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1 Riemann Integrals over n-Dimensional Rectangles (Lecture Notes)

1.1 One-Dimensional Case

Consider the interval [a,b] = {z € R : a < x < b} and a function f : [a,b] — R. A set of points
P :={xg,...,x,} such that a = 29 < --- < x,, = b is called a partition of [a,b]. We define the mesh of
the partition P as A\(P) = max{Axy : 1 < k < n}, Axp =z — x,—1. We consider points & € [xg_1, zk].

We can then define the Riemann sum as

o(f,P€) == f(&) Ay
k=1
A function f : [a,b] — R is integrable on [a, b] if there exists a limit

li P
A(Iy)goff(fj %3)

J= /bf(a:) da =

which does not depend on the choice of £&. That is, for all € > 0 there exists § > 0 such that for any
partition P = {zo,...,x,} satisfying A\(P) <d V& € [xg—1,2%), K =1,...,n we have

’J—O'(f,P,gﬂ <€
This limit is called the Riemann integral of f over [a,b].

1.2 Definition of the Integral

‘We introduce the set
I=I,={zeR:aq;<ax<b,i=1,...,d}

which is called a rectangle or an interval in R, and the volume or Lebesgue measure of the interval Ioyp

n

=[] —a)

i=1

‘Ia,b

Lemma 1.1 The Lebesque measure of an interval in R® has the following properties.

1. It is homogeneous, i.e. |Nlqp| = )\d|Ia7b|, where A > 0 and M, p := Ing zp-

n

2. It is additive, i.e. iof I,11,...,1, are intervals in R? such that I = UIi and no two intervals
=1

n
I, ..., I, have common interior points, then |I| = Z |Z;]
i=1

n n
3. If I C UL- where I, 14,..., I, are intervals, then |I| < Z|IZ|
i=1

i=1
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Now we introduce partitions of an interval. Take I = {z € R : a; < x; < b;, i = 1,...,d}. Partitions of

the coordinate intervals [a;, b;], i = 1,...,d induce a partition of the interval I:

n
=
j=1

We write P = {I,...,I,}. The quantity A\(P) = max d(I;), where d(I;) = max |z =y, is called the
J=1...,n x7y€ j

mesh of the partition P.

Definition 1.1 Let P = {Iy,...,I,} be a partition of the interval I. We consider a function f: I +— R
and points & € I;, i =1,...,n. The sum

=1

is called the Riemann sum of f.

Definition 1.2 A function f: I — R is called Riemann integrable on I if there exists a limit

b by
J:/f(a:)d:v:/"-/f(xl,...,xd)dxl...d:vd::/\(llgr)rioa(f,P,g)
1 ai aq

that is, for all € > O there exists 6 > 0 such that for any partition P = {Iy,...,I,} of I satisfying
AMP)<d V& € lrg—1,21], k=1,...,n we have

’J—O'(f,P,gﬂ <€

In this case we write f € R(I).

Proposition 1.1 (Necessary Condition of Integrability) If f € R(I), then f is bounded.

1.3 Darboux Criterion of Integrability

Let the function f : I — R and partition P = {I3,...,I,} of the interval I be given.

Definition 1.3 The quantities
L(f,P) =Y mlli|  U(f,P):=)Y ML
i=1 i=1

are called the lower and upper Darboux sums of f, where m; = in§ f(x) and M; = sup f(x).
z€L; 1'611'

Remark 1.1 L(f,P) < o(f,P,¢) <U(f,P)

Definition 1.4 The quantities

J =sup L(f, P) J=ifU(f,P)
P P

are called the lower and upper Darbouz integrals of f over the interval I.

Remark 1.2 L(f,P) < J < J < U(f,P)



Theorem 1.1 (Darboux Criterion) f € R(I) if and only if J = J and if f is bounded on I.

Proposition 1.2 A function f : I — R is integrable on I if and only if for all € > 0 there exists a
partition P of I such that
U(f,P)—L(f,P) <e€

1.4 Lebesgue Criterion of Integrability
Definition 1.5 A set E C R? has Lebesgue measure zero if for every € > 0 there exists at most a
countable system {I;} of d-dimensional intervals such that E C UIi and Z |;] <e.

i i
Lemma 1.2 A union of a finite or countable number of sets of Lebesque measure zero is a set of Lebesqgue
measure zero. A subset of a Lebesque measure zero set is itself of Lebesgue measure zero.

We say that f is continuous almost everywhere if the set of discontinuities Dy = {x € I : fis discontinuousat x}

has Lebesgue measure zero.

Theorem 1.2 (Lebesgue Criterion) f is Riemann integrable if and only if f is bounded and continuous

almost everywhere.



2 Integrals over a Set (Lecture Notes)

2.1 The Measure of a Set

Let S C R? be a bounded set and let I be an interval in R? such that S C I. We can then define the

Jordan measure of S as

if the integral exists, where
l,zeS

0, x ¢S

By Th. 1.2, the integral exists if [g is continuous almost everywhere. We denote the set of discontinuities

of Ig by Dy = {x : Igisdiscontinuousat x }.

Definition 2.1 The set
0S ={x:Ve>0 B(x)NS#0D, B(x)NS®#D}

is called the boundary of S.
Lemma 2.1 The set Dy coincides with 0S.

Hence, by Lem. 2.1, the Jordan measure p(S) of a set .S C RY exists if and only if the boundary 85 of

S has Lebesgue measure zero. If 1(S) exists, we call S a Jordan-measurable set.

2.2 Integrals over a Set

Definition 2.2 A set S C R? is admissible if it is bounded in R® and &S has Lebesque measure zero.

Definition 2.3 The integral of f over S is given by

[ t@ydsi= [ f@s() ds
S I

where I is some interval in R? and S C I. If the integral exists, then f is said to be Riemann integrable

over S.
Lemma 2.2 For any S, S1, Sa:
1. 98 is closed in R?
2. 9(S1US2) C 951 U0S,
3. 0(S1 N S2) C 051 UISy
4. 0(S1\ S2) C 0S1UDSy

Lemma 2.3 The union or intersection of a finite number of admissible sets is an admissible set. The

difference of admissible sets is also an admissible set.

Theorem 2.1 A function f : S — R is integrable over an admissible set S if and only if it is bounded

and continuous almost everywhere.
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3 Fubini’s Theorem (Lecture Notes)

3.1 General Properties of the Integral

Proposition 3.1 If f,g € R(S) and a € R, then f +g,a- f,f-g € R(S) and

/(f+g)dx—/fdx+/gdaf
S

S S

/afd:c:as/fdx

S

Proposition 3.2 Consider admissible sets Si, Sy and a function f : S1USe — R. Then f € R(S1U S2)
if and only if f € R(S1) N R(S2). If additionally u(S1 N S2) =0, then

/ fdx:/fdx+/fd:c

S1US2 S1 Sa

Proposition 3.3 If f € R(S), then |f| € R(S) and /fdx < /\f|dm.
S S

Proposition 3.4 If f € R(S) and f > 0,Vz € S, then /fd:): > 0.

S
Corollary 3.1 If f,g € R(S) and f < g,Vx €S, then /fd:v < /gdac.

S S
Corollary 3.2 If f e R(S), m < f < M,Vx €S, then m u(S) < /fdm <M p(S).

S

3.2 Fubini’s Theorem

Theorem 3.1 (Fubini’s Theorem) Let X C R™ and Y C R" be intervals and let f: X xY +— R be an

integrable function over the interval X xY. Then

[[sewaris= [ a [ t@ydy= [y [ @)ds
Y Y X

XxY X
Corollary 3.3 If I = [a1,b1] X -+ X [ag, bq] = Iop, then

b1

bd b1
/f(x)dfvz/dxd/dxd—l"‘/f(xlw--axd)dxl
I aq aq—1 ai

Corollary 3.4 If D is a bounded subset of R™!, § = {(z,y) € R : z € D, p1(z) < y < p2(z)}, and
feR(S), then

[ tedyas= [ ao ¢7$)f(x,y) dy
$ D el
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Example Let S be bounded by y = 2? and y = = + 2, and let f(z,y) = z2. The two curves meet when
z? =z + 2. We then have

2 at2 2
_ (x+2)3 b 423
/fl'ydl'dy /dx/yd_/< 3 _3dx_78
-1

Example Let S be bounded by y =2z, y = 5,y =6 —x and let f(z,y) =

= m We split S into

Si={(z,y): 0< 2 <2, %< y< 22}

Sy ={(z,y):2<2<4, $<y<6-=z}
We then have

2 2x 4 6—1

1 2
dx dy = =—-In7- =
/ [z, y)dz dy / +x+y / / 1+x+y FIn7 -
S 0
Example Let S = {(z,y,2): |z| <2, 0<2< 1, 2<y < V4 —22—22} and let f(x,y,2) =y. Then

1 2 Vi ;
S 0 —z z



4 Change of Variables (Lecture Notes)

4.1 Heuristic Derivation

We consider sets S € R? and D C R?, and a bijective map p: D — S. We are interested in finding out

if / f dx can be rewritten as / g dz, where g is some function. Let ¢ be an affine map such that
S D

r(u,v) = a1 + anu + apv

y(u,v) = ag + ag1u + axv

where (u,v) € R%. We want to find how the volume of an interval I C D is changed under the map ¢, i.e.
what the volume of ¢(I) is. Let I = [0, Au| x [0, Av]. The interval I is mapped by ¢ to the parallelogram
I' spanned by the vectors ¥ = (a11Au,a21Au) and 7 = (a12Av, aeAv) applied at the point (a1, as2).
Hence

a11Au  asnAu aill a9

= AulAv

1|

’3(93,?;)
d(u,v)

a1aAv  asAv a2 a2

Similarly, for any interval I, we have

u0) =[5  n

where I' = p(I). Now we consider a more general transformation ¢. Given
x = z(u,v)
y =y(u,v)

we can make use of Taylor’s theorem to approximate

) = () = | S0 1

From there we can formally change variables from x and y to v and v:

éfmmmwwgywmwmz%ﬁ@@ﬁ%ﬁwﬁzyvmeB&ﬂmw

4.2 Change of Variables

Theorem 4.1 (Change of Variables) Let S, D be admissible sets and let ¢ : D +— S be a continuously

differentiable bijection such that its Jacobian is non-zero in D. Then

/fqu—/fwwnﬁf“”“”)w
S D

ul,...,ud)
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Example Let S be bounded by z = x> + y* and z = 1, and let f(x,y, z) = 2 + o2

coordinates:

we have

and thus

Example Let S be bounded by 2° +y* + (z—1)2 = 1 and let f(x,y, 2)

coordinates:

we have

and thus

T =7Cosp

. oNw,y,2) _
Yy=rsme W—T
z =2z

27 1 Vz
///(:L’2—|—y2)dxdydz:/dcp/dz/r3dr:
S 0 0 0

T = T COS ® COS Y
O(x,y,2)

Yy =rsinypcosy m:r2cos¢
z =rsiny
0< p<2on o<¢<g 0 <7< 2sine

2 sin

[NE]

/// 2 + 12 +z2d9:dydz—/dg0/d¢) / r comj;dr—%r

Using cylindrical

= \a? 4+ y? + 22. Using spherical



5 Improper Integrals (Lecture Notes)

5.1 Improper Integrals

Definition 5.1 An ezhaustion of a set S C R? is a sequence of Jordan-measurable sets {Sn} such that

Sn CSpt1 €S foranyn > 1, and USn:S.
=1

Lemma 5.1 If {S,} is an exhaustion of a Jordan-measurable set S, then:

1. lim M(Sn) = /L(S)

n—oo

2. for every f € R(S), f also belongs to R(Sy) and

lim [ f(z) dx:/f(:n) dx

n—00
Sn S

Definition 5.2 Let {S,} be an exhaustion of a set S and let f : S +— R be integrable over all S,,. Then
the limit

n—oo

Sn

/f(a:) dr := lim | f(x)dz
S
is called the improper integral of f over S if it exists and does not depend on the choice of {Sy}. In this

case, we say that the integral converges.

