Problem sheet 2

Tutorials by Mohammad Hashemi hashemi@math.uni-leipzig.de. Solutions will be collected during the lecture on Monday November 4.

1. $[\mathbf{2}+\mathbf{2}$ points $]$ Change the order of integrations in the following integrals

$$
\text { a) } \int_{0}^{2}\left(\int_{x}^{2 x} f(x, y) d y\right) d x ; \quad \text { b) } \int_{1}^{e}\left(\int_{0}^{\ln x} f(x, y) d y\right) d x \text {. }
$$

2. $[\mathbf{2}+\mathbf{3}+\mathbf{3}$ points $]$ Evaluate the following integrals
(a) $\iint_{S} x y^{2} d x d y$, where S is bounded by the parabola $y^{2}=4 x$ and the line $x=1$;
(b) $\iint_{S}\left(x^{2}+y^{2}\right) d x d y$, where S is the parallelogram bounded by the lines $y=x, y=x+a, y=a$ and $y=3 a(a>0)$;
(c) $\iiint_{S}(x y)^{2} d x d y d z$, where S is given by the inequalities $0 \leq x \leq y \leq z \leq 1$.
3. [$\mathbf{3}+\mathbf{3}$ points] Compute the following integrals
(a) $\iint_{S} \sin \sqrt{x^{2}+y^{2}} d x d y$, where $S=\left\{(x, y): \pi^{2} \leq x^{2}+y^{2} \leq 4 \pi^{2}\right\}$;
(b) $\iiint_{S}\left(x^{2}+y^{2}\right) d x d y d z$, where $S=\left\{(x, y, z): \frac{x^{2}+y^{2}}{2} \leq z \leq 2\right\}$.
4. [4 points] Compute the volume bounded by the surfaces $x^{2}+y^{2}+z^{2}=2 a z, x^{2}+y^{2} \leq z^{2}$ $(a>0)$.
5. [3 points] Let

$$
B=\left\{x \in \mathbb{R}^{d}: \sum_{k=1}^{d} x_{k}^{2} \leq 1\right\}
$$

be the unit ball in \mathbb{R}^{d} and

$$
C=\left\{x \in \mathbb{R}^{d}: \sum_{k=1}^{d} \frac{x_{k}^{2}}{a_{k}^{2}} \leq 1\right\}
$$

be the d-dimensional ellipsoid ($a_{k}>0, k=1, \ldots, d$). Prove that the volume $\mu(C)$ of C equals $a_{1} \ldots a_{d} \mu(B)$.

