t)

)
= 0. This yields x = ct+ x0 and hence

u
(
t, x(t)

)
= u

(
0, x(0)

)
= f(x0)

u(t, x) = f(x− ct)

is a solution to (24.1). Now we show that the equation has no other solutions. Let u be a solution to

(24.1). We consider a new function

v(t, x) = u(t, x+ ct)

Then

vt(t, x) = ut(t, x+ ct) + cux(t, x+ ct) = 0⇒ v(t, x) = F (x)

But from the initial condition

v(0, x) = u(0, x) = f(x)

so F (x) = f(x) which implies v(t, x) = f(x) and u(t, x) = v(t, x− ct) = f(x− ct).

Example We will solve ut + 2ux = 0

u(0, x) = cosx

Using the method of characteristics we obtain
dx

dt
= 2⇒ x = 2t+x0 and consequently u(t, x) = cos(x−2t).
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Remark 24.1 The same method works in the case of the equation

a(t, x)ut + b(t, x)ux = 0

or, dividing by a(t, x), we can rewrite this as

ut + c(t, x)ux = 0

Example We will solve ut − (x+ 1)ux = 0

u(0, x) = f(x)

We rewrite
dx

dt
= −(x+ 1)⇒ dx

x+ 1
= −dt

and solve the differential equation with the initial condition x(0) = x0 to obtain

x = ce−t − 1 = (x0 + 1)e−t − 1

Solving for x0 = (x+ 1)et − 1, we can substitute it into

u(t, x) = f(x0) = f
(
(x+ 1)et − 1

)
24.2 Partial Differential Equations and Fundamental Examples

Definition 24.1 A partial differential equation (PDE) of a single unknown u is an equation involving u

and its partial derivatives. All such equations can be written as

F
(
u, ux1 , . . . , uxn , ux1x1 , . . . , uxi1 ·xiN , x1, . . . , xn

)
= 0

for some function F . Here N is called the order of the PDE and is the maximum order of the derivatives

appearing in the equation.

Example (Heat Equation)

ut = a2uxx

Here t and x are temporal and spatial coordinates respectively, while u(t, x) is the temperature at point x

and time t. The equation describes the conductance of temperature through a metal wire.

Example (Wave Equation)

utt = a2uxx = 0

Again t and x are temporal and spatial coordinates respectively, while u(t, x) describes a wave profile at

point x and time t.

Example (Laplace Equation)

uxx + uyy = 0

Here x and y are spatial variables. This equation can describe mechanical or temperature equilibrium.
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25 Heat Equation (Lecture Notes)

25.1 Fourier Transform on Rd

Definition 25.1 The Fourier transform of a continuous, absolutely integrable function f : Rd 7→ C is

defined by

f̂(σ) = F [f ](σ) =
1√

(2π)d

∫
Rd

e−iσ·xf(x) dx

where σ · x = σ1x1 + · · ·+ σdxd.

Theorem 25.1 Let f and f̂ be absolutely integrable. Then

f(x) = F−1[f̂ ](x) =
1√

(2π)d

∫
Rd

eiσ·xf̂(σ) dσ

Remark 25.1 From Th. 25.1 it follows that

F−1
[
F [f ]

]
= f

F
[
F−1[g]

]
= g

Next, if we assume that f is differentiable, then

∂

∂x1
f(x) =

∂

∂x1
F−1[f̂ ](x) =

∂

∂x1

1√
(2π)d

∫
Rd

eiσ·xf̂(σ) dσ =
1√

(2π)d

∫
Rd

iσ1e
iσ·xf̂(σ) dσ = F−1[iσ1f̂(σ)]

Hence

F
[
∂f

∂x1

]
(σ) = iσ1f̂(σ)

A similar computation gives

F [Dαf ] = (iσ)αF [f ] (25.1)

DαF [f ] = F
[
(−ix)αf

]
where Dα =

∂|α|

∂xα1
1 . . . ∂xαdd

, |α| = α1 + · · ·+ αd, α = (α1, . . . , αd) ∈ (N ∪ {0})d and xα = xα1
1 . . . xαdd .