Remark 5.1 If S is a Jordan-measurable set and f € R(S), then the integral of f over S as in Def. 5.2

exists and has the same value as the proper integral of f over S. This follows from Lem. 5.1.

Proposition 5.1 If f : S — R is non-negative and the limit in Def. 5.2 exists for one exhaustion {S,}

of S, then the improper integral of f over S converges.

// R dy

RQ

Example Consider the improper integral

We can define S, = {(x,y) € R? : 22 + y* < n?} and use polar coordinates to evaluate the integral:

2 n

// e TV gy dy = lim // eV gy dy = lim d<p/re_r2 dr
n—oo n—oo
S”L

R2 0 0

n

=27 lim /re’”2 dr = lim 7(1— 67"2) =
n—0o0 n—oo
0

Remark 5.2 Improper integrals can arise if S is unbounded or if f is unbounded. Various properties of

multiple integrals can be suitably extended to improper integrals.

Theorem 5.1 (Comparison Test) Let f and g be functions defined on S. Assume f and g are integrable
over exactly the same Jordan-measurable subsets of S, and |f(z)| < g(x) for all x € S. Then if the
improper integral /g(ac) dx converges, the integrals / |f(z)|dx and /f(m) dx also converge.

S S S
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5.2 Curves in R¢

Definition 5.3 A curve in R? is a continuous map vyl RY, where I is a closed interval consisting

of more than one point. The interval I could be [a,+00), (—00,b], [a,b] : a < b, R.

If I = [a,b], then a is called the initial point of v and b is called the end point of 4. These two points
define a natural orientation of v from ~y(a) to v(b). Replacing (t) with v(a + b — t) will yield the curve
with opposite orientation. If y(a) = ~(b), v is said to be a closed curve. If 7 is differentiable, the curve
is said to be differentiable. If v has no points of self-intersection, i.e. it is injective on I°, then ~ is said

to be simple.
Definition 5.4

1. A simple curve v : I — R? is called reqular at to if v is continuously differentiable on I and

v (to) # 0. v is regular if v is regular at any point tg € I.

2. The vector v'(ty) is called the tangent vector and a(t) = y(to) + t7/ (to) is called the tangent line to
v at y(to).

10



6 Line Integrals of Scalar Fields (Lecture Notes)

6.1 Rectifiable Curves

Consider a curve v : [a,b] — R? and a partition P = {to,...,t,}, where a = tg < --- < t, = b. We set

WP, y) = Z [y () — (i)l
i=1
Definition 6.1 A curve v is said to be rectifiable if
Hy) = sup(P.7)

is finite, where the supremum is taken over all partitions P of [a,].

Proposition 6.1 If 4 is continuous on |a,b], then v is rectifiable and

b
uwz/wwwt

Remark 6.1 If d =2 and v(t) = (x(t),y(t)), t € [a,b], then

b
1) = [ V@) + ()" a

In particular, if v is the graph of a function f, i.e. y(t) = (t,f(t)), t € [a,b], then

b
1(7) :/\/1+ (f(£))* at

t
Example Let v(t) be the graph of the function f(t) = acosh—, t € [0,b], b > 0, a # 0. Then we compute
a

/ t\? I t
I(7) :/ 1+ <sinh > dt = /coshdt = asinh —
a a a

0 0

Now let v(0) = (a( — sinf),a(l — cos b)), 6 € [0,2x]. Here, v parametrizes a cycloid. We can compute

b

= gsinh —
0 a

27 27
l(y):/\/@2(1—0030)2+a2sin20d9:a/\/2—2cost9d9
0 0
27 27 9
:a\/ﬁ/\/l—cosedﬁz2a/sin2d9:8a
0 0

11
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6.2 Natural Parametrization of Rectifiable Curves

Let 7 : [a,b] — R? be a regular curve, that is, 7/(t) #0 VYt € [a,b]. We denote by

4w=/wwvmmw:uw

the length of a part of the curve v(r), r € [0,]. Since~/(¢) # 0, ||7/(¢)|| > 0, the function s = s(t), t € [a, b]
strictly increases. Consequently, s is invertible with inverse ¢t = ¢(s), s € [0,], and [ = I(7y) = s(b). We

then define the parametrization
2(s) = 1(t(s)), 5 € [0,1] (6.1)

of the curve ~.
Lemma 6.1 The length ls(x) of the curve given by x = x(r), r € [0, s] equals s.

Definition 6.2 The parametrization x as defined in (6.1) is called the natural parametrization of the

curve 7.

We remark that any regular curve has a natural parametrization.

6.3 Line Integrals of Scalar Fields

Let «y be a rectifiable curve with length L. We assume that v has a natural parametrization z(s), s € [0, L].
We set
I'={a(s), s € [0, L]} = {7(t), t € [a,b]}

Consider a function f : I' — R. We take a partition P = {sq,s1,...,8,} of [0, L] and define the line

integral as

if the limit exists.

L
Remark 6.2 The line integral /fds cotncides with the usual Riemann integral /f(:v(s)) ds, where x
0

is a natural parametrization of .

12



7 Line Integrals of Scalar Fields and Vector Fields (Lecture Notes)

7.1 Line Integrals of Scalar Fields

Let v : [a, b] — RY be a rectifiable curve with length L. We assume that ~ has a natural parametrization
x(s), s € [0,L]. Take I" = {x(s), s € [0, L]} = {y(¢), t € [a,b]} and a partition P = {sg, s1,...,S,} of
[0, L].

Definition 7.1 The line integral of a function f : ' — R along v is

" L

/fds = )\(lim Z f(z(si)) (si — si—1) = /f(x(s)) ds
5 i=1 5

iof the limit exists. If it exists, the line integral is equivalent to a Riemann integral.

Line integrals of scalar fields have the following properties:

1. /dS:L

Y

2. If f is bounded and continuous, then the Riemann integral / f ds exists.

Y

3. If 3(t), a < t < b is another regular parametrization of v, then
b
[ as= [ rGo)r@)
0% a

4. If 4™ is the time reversal of 7, then
/fds = /fds
o v

5. For a,b € R and f,g: ' — R

/(af+bg)ds—a/fds+b/gds

Y Y Y

6. Let I(7) be the length of . Then

13
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7.2 Line Integrals of Vector Fields

Let « be a regular rectifiable curve on R? with parametrization ~(t) = (z(t),y(t)), a <t <b.

Definition 7.2 The line integral of a vector field ﬁ(m,y) = (P(:U,y), Q(m,y)) along vy s
b b
[Feds= [Faw) v @it = [ [Po@) 0 +Q60) 0] d
¥ a a
Example Tuke ~i(t) = (t,t%), 0 <t <1 and F(x,y) = (y,z). We calculate
1 1
/ﬁ ds = / (y(t) ' (t) + =(t) y'(t)) dt = /(t2 +2t%) dt =1
71 0 0

Example Take ~5(t) = (1 — cost,sint), 0 <t < — and F(z,y) = (y,z). We calculate

b | 3

3

jus

/ﬁ ~ds = / (y(t)2'(t) + z(t) y'(t)) dt = / (sin®t + (1 — cost) cost) dt
0

Y2 0

costdt + [ cos2tdt =1

O\

INE]

O\
[NE]

b
Remark 7.1 Sometimes we write /ﬁ ~ds = /(P dxr + Qdy).
2!

a

Line integrals of vector fields have the following properties:

1. The definition of / F.dsis independent of parametrization.

v

2. For the time reversal 47 of 7, we have /I:” ~ds = — / F - ds.

R il
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8 Green’s Formula (Lecture Notes)

8.1 Green’s Formula

Consider a set S and let v be such that v = 3S. We say that a curve -y is positively orientated if the set
S stays on the left when travelling along ~.

Theorem 8.1 (Green’s Formula) Let 1*:"(:1;, y) = (P(x, y), Q(x, y)) be such that P and Q are continuously

differentiable on S. Then
0Q 0P -
_ - | F.
JJ (52 55) aoan= [ 7
S 2

Example Take the set S = {(z,y) : 22 +9? < 1}. Then v is the positively orientated unit circle. Say
that for the field ﬁ(az,y) = (z%y, zy®) we want to calculate I = /ﬁ -ds. Then we have

Y

I:/(Pd$+Qdy) z/(m2ydfv—xy2dy)

Y Y

2

1
_ 0Q 9P _ 2., .2 __/ /3 _ T
_//(833 ay)dmdy— //(a: +y°)dxdy = de | r’>dr = 5
S S 0 0

8.2 Conservative Vector Fields

Definition 8.1 A wvector field F: S CRY— R? is conservative if for any two points a,b € S and any

two curves 71,72 connecting a and b we have
/ﬁ -ds = /ﬁ -ds
" Y2

Definition 8.2 A wvector field F:S CR— R? is called a gradient vector field or a potential field if
there exists a continuously differentiable function ¢ : S +— R such that F= V.

15
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9 Path Independence of Line Integrals (Lecture Notes)

9.1 Work of a Vector Field

Let S be a subset of RY. We say that S is a domain if S is open and connected. A connected set S has
the property that any two points from .S can be connected by a curve in S. Let F be a continuous force
field acting in the domain S. We want to find the work done by F when moving along a given trajectory
~. If Fis constant, the displacement described by a vector E is associated with an amount of work F - :5?
Let the curve v = 7(t), t € [a, b] be naturally parametrized and differentiable. We take a partition P of
[a, b] such that a =ty < --- < t,, = b. Then the work A is given by

n
AR T F(y(t) A (k) At
i=1
In the limit, the work done by F over the curve ~v becomes

A:/bﬁ(fy(t)) -7’(t)dt:/F-ds

9.2 Conservative and Potential Vector Fields

Proposition 9.1 Let F: S+ R? be a continuous vector field, where S C R is a domain. The following

statements are equivalent:

1. Fisa potential vector field in S.

2. For any closed curve v in S, we have /ﬁ -ds = 0.

Y

3. F is conservative in S.

Proof: We first prove that 1 implies 2. In this case, F = Vi is given. We take v = (), ¢ € [a, b] such
that v(a) = v(b) and compute

b b

b
[Fas= [Faw) 0= [Tot0) - v0dt = [ Lle0)]dt=ob®) - o) =0

ol a a

Next we prove that 2 implies 3. Here we take 1,72 and v = v U~4%. Using 2, we have

oz/ﬁ.ds:/ﬁ.ds+/ﬁ.ds=/ﬁ.ds—/ﬁ-ds

2l e yE M 2

Finally we prove that 3 implies 1. We take points a,z € S, where a is fixed and z is a variable, and
define

go(a;):/ﬁ'ds:/xﬁ-ds (9.1)
y a

where v is any curve connecting a and x. Using the definition of the gradient, we want to show that

Lol h) = o) = F@) - b

=0
h—0 IRl

16
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First, using the fact that Fis conservative, we calculate

z+h z+h 1

o(x+h) — /F ds—/F ds = /F ds / @ +th) - hdt = F(z+0R) - h

0

Here we have used the mean value theorem for integrals; in this case 6 € [0,1]. We then have

(e +h) = ¢la) = Fa) - bl _ |[Fla+6h) h=F@)-hl 5 g G
21 " )

‘We see that indeed

o 19+ 1) — (@) = Fla) -h]
h—0 17l

|
o

hm |F(z + 0h) — F(x)|

and thus F = V. O

Remark 9.1 (9.1) can be used to find a potential of a potential vector field.

