

Problem sheet 2

Tutorials by Mohammad Hashemi <hashemi@math.uni-leipzig.de>. Solutions will be collected during the lecture on Monday November 4.

1. [2+2 points] Change the order of integrations in the following integrals

a)
$$\int_0^2 \left(\int_x^{2x} f(x,y) dy \right) dx;$$
 b) $\int_1^e \left(\int_0^{\ln x} f(x,y) dy \right) dx.$

- 2. [2+3+3 points] Evaluate the following integrals
 - (a) $\iint_{S} xy^2 dx dy$, where S is bounded by the parabola $y^2 = 4x$ and the line x = 1;
 - (b) $\iint_{S} (x^2 + y^2) dx dy$, where S is the parallelogram bounded by the lines y = x, y = x + a, y = aand y = 3a (a > 0);
 - (c) $\iiint_{S} (xy)^{2} dx dy dz$, where S is given by the inequalities $0 \le x \le y \le z \le 1$.
- 3. [3+3 points] Compute the following integrals
 - (a) $\iint_{S} \sin \sqrt{x^2 + y^2} dx dy$, where $S = \{(x, y) : \pi^2 \le x^2 + y^2 \le 4\pi^2\};$
 - (b) $\iiint_S (x^2 + y^2) dx dy dz$, where $S = \left\{ (x, y, z) : \frac{x^2 + y^2}{2} \le z \le 2 \right\}$.
- 4. [4 points] Compute the volume bounded by the surfaces $x^2 + y^2 + z^2 = 2az$, $x^2 + y^2 \le z^2$ (a > 0).
- 5. [3 points] Let

$$B = \left\{ x \in \mathbb{R}^d : \sum_{k=1}^d x_k^2 \le 1 \right\}$$

be the unit ball in \mathbb{R}^d and

$$C = \left\{ x \in \mathbb{R}^d : \sum_{k=1}^d \frac{x_k^2}{a_k^2} \le 1 \right\}$$

be the *d*-dimensional ellipsoid $(a_k > 0, k = 1, ..., d)$. Prove that the volume $\mu(C)$ of C equals $a_1 ... a_d \mu(B)$.