For two functions f, g we define the convolution as

(f ∗ g)(x) =

∫
Rd

f(x− y)g(y) dy
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25.2 Heat Equation on R

Here we will solve ut = a2uxx + f(t, x), t > 0, x ∈ R

u(0, x) = ϕ(x), x ∈ R
(25.2)

In order to find a solution, we first need to do formal computations. We take the Fourier transform of

both sides of the equation and obtain

F [ut] = F [a2uxx + f(t, x)]

By (25.1) we obtain
d

dt
F [u(t, ·)](σ) = a2(−iσ)2F [u(t, ·)](σ) + f̂(t, σ)

If we denote v(t, σ) := F [u(t, ·)](σ), then we have obtained an equation for v:

d

dt
v(t, σ) = −a2σ2v(t, σ) + f̂(t, σ) (25.3)

where σ ∈ R is a parameter. We note that (25.3) is a linear ordinary differential equation. Next, we take

the Fourier transform of the initial condition:

v(0, σ) = ϕ̂(σ) (25.4)

Solving (25.3) with (25.4), we have

v(t, σ) = e−a
2σ2tϕ̂(σ) +

t∫
0

e−a
2σ2(t−s)f̂(s, σ) ds (25.5)

Since v(t, σ) = F [u(t, ·)](σ), we can take the inverse Fourier transform of (25.5):

u(t, ·) = F−1
[
e−a

2σ2tϕ̂
]

+

t∫
0

F−1
[
e−a

2σ2(t−s)f̂(s, ·)
]
ds

= F−1
[
e−a

2σ2t
]
∗ F−1[ϕ̂] +

t∫
0

F−1
[
e−a

2σ2(t−s)]F−1[f̂(s, ·)] ds

= F−1
[
e−a

2σ2t
]
∗ ϕ+

t∫
0

F−1
[
e−a

2σ2(t−s)] ∗ f(s, ·) ds

With

F−1
[
e−a

2σ2t
]

=
1√
2π

∞∫
−∞

eiσxe−a
2σ2t dσ =

1√
4πa2t

e−
x2

4a2t =: G(t, x)

we obtain the following solution to (25.2):

u(t, x) =

∞∫
−∞

G(t, x− y)ϕ(y) dy +

t∫
0

∞∫
−∞

G(t− s, x− y)f(s, y) dy ds
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25.3 Heat Equation on an Interval [0, l]

Here we will consider ut(t, x) = a2uxx(t, x) + f(t, x), t > 0, x ∈ (0, l)

u(0, x) = ϕ(x), x ∈ (0, l)

We also need either Dirichlet boundary conditions:u(t, 0) = ν1(t)

u(t, l) = ν2(t)

or Neumann boundary conditions: ux(t, 0) = µ1(t)

ux(t, l) = µ2(t)

There could also be mixed boundary conditions. For a specific example, we now consider the equation

ut = a2uxx + cos
3π

2l
x, t > 0, x ∈ (0, l) (25.6)

with boundary conditions ux(t, 0) = 0

u(t, l) = 0, t > 0
(25.7)

and initial condition

u(0, x) = A(l − x), x ∈ [0, l] (25.8)

We first find a solution to (25.6) in the form

u(x, t) = X(x)T (t)

with f = 0. We obtain

T ′(t)X(x) = a2T (t)X ′′(x)

T ′(t)

a2T (t)
=
X ′′(x)

X(x)
= −λ

and find an equation for X:

X ′′(x) + λX(x) = 0 (25.9)

Next we substitute u(x, t) into (25.7) which must be zero boundary conditions:

T (t)X ′(0) = 0

T (t)X(l) = 0

We now obtain boundary conditions for (25.9):

X ′(0) = 0, X(l) = 0 (25.10)
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Now we find non-zero solutions to (25.9), (25.10), which is called the Sturm-Liouville problem. (25.9) is

a linear second order differential equation. To find its solution, we need to find roots of the characteristic

polynomial.