9.3 Curl-Free Vector Fields

Definition 9.1 The curl of a vector field F= (P,Q,R) in S C R? is the vector field given by

V x F = :<31“3_5Q@P_333Q_3P>

’“U %"Qy S
Q o =
o Flo =

Definition 9.2 A wvector field F is called irrotational or curl-free if V x F=0in5.

A domain S is called simply connected if any closed curve v in S can be continuously transformed to a

point a € S.
Proposition 9.2 Let F be a continuously differentiable vector field in a domain S C R3.
1. If F is conservative in S , it is curl-free in S.

2. 1If Fis curl-free in S and S is simply connected, then F is conservative in S.

17



10 Surface Integrals of Scalar Fields (Lecture Notes)

10.1 Surfaces

Definition 10.1 A surface S in R? is a subset of R that can be parametrized by a continuous vector

function r:
S = {r(u,v) = (z(u,v),y(u,v), 2(u,v)), (u,v) € D}

where D is a bounded domain of R? and r(u,v) # r(u',v') for all (u,v) # («',v') in D (r may not be
injective on the boundary of D).

Definition 10.2 If a surface is parametrized by a continuously differentiable vector function, then it is

called a continuously differentiable surface.

Definition 10.3 For a surface
S = {r(u,v) = (z(u,v),y(u,v), 2(u,v)), (u,v) € D}
and a point (ug,vg) € D, the lines
{r(u,vo), (u,v0) € D} {r(uo,v), (uo,v) € D}

are called u- and v-curvilinear coordinates on S at r(ug,vo). The tangent vectors to those lines are
denoted by

Ty = Tu(u(]v'UO) =

or (8x Oy (9,2)

ou~ \ou’ du’ du
or Ox Oy 0z
rv:Tv(UO;Uw:%: o0’ ov’ Ov

We will only consider surfaces such that r, x r, # 0. In this case, r, and r, span a plain in R? called the

tangent plane to S at r(ug, vo).

Remark 10.1 The equation for the tangent plane to S at r(ug,vo) = (x0, Yo, 20) S

T — X0 Y—Y0 2= 20
xu(anUO) Yu Uo,vo) Zu(uo,vo) =0

(
Zy(u0,v0)  Yu(uo,v0) 2v(uo,v0)

Definition 10.4 The line orthogonal to the tangent plane at ro = (xo,Yo,20) € S is called the normal
line to S at ro. Every non-zero vector parallel to the normal line at rq is called a normal vector to S at

Tro-

10.2 Swurface Area

Let I'; be a rectangle
[UZ’, u; + Auz] X [Ui, v; + AUZ]

in D and let S; be its image in S. The area of S; can be approximated by the area of the parallelogram in
R3 spanned by the vectors ru(ui, vi) Au; and 1y (u;, v;) Av; as Au;, Av; — 0. The area of the parallelogram
is given by

||7w X || AulAv

18
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Using the Riemann sum approximations, we have

Area(S) = // |7 X 7| dudv
D

Note that
7w x ol = [lrulPllrol? sin® 6 = [[rul 2 roll® = llrul®[l7ol|* cos® 6 = [[rul?roll? = (ru,m0)* = EG = F?
where E := ||r,||%, F := (ry,7y), and G := ||r,||?, so

Area(S) = / / VEG = F2 dudv
D

Remark 10.2 The area does not depend on the parametrization.

10.3 Surface Integrals of Scalar Fields

Let S = {r(u,v), (u,v) € D} be a continuously differentiable surface in R® and let f be a real-valued

function defined on S.

Definition 10.5 The integral of f over S is denoted by and defined as

//de://f(:c(u,v),y(u,v),z(u,v))mdudv
S D

Remark 10.3 A physical interpretation of the integral of f over S for non-negative f is the mass of the
surface S with density f.

Lemma 10.1 The definition of //de is independent of the parametrization of S.
S

Example We compute

I—// ds
g /$2+y2_’_22

where S is the lateral surface of the cylinder

T =acosu
y = asinu O0<u<2r,0<v< H
z=v

We first compute / EG — F2 = a and thus

I—//adudv—27raln w
va? + v? a

19



11 Surface Integrals of Vector Fields (Lecture Notes)

11.1 Flux Across a Surface

Suppose there is a steady flow of liquid in a domain G and that z — F (z) is the velocity field of this
flow. Let S be a smooth surface in G and let x — 7i(z) be a field of normal vectors to S. We want to
determine the volume of fluid that flows across the surface S per unit time in the direction indicated by

the orienting field of normal vectors to the surface.

We remark that if the velocity field is constant, then the flow per unit time across a parallelogram
IT is equal to the volume of the parallelepiped defined by the vectors ﬁ, 51, and 52 This volume is given
by F. (f_i X 52) = (ﬁ, 51, 52), which is the triple product of the vectors ﬁ, 51, and 52 If the orientation
is opposite to the direction of ﬁ, then the flow is —F - (51 X 52)

Now take the surface S with smooth parametrization
S ={r=r(u,v): (u,v) € D}

In order to define the flux across S, we fix a partition {D;} of D and approximate the image r(D;) by
the parallelogram spanned by 51 = ry(ui, v;)Au; and 52 = ry(ui, v;)Av;. Assume that ﬁ(az) varies by
only small amounts inside r(D;) such that, replacing r(D;) by this parallelogram, we may assume that
the flux AF; across the piece r(D;) of the surface is approximately equal to the flux of a constant field

F (i, Yiy 2i) = F (r(u,;, UZ)) across this parallelogram spanned by £ and &. So
AF; = (F(zi, 4, 21), 61, &) = (ﬁ(r(ui,vl-)),Fu(ui,vi),ﬁ(ui,vi)) Au; Av;
Summing all these elementary fluxes, we obtain

F = ZA]: Z( u“vl ru(ui,vi),Fv(ui,vi)) Au; Av;

Hence we can define

7= // (Tulu, v) X Ty (u,v)) du dv

= ) o, Ty X T
to be the flux of F' across S in the direction 77 = ﬁ
Ty X T

Remark 11.1 Using the definition of the surface integral of a scalar field, we have

F = // Hruirv” ||ru><rv||dudv—// F n
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11.2 Definition of the Surface Integral of a Vector Field
Let S = {r = r(u,v), (u,v) € D} be a smooth (differentiable) surface in R3.
T X Ty

e S is orientable if the unit normal is continuous in D.

17 X 7|
e If 77 is a fixed continuous unit normal to S on D, then we say that S is oriented by the normal 7.

So, let S be a smooth surface oriented by a unit normal 7 and let F = (P,Q, R) be a vector field defined
on S.

Definition 11.1 The integral ofﬁ over S is denoted by and defined as
//ﬁ-dsz//(ﬁ-ﬁ)ds
S S

where the right-hand side is the surface integral of the scalar field F it over S.

Remark 11.2 If S is oriented by the normal i = ”:u i :UH then by Def. 10.5
//ﬁ.dS://(ﬁ.ﬁ)dS:// Hruxrvn\ruxrdeudv—// (7 X 7y) dudv
Tu X Ty
S S D
P @Q R

:// Ty Yu 2ol dudv

D |y Yv 2o

Remark 11.3 The identity

P Q R

Ty Yu Zu =P

Ly Yv Zou

motivates the following alternative notation for the integral ofF over S when S is oriented by the normal

- Tu X Ty
= e
17 X 7|
//ﬁdS://dedz+dedx+Rdxdy
S S
If S is oriented by the normal 1 = — Cu a 7:1; , then
|70 X 7|

//ﬁ-dS:—//dedz+@dzdx+Rdmdy
S S
I://zdxdy

S

Example We compute

where S is the upper part of the lateral surface of the cone z = \/x2 + y2, 0 < 2 < H oriented outwards.
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We take the parametrization

y=u (u,0) € D ={(,y) : 2° +y* < H?}

z=\VuZ+ 02

We note that the cross product of the vectors

u v
7= (1,0, ——) and 7= (0,1, —0nu
( \/u2+v2) < \/u2+v2>

points inwards, which is opposite to the orientation of S. So

0 0 vVu2+?
// Tuxrv dudv— //1 0 # dudv:—/ Vu?2 +v2dudv
D

\/u2+v

2

H
—/dgo/err 7rH3
0 0

I—// dydz n dz dx 4 dx dy
x Y z

S

Example We compute

where S is part of the ellipsoid

T = aCOSuUCoOsv

N
IS
N
N
<
N

y = bsinucosv

1
wly
N
e~

zZ = csinv

oriented outwards. First we compute the cross product between the vectors

—

7y = (—asinucosv,bcosucosv,0) and 7, = (—acosusinv, —bsinusinv, ccosv)

and notice that it is also oriented outwards. So

1 1
a COS U COS vV bsinu cosv csinv
I—// —asinucosv bcosucosv 0 du dv

—acosusinv —bsinusinv ccosv

I
T (V2 1
= dudv = du dv=p— [ X2 - =
p//cosvuv P /cosvv p12<2 2)
6

D

Na\w\:\

ab bc ca
wherep:?—i-Z%—?.
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12 Gauss-Ostrogradskii Theorem (Lecture Notes)

Let S be a piecewise smooth surface surrounding a compact domain V in R? oriented by the outgoing

normal vector (positive orientation). Let F= (P,Q, R) be a smooth vector field in the closed domain V.

Theorem 12.1 (Gauss-Ostrogradskii Theorem)

//ﬁ-dsz///v-ﬁdmdydz (12.1)
S \%

Remark 12.1 Let B.(p) and S-(p) denote a ball and sphere respectively, both of center p € R® and

radius €. The Gauss-Ostrogradskii theorem implies
// V. Fd:cdydz-//F dsS
Se(p)
Using the mean value theorem for domain integrals, we have
V. F(p) Vol(B / / F.ds
Se(p)
where p is a point from Be(p). Then, by continuity of V - ﬁ, we have
V- F(p) =li F-dS 12.2
Se(p

In particular, V - F s independent of the choice of coordinate system although it is defined as the sum of

partial derivatives with respect to a fired Cartesian coordinate system.

Remark 12.2 The fraction in the right-hand side of (12.2) can be interpreted as the mean intensity per
unit volume of sources in the ball B:(p), that is, V - ﬁ(p) is the specific intensity per unit volume of the

source or sink at the point p.

Remark 12.3 If V- F is positive for p € R3, then p is a source. If V - F is negative, then p is a sink.
The Gauss-Ostrogradskii theorem states that the flux of F across S equals the ‘sum’ of all flows from

sources in V. minus the ‘sum’ of all flows to sinks in V.

