Problem sheet 6

Tutorials by Mohammad Hashemi hashemi@math.uni-leipzig.de. Solutions will be collected during the lecture on Tuesday December 3.

1. $[\mathbf{3}+\mathbf{4}+\mathbf{4}$ points] Evaluate the following surface integrals
(a) $\iint_{S}(2 z-x) d y d z+(x+2 z) d z d x+3 z d x d y$, where S is the upper side (oriented up) of the triangle $x+4 y+z=4, x \geq 0, y \geq 0, z \geq 0$.
(b) $\iint_{S}\left(\frac{d y d z}{x}+\frac{d z d x}{y}+\frac{d x d y}{z}\right)$, where S is the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ oriented outward;
(c) $\iint_{S}(y-z) d y d z+(z-x) d z d x+(x-y) d x d y$, where S is the surface $x^{2}+y^{2}=z^{2}(0 \leq z \leq h)$ oriented outward.
2. $[\mathbf{3}+\mathbf{3}+\mathbf{5}$ points] Using the Gauss-Ostrogradskii divergence theorem evaluate the following integrals
(a) $\iint_{S} x^{2} d y d z+y^{2} d z d x+z^{2} d x d y$, where S is the boundary of the cube $0 \leq x \leq a, 0 \leq y \leq a$, $0 \leq z \leq a$ oriented outward.
(b) $\iint_{S} x y^{2} d y d z+y z^{2} d z d x+z x^{2} d x d y$, where S is the sphere $x^{2}+y^{2}+z^{2}=R^{2}$ oriented outward.
(c) $\iint_{S} x^{2} d y d z+y^{2} d z d x+z^{2} d x d y$, where S is the part of the cone $x^{2}+y^{2}=z^{2}(0 \leq z \leq h)$ oriented outward.
(Hint: Add the part of plane $z=h, x^{2}+y^{2} \leq h^{2}$.)
