

Problem sheet 9

Tutorials by Mohammad Hashemi <hashemi@math.uni-leipzig.de>. Solutions will be collected during the lecture on Tuesday January 7.

- 1. **[1+2 points]** Let $f(z) = z^2, z \in \mathbb{C}$.
 - (a) Determine the angle of rotation of the complex plane by f at the point z = 1 + i.
 - (b) Which part of the complex plane is stretched and which is contacted by f?
- 2. [3 points] Find the image of the interior of the circle γ : |z-2| = 2 under the linear fractional transformation $w = f(z) = \frac{z}{2z-8}$. Sketch the image and pre-image of γ under w = f(z).
- 3. [3 points] Show that the linear fractional transformation $f(z) = \frac{a(z-z_0)}{\overline{z}_0 z 1}$ maps the disc $B = \{z \in \mathbb{C} : |z| < 1\}$ onto itself, where $|z_0| < 1$ and |a| = 1 are some complex numbers.
- 4. [3 points] Let γ be a continuously differentiable positively oriented boundary of a set $S \subset \mathbb{C}$ with area A. Compute the integral $\int_{\gamma} \operatorname{Re} z \, dz$.
- 5. [1+2+3 points] Evaluate the complex line integral $\int_{\gamma} f(z) dz$ in the following cases.
 - (a) $f(z) = z^3$, γ is a part of the parabola $x = y^2$, that connects the points 0 and 1 + i in the complex plane.
 - (b) $f(z) = |z|, \gamma$ is the half circular $|z| = 1, 0 \le \arg z \le \pi$ (z = 1 is the initial point);
 - (c) $f(z) = |z|\overline{z}, \gamma$ is the union of the half circular $|z| = 1, y \ge 0$, and the segment $-1 \le x \le 1, y = 0,$

6. [5 points] Prove that $\int_0^\infty \cos x^2 dx = \int_0^\infty \sin x^2 dx = \frac{\sqrt{\pi}}{2\sqrt{2}}$.

(*Hint*: Integrate the function $f(z) = e^{iz^2}$ along the boundary of the domain $0 \le |z| \le R$, $0 \le \arg z \le \frac{\pi}{4}$, and then pass to the limit as $R \to \infty$.)