Corollary 12.1 IfV is a connected set whose boundary consists of piecewise smooth surfaces S, S1, ..., Sk

(here S is the outer boundary and Si,...,Sk are boundaries of holes in V') all oriented by outgoing

k
// V-ﬁdxdydz://ﬁ-dS—i—Z//ﬁ-dS
v S i=1"g:

normals, then
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Example Let S be the lateral surface of the cone 2% +y* < 2% < 1 and let Sy be the upper surface such
that the whole surface of the cone is S = 51 U Sy which is oriented outwards. We take F = (x3, 2, 23).

In order to compute
/ F-dS

S1

we use (12.1). Here V = {(z,y, 2) : 2> + 4* < 2> < 1}. Then, using cylindrical coordinates, we calculate

//ﬁ'dS:///V'ﬁdxdydz:3///($2+y2+22)da:dydz:?7(;
S \%4 \%4
= O =
/ F'dS—lo—//F‘dS
So

S1

Hence

The parametrization of S s

r=1Uu
y="v (u,v) € D ={(x,y) : 2° +y* < 1}
z=1

so the normal vector is it = (0,0,1). Therefore

//ﬁ-dSz//zSdS://dS:w
Sa Sa Sa
- 9 T
J[ #5351,
S1

and thus
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13 Stokes’ Theorem (Lecture Notes)

13.1 Stokes’ Theorem

Let S be a piecewise smooth surface in R? oriented by a unit normal 77 and let « be the positively oriented

boundary of S with respect to the normal 7i. Let F be a continuously differentiable vector field on S.

Theorem 13.1 (Stokes’ Theorem)

//(vXﬁ)-dS

S

/ﬁ'ds
¥

Remark 13.1

1. Let S be parametrized by {r(u,v),(u,v) € D} and let T be the positively oriented boundary of

X
D C R%. Then v = r(T) is positively oriented with respect to the mormal i = % If
Tu X Ty

= (P,Q, R), then Stokes’ theorem can be equivalently stated as

/Pdm+Qdy+Rdz-// 8—R—8—Q dydz + 8—P—8—R dzdx + 8—Q—8—P dx dy
0z 0z Oz or Oy

Y

2. If it = (ng,ny,n,), then

Ny Ny 7Ny
//(Vxﬁ)-dS://(Vxﬁ)~ﬁdS://8(1 2 Z|ds
s S s |P Q@ R

Example Let v be the curve describing the intersection between the paraboloid x> +y? + z = 3 and the
plane x +y + z = 2 oriented positively with respect to the vector (1,1,1). Let S be the surface in the
plane spanned by v oriented by the unit normal @ = (\[ el \[) Note that v s positively oriented with
respect to . We want to find

I:/(y2—z2)d$+(22—xQ)dy+(x2—y2)dz

Y

First, for P =y? — 2%, Q = 22 — 2%, R = 2> — 4%, we compute

OR  0Q

o 0n —2(y + 2)
OP OR

0Q OP

o oy —2(z+y)

Thus by Stokes’ theorem
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Since S is a subset of the plane x +y + z = 2, we have

I:—\%é/dé‘

The surface S can be parametrized as z =2 — x — v, (z,y) € D. We calculate

2 2
VEG =1+ (Z) +(Z) =3
ox oy
Therefore
I = —8Area(D)

The boundary of D 1is the projection of v onto the xy-plane. To find its equation, we eliminate z from
the system of equations

> +y?+2=3

rTH+y+z=2
. 1\? N 3 E!
and obtain | x — 3 +(y— 5] =3 which is a circle of radius 3 Thus
I =-127

13.2 Physical Meaning of the Curl

Suppose that the entire space, regarded as a rigid body, is rotating with constant angular velocity w
about the z-axis. Let us find the curl of the vector field F of linear velocities of all points in space. In
cylindrical coordinates, we have F (r,¢,2) = wré,. Calculating the curl, we find V x F=2w €, where
e, =(0,0,1). That is, V x F' is a vector directed along the axis of rotation. The magnitude of V x Fis

equivalent to the angular velocity up to a factor of 2 and its direction determines the direction of rotation.

Locally, the curl of a vector field at some point characterizes the degree of vorticity of the field in a
neighborhood of that point. Let 7 be a unit vector and let . be a circle of radius € centered at p € R3,
lying in the plane perpendicular to 7 and positively oriented with respect to 7. Then the projection of

V x F onto 7 can be computed using Stokes’ theorem:

where / F - ds is the circulation of F along . The value of (V x F ) - 71 is maximal in the direction of

Ye
1, coinciding with the direction of V x F'.

13.3 Solenoidal Vector Fields

Definition 13.1 A vector field F in R? is solenoidal or divergence-free in V. C R3 if V - F=0inV.

Proposition 13.1 Let V be a simply connected domain in R® and let F be a smooth vector field on V.
Then F is solenoidal in V if and only if for any solid V. C V with smooth boundary S, the fluz of F

through S is zero.
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14 Holomorphic Functions (Lecture Notes)
14.1 Basic Notions
For the complex number z = x + yi € C we define its

1. Real part: Rez ==

2. Imaginary part: Imz =1y

3. Complex conjugate: Z = — yi

4. Absolute value: |z| = vzz = /22 + 2

We will denote by
Br(z) ={z€C: |z~ 2| <r}={z=a+bi:(x—z0)*+(y—y0)° <7}
the open ball in C with center zy and radius . We call a set U C C open if
VzoeU 3Jr>0:B.(2) CU

14.2 Differentiable Functions

We will consider functions from C to C. Let U be an open subset of C and let f : U — C be a complex

function.
Definition 14.1

1. If the limat

lim f(Z) - f(Z()) _ f,(ZO)
Z—20 Z— 20
exists, that is
Ve>0 35>0:Vze Bs(z), 2 # 20, f(zz—f(zo)_f,(zo) <€
— <0

then f is called complex differentiable at zo € U and f'(z20) is called the derivative of f at 2.
2. If f is complex differentiable for every zg € U, we say that f is holomorphic in U.

3. We say that f is holomorphic at zy if f is complex differentiable in a neighborhood of zy (some

open set Uy containing 2 ).

Example We check that f(z) = 22 = (z + yi)? = 2° — y? + 2xyi, z = 2 + yi € C is differentiable on C:

2 2 -
lim 20— gy GZRET20) oy
Z—20 2 — 20 Z—r20 zZ— 20 Z—20

The limit indeed exists and f'(z) = 2.
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Example We want to show that the function f(z) = ]2]2 =22+ y? z=x+vyi e C is not differentiable

at zg = 1. We first consider

1+¢€?—-1 2 2
i EET T 26t
e—0 € e—0 €
Next we consider
.1 +de? -1 141
lim ————— =lim ———— =0

e—0 1€ e—0 1€

This shows that f'(1) does not exist.
Proposition 14.1 If f is differentiable at zy then f is continuous at z.
Proposition 14.2
1. If f and g are holomorphic on U, then f+g, fg, and g, g # 0 are holomorphic on U and
o (fxg)=f=xd

e (fo)=fg+fd

. <f>’ _fla—fd
g 9

2. If f:Uw— Vand g : V — C, where U and V are open sets, are holomorphic, then g o f is
holomorphic and (go f)'(2) = ¢'(f(2)) f'(2).
14.3 Cauchy-Riemann Equations

Let every z € C correspond to an ordered pair (x,y):
Coz=x+yi e (z,y) € R?

Then a complex function w = f(z) similarly corresponds to the functions u = u(z,y) = Re f(z) and
v=1v(r,y) = Im f(2), that is f(2) = u(z,y) + v (z,y).

Theorem 14.1 (Cauchy-Riemann) For a function f = u+iv : U — C, where U C C is open, and a

point zg = xg + iyg € U the following statements are equivalent:
1. f is complex differentiable at zy.

2. u,v are real differentiable at (zo,yo) and the Cauchy-Riemann equations are satisfied:

ou ov
%(ivo’yo) = @(xo,yo)

. . . 0 0 0 .0
If f is complex differentiable, then f'(z) = (%(3307.@0) + Z%@oﬂo) = £($0’ Yo) — 28*2(900, Yo)-
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15 Properties of Holomorphic Functions (Lecture Notes)

15.1 Properties of Holomorphic Functions

Let U be an open subset of C. If f(z) = u(x,y) + iv(z,y) for z =z + iy € U is a function from U to C,
then it is called locally constant in U if for every zg € U there exists a ball B,.(z9) C U such that f is
constant on B,(zp). We remark that if f is locally constant, it is constant on each connected component
of U.

Lemma 15.1 Let U be open in C and let f : U — C, f(z) = u(x,y) + iv(x,y) be holomorphic on U.
1. If f'(2) =0 for all z € U, then f is locally constant.
2. If f only takes real values, then f is locally constant.
3. The functions u,v are harmonic, i.e. Au =0, Av=0 on U.
Lemma 15.2 If u : U — R is harmonic on a simply connected domain U in C, then there exists a

holomorphic function f: U — C such that u = Re f.

15.2 Some Elementary Functions

1. Power Function
The function
f(z)=2",2€eC,neN

is holomorphic. This follows from Prop. 14.2. Its derivative is
f'(z) = nz"1
If we write z = r(cos ¢ + ising) in polar coordinates, then by de Moivre’s formula
2" =r"(cosny + isinngp)

Hence, if 21,29 € C are such that |z1| = |22 and argz; = argze + k%ﬂ, then zI' = zj. This
implies that f is not bijective on C. However, it is bijective from D = {z : 0 < argz < %’T} to
C\{z=x+1iy: x>0}

2. Exponential Function
We define the function
n

¢* = lim (1 n 5)

n—00 n

To show that the limit exists for any z = x + iy € C, we calculate

X xr X
—<\/(1+> +y2> —(1++ 2y)
n n n n

n 2 2
. 2¢ a2 +y?\? limy, o0 ln(1+%+%)
lim {14+ —+ =e "
n

n—00 n2 -

T+ 1y
n

()= o e
n n

.oon
lim —In ==z
n—00

2 %+ y? n(2c a?+y?\ I (1 +&+ $2:2y2>
1+ =+ )= (=
n 2 2\ n n2 (2l+x2+y2>

n
n n2
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Thus lim r, = €. Next we calculate
n—oo

y y y 1+ 2
lim n arctan n = lim n—"— arctan n_ n — lim
1+ 1+2 1+ g

n—oo
n

and find lim ¢, =y. Thus
n—00

e* = " = e*(cosy + isiny)

In particular, we obtain the Euler formula:

e = cosy + isiny
3. Trigonometric Functions
Using e?¥ = cosy + isiny and e ¥ = cosy — isiny for all y € R, we obtain

eV +e W : eV —e W

cosy = —— siny = ————
Y 2 Y 2i

with which we can define the trigonometric functions for z € C:

elZ _|_ e—ZZ . e’lZ _ e—’LZ
coOsg = ———— sinzg = ———
2 21

These complex trigonometric functions are closely related to the hyperbolic trigonometric functions:

z —Z z —Z
e“ +e . e —e
coshz = — sinhz = ———

So

cosh z = cosiz
sinh 2z = —isiniz
cosz = cosh iz

sin z = —¢sinh iz
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16 Conformal Maps (Lecture Notes)

16.1 Geometric Meaning of arg f'(z) and |f'(2)|

Let ~(t) = z(t) + iy(t), t € o, B] be a continuous path in C that is also continuously differentiable. We
take a function f : U — C such that f’(29) # 0. We denote wo = f(z0) and assume v(tg) = z9. We set

z—z0 () —~(to)

I = —

2=zl y(t) —(to)]

Then ”
l;, = lim S - 7/()
2=z0 |2 — 20| [Y/(2)]

can be identified as the unit tangent vector to v at zg. Next, we consider the image of v under the map
f. We find the tangent vector to f(v) at wo:

Lo wmwo () = F(3(t)
20 w—rwg ]w — ’LUO| t—to ’f(”)/(t)) — f('y(to))’

= lim

t>to () =) [y(E) = (o)l [F(v(1) — f(v(t))]

1 f'(z0)
= f(20) - L - = Ly
o) oo 170 = 17 Go)] =
Next, we compute
L. — f/(ZO) I — / L — / _ / I
arg L, = arg o) 2 arg f'(z0) + argl,, — arg|f'(z0)| = arg f'(20) + argl,

We see that under the map f, a tangent line to any curve at zq is rotated on the angle arg f’(2o).