1. If λ < 0, then X(x) = c1e
√
−λx + c2e

−
√
−λx. From (25.10), we obtain the following system:X ′(0) = c1 − c2 = 0

X(l) = c1e
√
−λl + c2e

−
√
−λl = 0

which only has c1 = c2 = 0 as solution.

2. If λ = 0, then X(x) = c1x+ c2. Similarly, from (25.10) we find c1 = c2 = 0.

3. If λ > 0, then X(x) = c1 cos
√
λx+ c2 sin

√
λx. From (25.10), we find

X ′(x) = −c1

√
λ sin

√
λx+ c2

√
λ cos

√
λx

X ′(0) = c2

√
λ = 0⇒ c2 = 0

Then

X(l) = c1 cos
√
λl = 0

which implies √
λn =

π(2n+ 1)

2l
, n = 0, 1, 2, . . .

if we want non-zero solutions. We have thus obtained non-zero solutions to (25.9), (25.10):

Xn(x) = cos
π(2n+ 1)

2l
x, n = 0, 1, 2, . . .
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26 Wave Equation (Lecture Notes)

26.1 Heat Equation on [0, l]

We will revisit the example considered in the previous lecture. We consider the equation

ut = a2uxx + cos
3π

2l
x, t > 0, x ∈ (0, l) (26.1)

with boundary conditions ux(t, 0) = 0

u(t, l) = 0, t > 0
(26.2)

and initial condition

u(0, x) = A(l − x), x ∈ [0, l] (26.3)

1. We first found a solution to (26.1) in the form

u(x, t) = X(x)T (t)

and obtained
T ′(t)

a2T (t)
=
X ′′(x)

X(x)
= −λ

which gives the equation

X ′′(x) + λX(x) = 0 (26.4)

From the boundary conditions in (26.2) we get

X ′(0) = 0, X(l) = 0 (26.5)

We then obtained non-zero solutions to (26.4), (26.5) as

Xn(x) = cos
π(2n+ 1)

2l
x, n = 0, 1, 2, . . .

and √
λn =

π(2n+ 1)

2l
, n = 0, 1, 2, . . .

2. Now we find solutions to (26.1)-(26.3) in the form

u(t, x) =

∞∑
n=0

Tn(t)Xn(x) =

∞∑
n=0

Tn(t) cos
π(2n+ 1)

2l
x

Substituting u(t, x) into (26.1), we get

∞∑
n=0

T ′n(t)Xn(x) =

∞∑
n=0

a2Tn(t)X ′′n(x) + f(t, x)
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If we can write

f(t, x) =

∞∑
n=0

fn(t)Xn(x)

then
∞∑
n=0

T ′n(t)Xn(x) =
∞∑
n=0

a2Tn(t)(−λn)Xn(x) +
∞∑
n=0

fn(t)Xn(x)

We then get an equation for Tn:

T ′n(t) + a2λnTn(t) = fn(t) (26.6)

Next we plug in u(t, x) into (26.3):

∞∑
n=0

Tn(0)Xn(x) = A(l − x) =

∞∑
n=0

bnXn(x)

and obtain

Tn(0) = bn (26.7)

3. Now we need to find the coefficients bn and functions fn(t) using the formula

bn =
1

‖Xn‖2

l∫
0

ϕ(x)Xn(x) dx

where ‖Xn‖2 =

l∫
0

X2
n(x) dx =

l∫
0

cos2 π(2n+ 1)

2l
x dx =

l

2
. So

bn =
2A

l

l∫
0

(l − x) cos
π(2n+ 1)

2l
x dx =

8A

π2(2n+ 1)2

For fn we remark that

f(t, x) = cos
3π

2l
x = X1(x)

This means that f1(t) = 1 and fn(t) = 0 for n 6= 1.

