Problem sheet 7

Tutorials by Mohammad Hashemi hashemi@math.uni-leipzig.de. Solutions will be collected during the lecture on Monday December 9.

1. [4 x 3 points] Using Stokes' theorem to compute the following line integrals
(a) $\int_{\gamma} y d x+z d y+x d z$, where γ is the circle $x^{2}+y^{2}+z^{2}=a^{2}, x+y+z=0$ with counter clockwise orientation when viewed from the positive side of axes x;
(b) $\int_{\gamma} x y d x+y z d y+z x d z$, where γ is the intersection of the cylinder $x^{2}+y^{2}=1$ with the plane $x+y+z=1$ with counter clockwise orientation when viewed above;
(c) $\int_{\gamma}\left(z^{2}-x^{2}\right) d x+\left(x^{2}-y^{2}\right) d y+\left(y^{2}-z^{2}\right) d z$, where γ is the intersection of the half sphere $x^{2}+y^{2}+z^{2}=9, z \geq 0$, with the cone $x^{2}+y^{2}=z^{2}$ with counter clockwise orientation when viewed above;
(d) $\int_{\gamma} z^{2} d y+x^{2} d z$, where γ is the curve $y^{2}+z^{2}=9,4 x+3 z=5$ oriented clockwise viewed form the point $(0,0,0)$.
2. [$\mathbf{2}$ points] For which $a \in \mathbb{C}$ the following function is continuous at 0 ?

$$
f(z)= \begin{cases}\frac{\mathrm{Re} z}{z} & \text { if } z \neq 0 \\ a & \text { if } z=0\end{cases}
$$

3. $[\mathbf{2}+\mathbf{3}$ points] For which real numbers a and b the function f is holomorphic:
(a) $f(z)=x+a y+i(b x+c y), z=x+i y$;
(b) $f(z)=\cos x(\cosh y+a \sinh y)+i \sin x(\cosh y+b \sinh y), z=x+i y$?
4. [4 points] Let $z=r e^{i \varphi}$ and $f(z)=u(r, \varphi)+i v(r, \varphi)$. Obtain Cauchy-Riemann equations in polar coordinates.
5. [2 points] Prove that the function $f(z)=\bar{z}$ is not complex differentiable.