Let us now consider two paths v; and 79 that pass through zy. The angle between these two paths
at zg is defined as the angle ¢ between their tangent vectors {1 and Il at that point. Then the angle ¢
between the tangent vectors L and Lo of the images of 41 and 4 is given by

Y = arg Ly — arg L1 = arg f'(20) + argly — arg f'(20) — argly = argly — argly = ¢
Corollary 16.1 If f'(z) # 0, then f preserves the angles between curves which pass through zg.

Definition 16.1

1. A continuous map [ : U — C which preserves the angles between curves that pass through zg € U

1s called conformal at zg.
2. If f is conformal at any point of U, then f is called conformal on U.
Theorem 16.1 A holomorphic function f is conformal at any point where its derivative is non-zero.

Let us now interpret the meaning of |f/(2)|. We write

f(2) = f(z0)

Z — 20

= lim L) — wO’

zZ—20 ’Z — Z0’

|f'(20)| = lim

Z—20

So |f/(20)] is equal to the dilation coefficient at zp under the map f.
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16.2 Fractional Linear Transformations

Fractional linear transformations are functions of the form

az+b
w—m,ad—bc#()

where a, b, ¢,d are fixed complex numbers and z is the complex variable. The condition ad — bc # 0 is
imposed to exclude the degenerate case where w is constant. This function is defined for all z # —% if

_ _ _d
c#0. Weset w=o00at z=—2.

Theorem 16.2 A fractional linear transformation is a homeomorphism, that is, it is a continuous

bijective map, from C to C, where C = C U {co}.

Definition 16.2 Let 1 and 2 be two paths that pass through the point z = co. The angle between 71

and v at z = 0o is the angle between their images I'y and I's under the map z — % at the point 0.

Theorem 16.3 A fractional linear map is conformal on C.

16.3 Geometric Properties

We first introduce the convention that a circle in C is either a circle or a straight line on the complex

plane C.
Theorem 16.4 Fractional linear transformations map a circle in C to a circle in C.

Remark 16.1 Let | be a circle in C and let L be its image under a fractional linear transformation.

d
1. —— €1 is equivalent to L being a straight line.
c

a
2. — € L is equivalent to I being a straight line.
c
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17 Cauchy’s Theorem (Lecture Notes)

17.1 Integration
Let U be an open set in C. Let v be a piecewise continuously differentiable path in U and take a

continuous function f : vy~ C.

Definition 17.1 If there exists

tim > F€0Aa = [ 1) dz
Xﬁok:l )

where A = mkaX|Azk| and Azy = zr — zx—1, that does not depend on the choice of the points {} and

partition {zx}, then this limit is called the integral of f along 7.
To make a connection between this integral and the known line integral, we rewrite the integral sum.
First, we rewrite Az, = Azy + 1Ay, and take f(2) = u(z,y) + iv(x,y). Let { = ng + iCx. Then

n

Z J(p) Az, = Z (w(nmw, C) + v(nk, C)) (Azg + iAyy)

k=1 k=1

n n

= (ulnk, Ge) Ay — v(nk, ) Ayi) + Y (v(mk, Ce) Ay, + u(rk, k) Ayg)
k=1 k=1

This immediately implies

/f(z /uxydm—vxydy—i—z/ (,y)dr +u(z,y)dy
v

17.2 Properties of the Integral

/(af—i—ﬁg)dz:a/fdz—i-ﬁ/gdz
vy v

Y

1. For a, 5 € C

2. If v~ is obtained from v by a change in orientation, then

/fdz:—/fdz

v v

3. If 1 U~s is a path such that the end point of 7, is the initial point of 79, then

/ fdz—/fdz—i—/fdz

y1Uvy2 Y1 Y2
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4. From the inequality

n

D fE)Az| <

k=1

n

|F(ER)1AzK] <D 1F(Er) 1 Asi

k=1 k=1

where Asy is the length of v between z;_1 and z, follows

< [1r@)ds
4

(2)dz

5. Let L(y) be the length of . Then

/ F(2) dz

Y

< max|f(2)| L(v)

follows from the previous result

Now let y(t) = x(t) + iy(t), t € [a, B]. Then

/f(z) dz = /u(x,y) dx — v(z,y) dy—i—i/v(a:,y) dx + u(z,y) dy

v Y

B B
= / [u(z(t),y(t)2'(t) — v(z(t) dt—i—z/ + u(z(t), y(t))y' (t)] dt

Consequently, we have obtained

where v = (), t € [a, (]
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Example Let y(t) = a + Re®, t € [0,2n]. We compute

—
e
@
4\
e
@

where n € Z. If n # 1, then

2

/ / i /ei(nl)t g— L L itnay o —0
Z _ CL Rneznt Rn—l Rn—l (n _ 1) 0
0

|z—a|=R

using e~V = cog (n—1)t) —isin ((n — 1)t). If n =1, then

d 27
/ S z/ dt = 2mi
Z—Q
|z—a|=R 0

Hence

/ Cdx )0 ifn Al
(

ol=F z—a)" omi  ifn=1
z—al=

17.3 Cauchy’s Theorem

Proposition 17.1 Suppose that a function F' : U +— C is holomorphic and is an antiderivative of a
continuous function f : U — C such that F'(z) = f(z). Then for any piecewise continuously differentiable
path ~v joining z1 and zy in U

/f(z) dz = F(z) — F(z1)
¥

Moreover, if v is closed in U, then

Example

243

Theorem 17.1 (Cauchy’s Theorem) Let U be a simply connected domain in C and let f : U — C be

a holomorphic function in U. Assume that the path v joining z1 and zo in U is piecewise continuously

differentiable in U. Then
/f(z) dz
gl

depends only on z1 and zo and not the choice of the path ~y. In particular, if v is closed, then

}{f(z) dz =
vy
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18 The Cauchy Integral Formula (Lecture Notes)

18.1 Consequences of Cauchy’s Theorem

Proposition 18.1 Any holomorphic function f in a simply connected domain U has an antiderivative

i this domain.

We say that f is holomorphic on U if there exists an open set G such that U C G, and if f can be

extended into this domain G, that is, there exists a holomorphic function f on G such that f =fonU.

Proposition 18.2 (Generalization of Cauchy’s Theorem) Let f be holomorphic on U, where U is simply

connected and OU is a piecewise continuously differentiable curve. Then

/f(z) dz=0
U

Definition 18.1 Let the boundary of a bounded domain U consist of a finite number of closed curves
e, K = 0,1,...,n which are piecewise continuously differentiable. The boundary of U for which the

orientations of v, are positive is called the oriented boundary of U and is denoted by OU .

Proposition 18.3 Let U be a bounded domain with oriented boundary and let f be a holomorphic function

on U. Then .
/f(z)dz:/f(z)dz—i—z/f(z)dzzo
oUu Y0 k=1 Vi

18.2 The Cauchy Integral Formula

Theorem 18.1 Let f be a holomorphic function on U, where U is bounded by a finite number of piecewise

continuously differentiable curves. Then for every z € U

1) = g [ e
oUu

Consequence 18.1 Let f be holomorphic in U, where U is an open set. Let v be a simple continuously

differentiable curve in U surrounding a set D contained in U. Then for any z € D
IS
=— [ =—=d
/) 2m’/£—z $
v

18.3 Series

oo
Let an, n = 1 be complex numbers. We say that a series Z ay is convergent if the sequence of its partial

n=0
n

sums S, = Zak has a finite limit S. This limit is called the sum of the series. A functional series
k=0

o0
Z fn(2), where the functions f,, are defined on a set M C C, converges uniformly on M if
n=0

Ve>0 dNeN:Vn>2N,VzeM

> fk(2)

k=n+1

= ‘f(Z) > fu(2)
k=0

<€ f(2) =) ful2)
n=0
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19 The Taylor Series (Lecture Notes)

19.1 Uniform Convergence of Series

Recall the definitions from 18.3.
Example Consider the series
(o]
>
n=0
We remark that this series converges for every z € M = {z : |z| < 1}. We show this by first calculating
n
Sp=) =1tz 42+ 42"
k=0
then
28y =24+ 22+ 2"

Subtraction of these two equations yields

_ +1 1— n+1 1 e 1
Snzlljnz _ r [cos((n—l—l)_soz—i-zsm((n—i— )e)] oo 1iz,nﬁoo

However, the series converges uniformly only on Ms = {z:|z| <1 — 4} for any § > 0:

0
1 1— n+1 n+1 n+1 1_5n+1
sz: — z :|Z ‘:‘Z| \( ) —)O,TL—>OO \V/ZGM(;
1—2z 1—2z [1—z |1—2| 0
k=n+1

Assume that the series converges uniformly on M, then for any € > 0 there exists N € N such that for
alln = N and for all |z| < 1

> n+1
. :‘\12’| S <e
k=n+1
Take z=x4+0-i =z, > 0. Then
o xn—i—l
Z 2= 1— <eg
k=n+1

Notice that the above inequality does not hold for x close to 1. Consequently, the series does not uniformly

converge on M.

19.2 The Taylor Series

Theorem 19.1 Let f be a holomorphic function in U and take zg € U. Then f can be represented as

the following sum:

f(z) =) calz = 20)"
n=0
inside any disk Bp = {z: |z — 20| < R} C U.

Proof: Let z € Br be an arbitrary point. Choose r > 0 such that |z — z9| < r < R. We denote

Ve =€ 1§ — 20| =7}
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The Cauchy integral formula implies that

" omi E—2

We write

- (-2 - R

n=0

then multiply both sides by ﬁ f(€) and integrate term-wise along 7, :

Z—ZO d{
/27TZ 5—2 /227{'2 —Zon+1 2271'7,/ _Z0n+1 Z_ZU ZCnZ—ZO

Yr

The above series converges uniformly since

zZ— z z— z
o =zl _
§— 20 T
and
o0
S n
n=0

Consequently, the term-wise integration is legitimate and we obtain
[e.e]

E Z—Z[)

_ 1 f(§) d¢ B
cn—m/w,n—o,lﬂ,...

Ir

where

Definition 19.1 The power series

where

n =

1 f(§)d§
27”/ (& — ZO)n—l—l
’Y’V‘

is the Taylor series of the function f at the point zg.

If the function f is holomorphic in a closed disk
B,={z:|z— 2| <}

and its absolute value on the circle 7, = 0B, is bounded by a constant M, then we have the Cauchy
inequality:

M
\cn|gr—n,n:O,1,...