4. Finally, we find Tn from (26.6), (26.7).

(a) For n 6= 1 we have

T ′n(t) + a2λnTn(t) = 0, Tn(0) = bn ⇒ Tn(t) = bne
−a2λnt =

8A

π2(2n+ 1)2
e−

a2π2(2n+1)2

4l2
t

(b) For n = 1 we have

T ′1(t) + a2λ1T1(t) = 1, T1(0) = b1 ⇒ T1(t) = b1e
−a2λ1t +

1

a2λ1
=

8A

9π2
e−

9a2π2

4l2
t +

4l2

9a2π2

We finally obtain a solution to (26.1)-(26.3):

u(t, x) =

(
8A

9π2
e−

9a2π2

4l2
t +

4l2

9a2π2

)
cos

3π

2l
x+

∞∑
n=0, n 6=1

8A

π2(2n+ 1)2
e−

a2π2(2n+1)2

4l2
t cos

π(1 + 2n)

2l
x
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26.2 Wave Equation on R, D’Alembert’s Formula

Here we will solve the wave equation on R:

utt = a2uxx (26.8)

with initial position

u(x, 0) = f(x) (26.9)

and initial velocity

ut(x, 0) = g(x) (26.10)

In order to derive a formula for the solution to (26.8)-(26.10), we first need to find a general solution to

(26.8).

1. Let u be a solution to (26.8). We consider a new function

w = ut + aux

and show that w solves the transport equation:

wt − awx = utt + auxt − autx − a2uxx = 0

Moreover, (26.8) is equivalent to ut + aux = w

wt − awx = 0
(26.11)

That is, if w and u satisfy (26.11), then u solves (26.8). An example of a solution to (26.11) is

w = 0, which leads to

ut + aux = 0

In this case, we know that

u(t, x) = p(x− at)

Similarly, (26.8) is equivalent to ut − aux = v

vt + avx = 0

For v = 0, this gives

u(t, x) = q(x+ at)

Adding these two solutions, we have

u(t, x) = p(x− at) + q(x+ at) (26.12)

where p and q are twice differentiable functions from R to R.
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2. We will now find the functions p and q from the initial conditions (26.9), (26.10). We calculate

ut(x, t) = −ap′(x− at) + aq′(x+ at)

Then

u(x, 0) = p(x) + q(x) = f(x) (26.13)

ut(x, 0) = −ap′(x) + aq′(x) = g(x)

Integrating the second equation gives

− ap(x) + aq(x) = G(x) (26.14)

where G′(x) = g(x). Combining (26.13), (26.14) gives

p(x) =
1

2
f(x)− 1

2a
G(x)

q(x) =
1

2
f(x) +

1

2a
G(x)

Hence, we obtain D’Alembert’s formula:

u(t, x) =
1

2

(
f(x− at) + f(x+ at)

)
+

1

2a

x+at∫
x−at

g(y) dy

Example We will solve

utt = uxx

u(0, x) = sinx

ut(0, x) = x+ cosx

Using D’Alembert’s formula:

u(t, x) =
1

2

(
sin(x− t) + sin(x+ t)

)
+

1

2

x+at∫
x−at

(y + cos y) dy

= sin
x+ t+ x− t

2
cos

x+ t− (x− t)
2

+
1

2

(
y2

2
+ sin y

) ∣∣∣∣x+at

x−at

= sinx cos t+
1

4

(
(x+ t)2 − (x− t)2

)
+

1

2

(
sin(x+ t)− sin(x− t)

)
= xt+ 2 sin t cosx
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27 Laplace Equation (Lecture Notes)

We consider a domain D ⊆ Rd. The equation

4u =
d∑

k=1

∂2u

∂x2
k

= 0

u∂D = f

is called the Laplace equation. Here we will consider the case

D = {(x, y) ∈ R2 : x2 + y2 < 1}

So we consider the equation

4u(x, y) =
∂2u

∂x2
+
∂2u

∂y2
= 0, x ∈ D (27.1)

u(x, y) = f(x, y), (x, y) ∈ ∂D = {(x, y) ∈ R2 : x2 + y2 = 1} (27.2)

