Problem sheet 9

Tutorials by Mohammad Hashemi hashemi@math.uni-leipzig.de. Solutions will be collected during the lecture on Tuesday January 7.

1. $[\mathbf{1}+\mathbf{2}$ points $]$ Let $f(z)=z^{2}, z \in \mathbb{C}$.
(a) Determine the angle of rotation of the complex plane by f at the point $z=1+i$.
(b) Which part of the complex plane is stretched and which is contacted by f ?
2. [3 points] Find the image of the interior of the circle $\gamma:|z-2|=2$ under the linear fractional transformation $w=f(z)=\frac{z}{2 z-8}$. Sketch the image and pre-image of γ under $w=f(z)$.
3. [3 points] Show that the linear fractional transformation $f(z)=\frac{a\left(z-z_{0}\right)}{z_{0} z-1}$ maps the disc $B=$ $\{z \in \mathbb{C}:|z|<1\}$ onto itself, where $\left|z_{0}\right|<1$ and $|a|=1$ are some complex numbers.
4. [3 points] Let γ be a continuously differentiable positively oriented boundary of a set $S \subset \mathbb{C}$ with area A. Compute the integral $\int_{\gamma} \operatorname{Re} z d z$.
5. $[\mathbf{1}+\mathbf{2}+\mathbf{3}$ points $]$ Evaluate the complex line integral $\int_{\gamma} f(z) d z$ in the following cases.
(a) $f(z)=z^{3}, \gamma$ is a part of the parabola $x=y^{2}$, that connects the points 0 and $1+i$ in the complex plane.
(b) $f(z)=|z|, \gamma$ is the half circular $|z|=1,0 \leq \arg z \leq \pi(z=1$ is the initial point $)$;
(c) $f(z)=|z| \bar{z}, \gamma$ is the union of the half circular $|z|=1, y \geq 0$, and the segment $-1 \leq x \leq 1$, $y=0$,
6. [5 points] Prove that $\int_{0}^{\infty} \cos x^{2} d x=\int_{0}^{\infty} \sin x^{2} d x=\frac{\sqrt{\pi}}{2 \sqrt{2}}$.
(Hint: Integrate the function $f(z)=e^{i z^{2}}$ along the boundary of the domain $0 \leq|z| \leq R, 0 \leq \arg z \leq \frac{\pi}{4}$, and then pass to the limit as $R \rightarrow \infty$.)