Theorem 19.2 (Liouville’s Theorem) If the function f is holomorphic and bounded in the whole complex

plane, then it is constant.
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20 Taylor Series and Further Properties of Holomorphic Functions
(Lecture Notes)

20.1 Differentiability of the Taylor Series

We recall that any function f that is holomorphic on U can be expanded into a Taylor series, that is, it

can be expressed as a sum:

o
f(2) =) calz = 20)"
n=0
in any disk Bg = {2 : |z — 20| < R} C U for some zy € U. The coefficients are given by

_ 1 f(§dg
2w ) (€ — zo)ntL
Yr

where v, = {z: |z — 20| = 1}.
Remark 20.1 Let v be any simple and positively oriented path around the point zy. Then

1 f(§) d¢

= 9 (€ — z) L
gl

n

Rem. 20.1 follows from Prop. 18.3. We will now discuss the radius of convergence of the power series.

We will assume further that c,, n > 0 are any complex numbers.

Theorem 20.1 (Cauchy-Hadamard Formula) Let the coefficients of the power series

Z cn(z —a)” (20.1)
n=0

satisfy
1

1
5, Vel =

where 0 < R < 4+00. Then (20.1) converges at all z such that |z — a| < R and diverges at all z such that
|z —al > R.

Th. 20.1 implies that the set Bg = {z: |z — a] < R} is the domain of convergence of (20.1).

Theorem 20.2 The sum of a power series

f(2) =) calz—a)"
n=0

is holomorphic in its domain of convergence. Moreover

f(z) = nealz = a)"
n=1
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20.2 Properties of Holomorphic Functions

Theorem 20.3 If f is holomorphic in an open subset U C C, then f’ is also holomorphic in U.

Theorem 20.4 Any holomorphic function f in U has derivatives of all orders in U which are also

holomorphic in U.

Theorem 20.5 Assume that a function f can be represented by
[e.@]
F(z) = enlz—2)"
n=0

in a disk Br = {z : |z — 20| < R}. Then the coefficients c,, are uniquely determined:

_ f(”)(zo)

n!

Cn ,n=20,1,...

The Cauchy integral formula for derivatives of a holomorphic function f in U is given by

n ! f(§)d§
£ )(Z):;i/(é(i)nﬂanzlﬂy-u
B

where ~ is a simple and positively oriented path in U around z. This follows from Th. 18.1 and Th. 20.5.

20.3 Zeros of Holomorphic Functions

Definition 20.1 A zero of a function f is a point a € C such that f(a) = 0.

Theorem 20.6 Let a point a € C be a zero of a function f that is holomorphic at a. Assume that f is

not equal to zero in a neighborhood of a. Then there exists n € N such that

where @ is holomorphic at a and p(z) # 0 for all z in a neighborhood of a.
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21 The Laurent Series (Lecture Notes)

21.1 Uniqueness of Holomorphic Functions

Theorem 21.1 (Uniqueness) Let fi and fa be holomorphic in a connected open set U C C. Then if
f1(z) = fa(2) for all z € E C U, where E has a limit point in U, then fi1(z) = fa(2) for all z € U.

Theorem 21.2 (Morera) If a function f is continuous in U and

/f(z) dz =0
0A

for any triangle A C U, then f is holomorphic.

Theorem 21.3 (Weierstrass) If the series

f(2) =Y fal2)
n=0

of holomorphic functions f, in U converges uniformly on any compact subset of U, then the function f

is also holomorphic and
FM) =Y ()
n=0

for any m € N.

21.2 The Laurent Series

Theorem 21.4 (Laurent) Any holomorphic function f in an annulus
V={2€C:r<|z—a| <R}

may be represented in V as

fe)= > culz—a) (21.1)
where . H6)d
cn:m/(g_%nil,nzo, +1, 42, ... (21.2)
Yo

Yo={z:lz—al=pl,r<p<R

Definition 21.1 The series (21.1) with coefficients (21.2) is called the Laurent series of the function f
in the annulus V. The term -

Z cn(z—a)"

n=0

is called the regular part and
-1

Z en(z—a)"

n=—oo

18 called the principal part.
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Let us understand how the domain of convergence of

oo

Z en(z—a)"

n=—oo

can be defined. By Th. 20.1, the series

Z cn(z—a)"

n=0

1 JR—
converges in the disk {z : |z — a| < R}, where B= li_>m V/|enl|. Next we consider the series
n—0o0o

-1

Z en(z—a)"

n=—oo

We replace w := and obtain

zZ—Q

-1
Z en(z—a)" =cqw+ c_ow?® + c_swd + ...

n=—0oo

1 — 1
This series converges for all |w| < p, where — = li_>m V|c—nl, or for |z —a| > — =: r. Consequently, the
p moo p

domain of convergence of
o0

Z en(z—a)"

n=-—o0o
is the annulus V = {z : r < |z — a| < R}, where

r= lim {/|c_p]

n—oo

]‘ qin 1
= ik Vien
Example The function f(z) = m is holomorphic in the disk Vi = {z : |z| < 1} and annuli
Vo={z:1<|2| <2} and V3 ={z:2 < |z| < o0}. In order to obtain its Laurent (or Taylor) series, we

represent f as

1 1
1(z) = 2—2 z-1
Consider the domain Vi. The following:
1 _ 1t _ 1y (Z)“:_ilzn
z-2 21-3  24=<\2 2n+1
n=0 n=0
converges for |z| < 2, and
_ — — 5
z—1 1-—=z2
n=0

converges for |z| < 1. Therefore
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Now consider V. The following:

again converges for |z| < 2, and

1 11 1 1 .
e D D

converges for |z| > 1. Therefore

Similarly, for Vs

converges for |z| > 2, so

Example We write the expansion of f(z) = m in the annulus V = {z : 0 < |z — 1] < 3}. We

rewrite
1 1 11 1
f(z)*(1—z)(2+z)*_(2—1)(z—1+3)*_ 3
- z—l
52D
> _1\n+1
:Z<3}1)+1 (z—1)", 2€V

n=-—1

Example Let f(z) = (z_li)g,. We want to write the Laurent series for f with a = 0. We will use the

formula

(1+Z)a:1+§:a(a—1)...(a—n+l)zn’ 2 <1

n!
n=1

Then

1 ~(=3)(=4)...(=3—n+1) [z \"
—Z(HZ( JCOBN +><_Z_)>
n=1
! <1+i (3)(4). n!<n+2>;>
n=1

72 (n+1)(n +2) 2"

2 in
n=0

—Z (n+1)(n+2)

gl 2 e <1
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22 Residues (Lecture Notes)

22.1 Isolated Singular Points

Definition 22.1 A point a € C is an isolated singular point of a function f if there exists a punctured
neighborhood {z : 0 < |z —a| <r} ifa # oo, or {z: R < |z| < 00} if a = 00, on which f is holomorphic.
Definition 22.2 An isolated singular point a of a function f is said to be
1. remowvable if lim f(z) exists and is finite
zZ—a

2. a pole if li_r>n f(z) = oo exists
zZ—a

3. an essential singularity of f if f has meither a finite nor infinite limit as z — a

Example
. sin z ) . .
1. The function f(z) = has a removable singularity since
z
sin z 22 A .
fE) =—=l-g+5 - =linfz)=1

1
2. The function f(z) = —, where n € N, has a pole at z = 0.
z
3. The function f(z) = e* has an essential singularity at z = 0. If z = x € R, then indeed

. 1 . 1
0= lim ez # lim ez = o0
z—0~ z—0t

It also has no limit along the imaginary axis:

. 1 1
lim e = lim <cos — +4sin )
y—0 y—0 Yy Yy

Theorem 22.1 An isolated singular point a € C of a function f is a removable singularity if and only

if its Laurent expansion

has no principal part.

Theorem 22.2 An isolated singular point a of a function f is removable if and only if f is bounded in

a neighborhood of the point a.

Theorem 22.3 An isolated singular point a € C is a pole of f if its Laurent expansion near a has the

form

for some N € N and cy # 0.

Definition 22.3 The number N in Th. 22.3 is called the order of a pole of f.

1
Theorem 22.4 a € C is a pole of the function f if and only if the function p = ? s holomorphic in a
neighborhood of a and ¢(a) = 0.
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Definition 22.4 The order of a zero a € C of a function ¢ that is holomorphic at this point is the order
k of the first non-zero derivative ™ (a) # 0.

1
Proposition 22.1 The order of a pole a of a function f is the order of a as a zero of the function ¢ = ?
Theorem 22.5 An isolated singular point a of f is an essential singularity if and only if the principal

part of the Laurent expansion
[o¢]

)= culz—ay

n=—oo
of f near a contains infinitely many non-zero terms.
Theorem 22.6 If a is an essential singularity of a function f, then for any A € C we may find a

sequence {zptn>1 such that lim z, =a and lim f(z,) = A.

22.2 Residues

Definition 22.5 Let a € C be an isolated singular point of f. The number

resqf = ;m/f(z) dz
Yo

is called the residue of f at a. Here we define v, = {2z : |z —a| = p},0 < p < R and assume f is
holomorphic in {z:0 < |z —a| < R}.

Proposition 22.2 The residue of a function f at an isolated singular point a € C is equal to the

coefficient c_1 of the term (z — a)~ " in the Laurent expansion of f around a.

Theorem 22.7 Let the function f be holomorphic everywhere in a domain U, which is an open and
connected subset of C, except at an isolated set of singular points ai,...,a,. Lety be a positively oriented,

simply connected path in U surrounding aq,...,a,. Then

n

/f(z) dz = 2mi Z resq, f
5

k=1

22.3 Computation of Residues

1. If a is removable then
res,f =0

2. If a is a pole of order 1 then
res,f = lim(z — a) f(z)

zZ—a
3. If f(2) = zgzg, where ¢ and v are holomorphic, 1(a) = 0, ¥'(a) # 0, ¢(a) # 0, then
p(a)
res, f =
V' (a)
4. If a is a pole of order n, then
1 ) dnfl

res.f = gy Fm o (2 - ) (2)
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23 Application of Residues to Computations of Integrals (Lecture Notes)
23.1 Computation of Residues
Recall that

1. If a is removable then

resef =0

2. If a is a pole of order 1 then
res,f = lim(z — a) f(z)

zZ—a

3. If f(2) = ZEZ, where ¢ and v are holomorphic, 1(a) = 0, ¢'(a) # 0, p(a) # 0, then

res, f =

4. If a is a pole of order n, then

1 .
resaf = oy o (= ) (2)

Example

1. Consider f(z) = m Then a1 = 1 and as = 2 are poles of order 1 and 2 respectively.

. z
resy f = ll_)rr%(z — 1)—(2 o2 1
. d 9 .od =z ) -1

resaf = iy 7 (= 2@) = iy o=y =l oy =
2. Consider f(z) = M2 Thena="T isa pole of order 1.

cos 2 2

sin
res%f = =-1

ECOSZ‘ZZg

1
3. Consider f(z) = cos —. Then a =0 is an essential singularity. We rewrite

z+ z

L, 1 1
T TR

r 1 1 1 1 z+22 23+
z+2 21+% 2 2 4 8 7

1
Multiplying these series together, we find the coefficients of —:
z

£(2) 11 1 1 + 1 1 n +
z)=—-— — —
2z \2t-20 23.41  25.6! 27.8!

which we use to obtain c_; = resyf.
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23.2 oo as an Isolated Singular Point

We recall that oo is an isolated singularity of f if f is holomorphic in {z : |z| > R} for some large R > 0.
Similarly

e 00 is removable if lim f(z) exists and is finite
Z—>00
e oo is a poleif lim f(z) = o0
Z— 00
e oo is an essential singularity if li_>m f(2) does not exist
z oo

We remark that oo is an isolated singular point of f if and only if 0 is an isolated singular point of
f(z) = f(%) We define the Laurent expansion of f at co as

fz)= > cnz" (23.1)

where the series converges for R < |z| < co. Next we characterize the type of singularity at co via the

Laurent expansion. We write the Laurent series of f at 0:

fiz)="Y &"

n=-—00
Hence
B o0 o0 o0
f2)=F(3) = ez = En = Y cp” (23.2)
n=—oo n=—o0o n=-—o0o
0 o0
where ¢, = ¢_,,. We will call Z cn 2" the regular part of the Laurent series, and Z cnp 2" its principal
n=—00 n=1

part. The equality (23.2) immediately implies that oo is

e removable if the principal part of (23.1) equals zero

e a pole if the principal part has a finite number of non-zero terms

e an essential singularity if the principal part consists of an infinite number of non-zero terms
Definition 23.1 If co is an isolated singular point of the function f, then

f=om [ 121
reSeof = — z)dz
o 21
Yo

where 7y, = {z : |z| = p} is a circle of a sufficiently large radius oriented clockwise. From Th. 21.4, we

obtain resoo f = —C_1.

