

Problem sheet 4

Tutorials by Mohammad Hashemi <hashemi@math.uni-leipzig.de>. Solutions will be collected during the lecture on Monday November 18.

- 1. [2 points] Compute the line integral $\int_{\gamma} xy ds$, where γ is the part of the circle $x^2 + y^2 = 1$ located in the positive quadrant $\{(x, y) : x \ge 0, y \ge 0\}$.
- 2. [3 points] Compute the line integral $\int_{\gamma} z ds$, where γ is the helix in \mathbb{R}^3 , $\{(x, y, z) : x = t \cos t, y = t \sin t, z = t, 0 \le t \le 2\pi\}$.
- 3. [2 points] Compute $\int_{\gamma} 2xy dx + x^2 dy$, where γ is the oriented curve $\left\{ (x, y) : y = \frac{x^2}{4}, 0 \le x \le 2 \right\}$ with the orientation from x = 0 to x = 2.
- 4. [3 points] Compute $\int_{\gamma} (y+z)dx + (z+x)dy + (x+y)dz$, where γ is the oriented curve $\{(x, y, z) : x = \sin^2 t, y = 2 \sin t \cos t, z = \cos^2 t, 0 \le t \le \pi\}$ with the orientation from t = 0 to $t = \pi$.
- 5. [3 points] Using Green's theorem, evaluate $\oint_{\gamma} (x+y)dx (x-y)dy$, where γ is the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ oriented counter clockwise.
- 6. [5 points] Evaluate $\oint_{\gamma} \frac{xdy-ydx}{x^2+y^2}$, where γ is a simple closed curve that does not pass through the origin and is oriented counter clockwise.

(*Hint:* Let S be the domain surrounded by γ . For the case $(0,0) \notin S$ just use the Green's theorem for S. If $(0,0) \in S$ then apply the Green's theorem for the domain $S \setminus B_{\varepsilon}(0,0)$ and then make $\varepsilon \to 0$)

7. [3 points] Using Green's theorem, compute area of the domain bounded by the astroid $x = a \cos^3 t$, $y = b \sin^3 t$ $(0 \le t \le 2\pi)$.