

Problem sheet 7

Tutorials by Mohammad Hashemi <hashemi@math.uni-leipzig.de>. Solutions will be collected during the lecture on Monday December 9.

- 1. [4x3 points] Using Stokes' theorem to compute the following line integrals
 - (a) $\int_{\gamma} y dx + z dy + x dz$, where γ is the circle $x^2 + y^2 + z^2 = a^2$, x + y + z = 0 with counter clockwise orientation when viewed from the positive side of axes x;
 - (b) $\int_{\gamma} xydx + yzdy + zxdz$, where γ is the intersection of the cylinder $x^2 + y^2 = 1$ with the plane x + y + z = 1 with counter clockwise orientation when viewed above;
 - (c) $\int_{\gamma} (z^2 x^2) dx + (x^2 y^2) dy + (y^2 z^2) dz$, where γ is the intersection of the half sphere $x^2 + y^2 + z^2 = 9$, $z \ge 0$, with the cone $x^2 + y^2 = z^2$ with counter clockwise orientation when viewed above;
 - (d) $\int_{\gamma} z^2 dy + x^2 dz$, where γ is the curve $y^2 + z^2 = 9$, 4x + 3z = 5 oriented clockwise viewed form the point (0, 0, 0).
- 2. [2 points] For which $a \in \mathbb{C}$ the following function is continuous at 0?

$$f(z) = \begin{cases} \frac{\operatorname{Re} z}{z} & \text{if } z \neq 0, \\ a & \text{if } z = 0. \end{cases}$$

- 3. [2+3 points] For which real numbers a and b the function f is holomorphic:
 - (a) $f(z) = x + ay + i(bx + cy), \ z = x + iy;$
 - (b) $f(z) = \cos x \left(\cosh y + a \sinh y\right) + i \sin x \left(\cosh y + b \sinh y\right), z = x + iy?$
- 4. [4 points] Let $z = re^{i\varphi}$ and $f(z) = u(r,\varphi) + iv(r,\varphi)$. Obtain Cauchy-Riemann equations in polar coordinates.
- 5. [2 points] Prove that the function $f(z) = \overline{z}$ is not complex differentiable.