Theorem 23.1 If the function f is holomorphic in C\ {a1,...,ay}, then

n

Zresakf—kresoof =0

k=1
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Example We compute
8

/ 28 1) = 2mi Z resq, [ = —2miress f

k=1

We first find c_1 in the Laurent series at co:

1—11—111—111+11+
(28_‘_1)2_216(1_’_%)2_2161_{_ 1_|_ ~16 28 28

dz
e A—|
/ (28 +1)2

|z|=2

Hence ¢c_1 =0, and

23.3 Application to Riemann Integrals

We first consider

2
/ R(cos p,sin ) dp
0
P(t
where R(t,s) = QEt7 S;, and P and @Q are polynomials of ¢ and s. We recall that
.8

z=¢€"¥ =cosp+ising

Z=e ¥ =cosp—isinp

2tz
COsS p = 5
. _z—Z
Sin @ = %

If ¢ € [0,27], then z = ¢'? defines the circle |z| = 1. With
. d
dz =ie?dp =izdp = dp = —Z
iz

we can compute

2m
247z z—2\ dz
R i do = R —
/ (cos @, sin @) dp / < CRREET > -
0 |z|=1
Example We compute
2w
/ dp - / dz 1 / dz 1
5—4cosp iz(5—4-zgz)_i 52— 222 2:7 i 222—5z+2
0 |z|=1 |z|=1 |z|=1
9 1 1 27 —27 2
= mires:
— 5z +2 (2:2-5z+2)_, (z-5)|,_: 2-5 3
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Next consider -
/ R(z)dx

P() and P and @ are polynomials such that deg P < deg@ — 2 and Q(t) # 0, Vt € R.

where R(t) = Q)

Then

/ R(x)dx = 2mi Z resq, R
e k=1

where ay are zeros of () such that Ima; > 0.

Example We compute

7 dz o 1 o 1 . d? (z z)3 Tim d? 1
—_— i hia — - — 1M — — 5 = —_— -
(14 22)3 rores (14 22)3 o1 422 (22 41)3 R A2 (z+1)3

= milim(=3)(—4)(2 + i) = @ip = 8"
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24 Introduction to Partial Differential Equations (Lecture Notes)

24.1 Transport Equation

Let us consider a wave moving with a constant speed c. Let u(t,z) be the wave profile at point = and
time ¢t. The lines © — ¢t = xg, on which v is constant, are called characteristic lines. This implies that

the directional derivative of w in the direction of x — ¢t = ¢ is zero. So for | = (1, ¢) we have

ou

a:(l,c)-Vu:uthcux:O

where u; = Ou and u, = @ With the initial condition u(0,z) = f(z), we obtain

ot ox

ur+cuy,=0,t>0, xR
u(0,2) = f(z), z € R

(24.1)

which is a transport equation with constant coefficients. Next we will find a function u : [0,00) X R — R
which is differentiable in ¢ and x, and satisfies (24.1).

Method of Characteristics

We assume that @ = z(¢), which we can interpret as the coordinate of a moving observer. Then u(t, z(t))

is the point which the observer sees at time t. We compute

dx

d
—u(t,z(t)) = ue + 7l

dt

d d
Then u satisfies (24.1) if d—j = c and %u(t, z(t)) = 0. This yields « = ¢t + ¢ and hence

u(t,x(t)) = u(O,x(O)) = f(zo)

u(t,x) = f(a — ct)

is a solution to (24.1). Now we show that the equation has no other solutions. Let u be a solution to
(24.1). We consider a new function
v(t,z) = u(t,z + ct)

Then
ve(t, ) = ue(t, x + ct) + cug(t,x + ct) =0 = v(t,z) = F(x)

But from the initial condition

v(0,2) = u(0,x) = f(x)
so F(x) = f(z) which implies v(t,z) = f(z) and u(t,x) = v(t,x — ct) = f(z — ct).

Example We will solve
ur + 2u, =0

u(0,x) = cosz

d
Using the method of characteristics we obtain d;: =2 = x = 2t+x0 and consequently u(t,x) = cos(z—2t).
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Remark 24.1 The same method works in the case of the equation
a(t, x)uy + b(t, x)u, =0
or, dividing by a(t, ), we can rewrite this as
up + c(t, z)ugy =0

Example We will solve

ug— (z+ 1)u, =0
u(0,z) = f(x)

We rewrite
d—x =—(z+1) = dr_ _
dat r+1

and solve the differential equation with the initial condition x(0) = x¢ to obtain

—dt

r=ce ! —1=(xg+1)e -1
Solving for xo = (z + 1)e' — 1, we can substitute it into
u(t,z) = f(zo) = f((z +1)e’ — 1)

24.2 Partial Differential Equations and Fundamental Examples

Definition 24.1 A partial differential equation (PDE) of a single unknown wu is an equation involving u

and its partial derivatives. All such equations can be written as

F(u,uwl,...,uxn,umxl,...,uxil.xiN,xl,...,xn) =0

for some function F'. Here N is called the order of the PDE and is the maximum order of the derivatives

appearing in the equation.

Example (Heat Equation)

Ut = (IQwa

Here t and x are temporal and spatial coordinates respectively, while u(t,x) is the temperature at point x

and time t. The equation describes the conductance of temperature through a metal wire.

Example (Wave Equation)

Uy = a2um =0

Again t and x are temporal and spatial coordinates respectively, while u(t,z) describes a wave profile at

point x and time t.

Example (Laplace Equation)

Ugz + Uyy = 0

Here x and y are spatial variables. This equation can describe mechanical or temperature equilibrium.
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25 Heat Equation (Lecture Notes)

25.1 Fourier Transform on R?

Definition 25.1 The Fourier transform of a continuous, absolutely integrable function f : R — C is
defined by

—Z0'$f
\/7

where 0 - x = o1x1 + + -+ + 0gx4-

Theorem 25.1 Let f andf be absolutely integrable. Then

1 0T [
- o R[ ¢ f (o)

Next, if we assume that f is differentiable, then

9 _ i —17f zaz 1 . iox § _ 1l F
oot (@) =5 F () = m»J;f flo (%WJ”“ f(o) do = Flio1 f(o)]

Hence of
7| 5L o) =infio)

A similar computation gives

FIDf] = (io)*F[f] (25.1)
DF[f] = F[(—iz)"f]
|al
where D% = M, la| = a1+ +ag, a=(ag,...,a) € (NU{OD? and 2% = 2§ ... 25

For two functions f, g we define the convolution as

(f * 9)(a /fw—
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25.2 Heat Equation on R

Here we will solve
U = gy + f(t,z),t >0,z €R

u(0,z) = p(x), x € R

(25.2)

In order to find a solution, we first need to do formal computations. We take the Fourier transform of

both sides of the equation and obtain
]:[ut] = ]:[QQUMC + f(t, x)]

By (25.1) we obtain
d

o7 ult,)l(o) = a*(—io)* Flu(t,))(0) + f(t,0)

If we denote v(t,0) := Flu(t,-)](c), then we have obtained an equation for v:
Sv(t0) = —a?0%v(t,0) + f(t,0) (25.3)

where o € R is a parameter. We note that (25.3) is a linear ordinary differential equation. Next, we take

the Fourier transform of the initial condition:
0(0,0) = $(0) (25.4)

Solving (25.3) with (25.4), we have

t

o(t,0) = e (o) + / e (=) (5. o) ds (25.5)
0

Since v(t, o) = Flu(t,-)](c), we can take the inverse Fourier transform of (25.5):

t
u(t,) = F e +/F Hem@ ™ (=) f(s, )] ds
0

2

t
:.7:_1[6_“0 * F +/.7: 1 ema’o"(t= s)}]: Yf(s,-)ds
0

t
:Jr—l[—aa *90"“/;1 —a?0? S)]*f(s,-)ds
0

With
2

e 1% = G(t, )

2

f_l [e—a o2

10'1‘ —a 252t do

_m/ w%

we obtain the following solution to (25.2):

ult, ) = / Gtz — y)o(y) dy + / / Gt — 5,2 — y)f(s) dy ds
—00 0 —©
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25.3 Heat Equation on an Interval [0, ]

Here we will consider
w(t, r) = a*ug,(t,x) + f(t,z), t >0, z € (0,1)

u(0,z) = p(x), x € (0,1)

We also need either Dirichlet boundary conditions:

u(t,0) = v (t)
u(t,l) = va(t)

or Neumann boundary conditions:
Uy (t,0) = pa(t)
ug (t,1) = pa(t)
There could also be mixed boundary conditions. For a specific example, we now consider the equation

3
Up = a>Uyy + COS ?7;33, t>0,ze(0,]) (25.6)

with boundary conditions
uz(t,0) =0
u(t,l)=0,t>0

(25.7)

and initial condition

u(0,2) = A(l — z), z € [0,]] (25.8)

We first find a solution to (25.6) in the form
u(z,t) = X(x)T(t)

with f = 0. We obtain
T' ()X (x) = a®*T(t) X" (z)
T'(t)  X"(x)

a2T(t)  X(z) A

and find an equation for X:
X"(x) +AX(z) =0 (25.9)

Next we substitute u(z,t) into (25.7) which must be zero boundary conditions:

X'(0)=0,X(1)=0 (25.10)
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Now we find non-zero solutions to (25.9), (25.10), which is called the Sturm-Liouville problem. (25.9) is
a linear second order differential equation. To find its solution, we need to find roots of the characteristic

polynomial.

1. If A <0, then X (x) = c1eV ™ 4 eV From (25.10), we obtain the following system:

X'(O) =c1—c=0
X() = creV A 4 eV =

which only has ¢; = ¢o = 0 as solution.
2. If A =0, then X (z) = c1z + co. Similarly, from (25.10) we find ¢; = co = 0.