We now want to rewrite this Laplace equation in polar coordinates and then use the method of separation

of variables. We take x = r cosϕ

y = r sinϕ
0 6 r 6 1, −π 6 ϕ 6 π

U(r, ϕ) := u(r cosϕ, r sinϕ)

Then
∂U

∂r
= ux cosϕ+ uy sinϕ

∂U

∂ϕ
= −uxr sinϕ+ uyr cosϕ

∂2U

∂r2
= (uxx cosϕ+ uxy sinϕ) cosϕ+ (uxy cosϕ+ uyy sinϕ) sinϕ

= uxx cos2 ϕ+ 2uxy cosϕ sinϕ+ uyy sin2 ϕ

∂2U

∂ϕ2
= (−uxxr sinϕ+ uxyr cosϕ)(−r sinϕ) + (−uxyr sinϕ+ uyyr cosϕ)r cosϕ

−uxr cosϕ− uyr sinϕ

= r2(uxx sin2 ϕ− 2uxy cosϕ sinϕ+ uyy cos2 ϕ)− r(ux cosϕ+ uy sinϕ)

Hence
∂2U

∂r2
+

1

r

∂U

∂r
+

1

r2

∂2U

∂ϕ2
= uxx + uyy = 4u

So (27.1) now has the form

Urr(r, ϕ) +
1

r
Ur(r, ϕ) +

1

r2
Uϕϕ(r, ϕ) = 0, r ∈ (0, 1), ϕ ∈ (−π, π) (27.3)

Let F (ϕ) := f(cosϕ, sinϕ), ϕ ∈ [−π, π]. Then

U(1, ϕ) = F (ϕ), ϕ ∈ [−π, π] (27.4)

is the boundary condition for U .
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We note that by continuity, we must meet the following conditions:
U(r, π − 0) = U(r,−π + 0)

Uϕ(r, π − 0) = Uϕ(r,−π + 0)

lim
r→0+

U(r, ϕ) exists

(27.5)

Next we find a solution to (27.3)-(27.5) using the method of separation of variables.

1. We want to find a solution in the form

U(r, ϕ) = v(r)w(ϕ)

Substituting this into (27.3) gives

v′′(r)w(ϕ) +
1

r
v′(r)w(ϕ) +

1

r2
v(r)w′′(ϕ) = 0

−r2 v
′′(r)

v(r)
− rv

′(r)

v(r)
=
w′′(ϕ)

w(ϕ)
= −λ

Hence

w′′(ϕ) + λw(ϕ) = 0, ϕ ∈ (−π, π) (27.6)

From (27.5) we get w(−π) = w(π)

w′(−π) = w′(π)
(27.7)

2. Now we want to find non-zero solutions to the Sturm-Liouville problem (27.6), (27.7).

(a) If λ < 0, then w(ϕ) = c1e
√
−λπ + c2e

−
√
−λπ. From (27.7) we get

c1e
√
−λπ + c2e

−
√
−λπ = c1e

−
√
−λπ + c2e

√
−λπ

⇒ (c1 − c2)e
√
−λπ = (c1 − c2)e−

√
−λπ ⇒ c1 = c2

and

c1

√
−λe

√
−λπ − c2

√
−λe−

√
−λπ = c1

√
−λe−

√
−λπ − c2

√
−λe

√
−λπ

⇒ c1 + c2 = 0⇒ c1 = c2 = 0

We obtain only zero solutions.

(b) If λ = 0, then w(ϕ) = c1ϕ+ c2. From (27.7) we get

c1π + c2 = −c1π + c2 ⇒ c1 = 0

and

w′(ϕ) = c1 = 0

Hence

w0(ϕ) =
a0

2
, λ0 = 0

is a non-zero solution to (27.6), (27.7).

