

Problem sheet 5

Tutorials by Mohammad Hashemi <hashemi@math.uni-leipzig.de>. Solutions will be collected during the lecture on Monday November 25.

1. [1+1+2 points] Evaluate the following integrals

(a)
$$\int_{(-1,2)}^{(2,2)} x dy + y dx;$$

(b) $\int_{(1,-1)}^{(1,1)} (x-y)(dx - dy);$

- (c) $\int_{(x_1,y_1,z_1)}^{(x_2,y_2,z_2)} \frac{xdx+ydy+zdz}{\sqrt{x^2+y^2+z^2}}$, where the point (x_1,y_1,z_1) belongs to the sphere $x^2 + y^2 + z^2 = a^2$ and (x_2,y_2,z_2) belongs to $x^2 + y^2 + z^2 = b^2$ (a > 0, b > 0).
- 2. [3 points] Find a potential of the vector field $\vec{f}(x,y) = (x^2 + 2xy y^2, x^2 2xy y^2)$.
- 3. [2 points] Show that the vector field $(e^x(\sin xy + y\cos xy) + 2x 2z, xe^x\cos xy + 2y, 1 2x)$ is conservative.
- 4. [3 points] Let $\vec{F} : \mathbb{R}^3 \to \mathbb{R}^3$ be a force field and $\gamma : [a, b] \to \mathbb{R}^3$ be a twice continuously differentiable curve. Use Newton's law $\vec{F}(\gamma(t)) = m\gamma''(t)$, show that the work W done by this force field in moving a particle of mass m along the curve γ is given by

$$W = \frac{m}{2} \left(\|\gamma'(b)\|^2 - \|\gamma'(a)\|^2 \right).$$

- 5. [4+4+4 points] Evaluate the following scalar surface integrals
 - (a) $\iint_{S} (x+y+z)dS$, where S is the surface $x^2 + y^2 + z^2 = a^2$, $z \ge 0$ $(a \ne 0)$;
 - (b) $\iint_{S} z dS$, where S is given by $x = u \cos v$, $y = u \sin v$, z = v $(0 < u < a, 0 < v < 2\pi)$;
 - (c) $\iint_{S} (x^2 + y^2) dS$, where S is the full surface of the cone $\sqrt{x^2 + y^2} \le z \le 1$.