3. If A > 0, then X (z) = ¢1 cos VAz + ¢z sin vV Az. From (25.10), we find
X'(x) = —e1VAsin VAz 4 oV A cos VA

X'(0)=coVA=0=ca =0

Then
X(1) = ¢1cos VA =0

which implies

VA :77(27;;“1),71:0,1,2,...

if we want non-zero solutions. We have thus obtained non-zero solutions to (25.9), (25.10):

m(2n + 1)

X (z) =
(x) = cos 57

z,n=0,1,2,...
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26 Wave Equation (Lecture Notes)

26.1 Heat Equation on [0,

We will revisit the example considered in the previous lecture. We consider the equation

3
Uy = a®ugy + COS 2—7;;13, t>0,z €0,

with boundary conditions
uz(t,0) =0
u(t,l)=0,t>0

and initial condition

u(0,2) = A(l — z), z € [0,]]

1. We first found a solution to (26.1) in the form
u(x,t) = X(x)T'(t)

and obtained
T't)  X"(x)

a?T(t)  X(z) =

which gives the equation
X"(z) + XX (z) =0

From the boundary conditions in (26.2) we get

We then obtained non-zero solutions to (26.4), (26.5) as

m(2n+1)

Xn(z) =
(x) = cos 57

z,n=0,1,2,...

and

N :71-(27;;—1),n:0,1,2,...

2. Now we find solutions to (26.1)-(26.3) in the form

= TiTn(t) ZT cos 2nl—i—1)

Substituting u(t, z) into (26.1), we get

i:n;(t) ZG2T X0 () + f(t,x)
n=0

o7

(26.1)

(26.2)

(26.3)

(26.4)

(26.5)
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If we can write

=S hx
then -
i T, () Xn(z) = i @* T () (= An) Xn () + i fn(t) Xn(z)
We then get an equZt_i(;n for T,: - -
Th(t) + a* X Tn(t) = falt) (26.6)

Next we plug in u(t, z) into (26.3):

iTn(O)Xn( A(l — ) Zb X
n=0

and obtain
T,(0) = by, (26.7)

3. Now we need to find the coefficients b, and functions f,(t) using the formula

1

by, = e /(p(x)Xn(x) dx
0

l

l
2 1 l
where |1, = [ x2(e)ds = [[co "2 ED s = 5. o
0 0
24 | (2n+1) 8A
T(2n +
bn—l/(l—x)coszlwdx 2on 1 12
0

For f,, we remark that
f(t,xz) = cos ?;—7;3: = Xi(x)
This means that f1(¢t) =1 and f,(¢t) = 0 for n # 1.
4. Finally, we find T}, from (26.6), (26.7).
(a) For n # 1 we have

_ 8A 7a2772(2n+1)2
T(0) + @ ATo(t) = 0, To(0) = bu = Tot) = bpe ™Mt = o 8 ipe™

(b) For n =1 we have

/ 2 - . - _ 2)\ ¢ 1 8A 9a27f2t 4[2
Tl(t) +a )\1T1(7f) =1, Tl(O) =b = Tl(t) =bre M+ a,T)\l 97‘(‘26 412 W

We finally obtain a solution to (26.1)-(26.3):

8A _9(127\'2 4[2 27r2(2n+1)2 7'['(1 —|— 2n)
u(t,z) = (97726 a2ty Ay 2) x + Z 2n n 1) iz 'cos T:{:
n=0,n#1
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26.2 Wave Equation on R, D’Alembert’s Formula
Here we will solve the wave equation on R:
Ut = 0 Uy

with initial position
u(z,0) = f(x)

and initial velocity
u(z,0) = g(x)

(26.8)

(26.9)

(26.10)

In order to derive a formula for the solution to (26.8)-(26.10), we first need to find a general solution to

(26.8).

1. Let u be a solution to (26.8). We consider a new function
W = Ut + AUy

and show that w solves the transport equation:

Wy — AWy = Upt + AUzt — QU — azum =0

Moreover, (26.8) is equivalent to
Ut + AUy = W

wy —awg = 0

(26.11)

That is, if w and w satisfy (26.11), then wu solves (26.8). An example of a solution to (26.11) is

w = 0, which leads to

U + au, =0

In this case, we know that
u(t,x) = p(x — at)
Similarly, (26.8) is equivalent to
Up — AUy =V
v +avy; =0
For v = 0, this gives

u(t,z) = q(x + at)

Adding these two solutions, we have

u(t,z) = p(x — at) + q(x + at)

where p and ¢ are twice differentiable functions from R to R.
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2. We will now find the functions p and ¢ from the initial conditions (26.9), (26.10). We calculate

ug(x,t) = —ap'(z — at) + aq'(z + at)

Then
u(z,0) =p(z) + q(z) = f(z)

u(@,0) = —ap'(z) + aq'(z) = g(z)
Integrating the second equation gives
— ap(z) + aq(z) = G(x)

where G’(z) = g(z). Combining (26.13), (26.14) gives

1 1
p() = 3 f(2) — 5-G(a)
() = 37(@) + 5-G()
N =3 %
Hence, we obtain D’Alembert’s formula:
1 1 z+at
u(t.) = 5 (fe = at) + fa+a) + 5 [ o) dy
r—at
Example We will solve
Utt = Uy
u(0,z) =sinz
ut(0,2) =z + cosx
Using D’Alembert’s formula:
1 1 z+at
u(t,r) = §(Sin($ —t) +sin(z +t)) + 3 / (y + cosy) dy
r—at
_ gttt w4t (z—t) L1 yj+ o rhat
=s 5 cos 5 5 | 5 tTsiny -

=sinxcost + i((x +1)? = (z—1)%) + %(sin(l‘ +t) — sin(z — t))

=axt+ 2sintcosx
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27 Laplace Equation (Lecture Notes)

We consider a domain D C RY. The equation

d
d%u
Ny =
u=y
k=1

Il
o

Q
N

upp = f

is called the Laplace equation. Here we will consider the case
D= {(z,y) e R*: 22 +¢* < 1}

So we consider the equation

%u  O%u
w(z,y) = f(z,y), (,9) € 9D = {(z,y) € R* : 2® + y* = 1} (27.2)

We now want to rewrite this Laplace equation in polar coordinates and then use the method of separation

of variables. We take
T =TCosy

Yy =rsing

U(r,¢) = u(rcos ¢, rsinp)

Then
oUu .
o = Uz COS Y + Uy SIN
ou .
% = —UgT SIN Y + UyT COS
0*U . . .
5 (Uzz COS © + Uzgy SIN @) €OS Y + (Uzgy COS @ + Uy sin @) sin
= Ugyy COS> © + 2y COS Y SIN @ + Uy sin? o
0*U , . .
92 (—Ugar SIN @ + UgyT cOS @) (=7 SIN ) + (—UgyT SIN @ + UyyT COS )7 COS P
—UzT COS (P — UyT SIN
_ .2 .2 o 2 .
= 7% (Ugg SIN” @ — 2Uyy €OS P SiN @ + Uy, cos” ) — 7(Uy €S Y + Uy sinp)
Hence

U 10U 1 0%U

o o T rgpr T e T = AU

So (27.1) now has the form
Ure(r,0) + 2Ur(r ) + 5 Upo(r, ) = 0,7 € (0,1), ¢ € (=7,) (27.3)
Let F(p) := f(cosp,sinp), ¢ € [—m,7|. Then
U(L,p) =F(p), ¢ € [-m,m] (27.4)
is the boundary condition for U.
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We note that by continuity, we must meet the following conditions:

U(r,m—0)=U(r,—m +0)
Upy(r,m—0) = Uy(r,—m +0) (27.5)
lim U(r, ¢) exists

r—0+

Next we find a solution to (27.3)-(27.5) using the method of separation of variables.

1. We want to find a solution in the form

U(r, ) = v(r)w(e)
Substituting this into (27.3) gives

V' (r)w(p) + o/ (rhule) + ~go(ru(p) = 0

Hence
w”(p) + Aw(p) =0, ¢ € (—m,m) (27.6)
From (27.5) we get
w(—m) = w(m)

(27.7)
w'(—m) = w'(m)

2. Now we want to find non-zero solutions to the Sturm-Liouville problem (27.6), (27.7).
(a) If A <0, then w(p) = c1eV ™ 4 ce™V A From (27.7) we get

cle\/j’\” —V=AT —V/=r + 626\/371—

+ che = cie

= (c1 — 02)6‘/:\7T = (c1 —cg)e™V M = o = ey

and

C1\/—)\6\/jﬂ- — 02\/—)\67‘/5)‘” = 01\/—)\e*\m’r — CcoV eV AT
=c1+c=0=cr=c=0

We obtain only zero solutions.

(b) If A =0, then w(p) = c1¢ + c2. From (27.7) we get

cm+cg=—cim+co=c1 =0
and
w' () =c1 =0
Hence
ap
wo(p) = 27 Ao =0

is a non-zero solution to (27.6), (27.7).
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(c) If A > 0, then w(p) = ¢1 cos VAp 4 casin vV Ap. From (27.7) we get
€1 COS Vr + co sin VAT = €1 COS VT — c9 sin VAT = 2c9 sin VAT =0
and
—cl\f)\sin VAT + CQ\/XCOS AT = cl\F)\sin VAT + cz\f)\cos VAT = 2cl\f)\sin VAT =0
This implies that sin VAT =0= Va=n=1,2,3,..., hence
wp(p) = ap, cosnp + by, sinng

3. Now we find a solution to (27.6) in the form

U(T, 90) - Z Un<r)wn((p)
n=0

Substituting into (27.6) gives

S elrwnle) + - S v (Pun(e) + 5 S vn(rwl(e) =0
n=0 n=0 n=0

So we obtain )
1
o (r) + ;v;(r) - n—vn(r) =0,7r€(0,1) (27.8)

TTL

Now we find a general solution to (27.8).

(a) If n = 0, then we have
1
v (r) + ;’06(7") =0

This is an ordinary differential equation with separable variables for v(r). This yields
vo(r) =clnr+¢
From the third equality of (27.5), we must have ¢ = 0 and thus
vo(r) =1

(b) Ifn=1,2,..., then v(r) = " and v(r) = r~ " are solutions to (27.8). However, only v(r) = "

satisfies (27.5), hence

vp(r)=r",n=1,2,...
Consequently

oo
U(r,p) = % + Z(an cos ny + by, sinnp)r"
n=1

4. Finally, we need to find the coefficients a,, b, from (27.4).

U(l,p) = % + Z(an cosny + by, sinng) = F(p)

n=1
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Using the orthogonality of {sinny, cosne} for different n, we have

/F Ycosnydi, n=0,1,2,...

1 [ | -
bn:W/F(w)smnwd@b,n—l,&...

—T

We then obtain

U(r,p) = % % /F(w) dyp + /ZF(w)(Cosnw cos ny + sin ny sinnp)r™ di
—r Zpn=1

™

—2|[Fw) (; 31 cos (e w>> dy
n=1

—T

We simplify the term

i rn < —m(so—w))

n=1

LED () 3 (Tez'ww))"]
n=1

n=1

f—i—Zr cosn(p —v) = -+

M\H
N | —

1
2

2

Peilo—1) re—ile—1) ]
1+

1 — reile—9) + 1 — re—ile—9)

1 1—r?
21— 2rcos(p — 1) + 12

‘We have obtained

™

1 1—r?
U(T’w):%/F(@)l—Qrcosﬁp p) + 12 ay

—Tr

To return to the old variables (z,y), let z := (x,y) = (rcos p, rsing) and ¢ := (£,n) = (cos v, sin ).

Then

I2]* = r2

Iz = ¢l = 1 = 2rcos(p — ¥) + 72

So
— 212
u(z,y) =u(z) = % / ﬁZHCHQf(C) ds(()
lI<lI=1
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