62



(c) If λ > 0, then w(ϕ) = c1 cos
√
λϕ+ c2 sin

√
λϕ. From (27.7) we get

c1 cos
√
λπ + c2 sin

√
λπ = c1 cos

√
λπ − c2 sin

√
λπ ⇒ 2c2 sin

√
λπ = 0

and

−c1

√
λ sin

√
λπ + c2

√
λ cos

√
λπ = c1

√
λ sin

√
λπ + c2

√
λ cos

√
λπ ⇒ 2c1

√
λ sin

√
λπ = 0

This implies that sin
√
λπ = 0⇒

√
π = n = 1, 2, 3, . . . , hence

wn(ϕ) = an cosnϕ+ bn sinnϕ

3. Now we find a solution to (27.6) in the form

U(r, ϕ) =
∞∑
n=0

vn(r)wn(ϕ)

Substituting into (27.6) gives

∞∑
n=0

v′′n(r)wn(ϕ) +
1

r

∞∑
n=0

v′n(r)wn(ϕ) +
1

r2

∞∑
n=0

vn(r)w′′n(ϕ) = 0

So we obtain

v′′n(r) +
1

r
v′n(r)− n2

rn
vn(r) = 0, r ∈ (0, 1) (27.8)

Now we find a general solution to (27.8).

(a) If n = 0, then we have

v′′0(r) +
1

r
v′0(r) = 0

This is an ordinary differential equation with separable variables for v′0(r). This yields

v0(r) = c ln r + c̃

From the third equality of (27.5), we must have c = 0 and thus

v0(r) = 1

(b) If n = 1, 2, . . . , then v(r) = rn and v(r) = r−n are solutions to (27.8). However, only v(r) = rn

satisfies (27.5), hence

vn(r) = rn, n = 1, 2, . . .

Consequently

U(r, ϕ) =
a0

2
+
∞∑
n=1

(an cosnϕ+ bn sinnϕ)rn

4. Finally, we need to find the coefficients an, bn from (27.4).

U(1, ϕ) =
a0

2
+
∞∑
n=1

(an cosnϕ+ bn sinnϕ) = F (ϕ)
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Using the orthogonality of {sinnϕ, cosnϕ} for different n, we have

an =
1

π

π∫
−π

F (ψ) cosnψ dψ, n = 0, 1, 2, . . .

bn =
1

π

π∫
−π

F (ψ) sinnψ dψ, n = 1, 2, . . .

We then obtain

U(r, ϕ) =
1

π

1

2

π∫
−π

F (ψ) dψ +

π∫
−π

∞∑
n=1

F (ψ)(cosnψ cosnϕ+ sinnψ sinnϕ)rn dψ



=
1

π

 π∫
−π

F (ψ)

(
1

2
+
∞∑
n=1

rn cosn(ϕ− ψ)

)
dψ


We simplify the term

1

2
+
∞∑
n=1

rn cosn(ϕ− ψ) =
1

2
+

1

2

∞∑
n=1

rn
(
ein(ϕ−ψ) + e−in(ϕ−ψ)

)

=
1

2

[
1 +

∞∑
n=1

(
rei(ϕ−ψ)

)n
+
∞∑
n=1

(
re−i(ϕ−ψ)

)n]

=
1

2

[
1 +

rei(ϕ−ψ)

1− rei(ϕ−ψ)
+

re−i(ϕ−ψ)

1− re−i(ϕ−ψ)

]

=
1

2

1− r2

1− 2r cos(ϕ− ψ) + r2

We have obtained

U(r, ϕ) =
1

2π

π∫
−π

F (ϕ)
1− r2

1− 2r cos(ϕ− ψ) + r2
dψ

To return to the old variables (x, y), let z := (x, y) = (r cosϕ, r sinϕ) and ζ := (ξ, η) = (cosψ, sinψ).

Then

‖z‖2 = r2

‖z − ζ‖2 = 1− 2r cos(ϕ− ψ) + r2

So

u(x, y) = u(z) =
1

2π

∫
‖ζ‖=1

1− ‖z‖2

‖z − ζ‖2
f(ζ) ds(ζ)
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