Problem sheet 13

Tutorials by Mohammad Hashemi hashemi@math.uni-leipzig.de. Solutions will be collected during the lecture on Thursday January 30.
Points for solved exercises have to be included as bonus points for the homework

1. [$\mathbf{3}$ points] Find a solution to the transport equation

$$
\begin{aligned}
& 2 u_{t}(t, x)+x^{3} u_{x}(t, x)=0, \quad x \in \mathbb{R}, \quad t>0 \\
& \quad u(0, x)=\sin x, \quad x \in \mathbb{R}
\end{aligned}
$$

2. [3+6 points] Solve the following heat equations:
(a)

$$
\begin{aligned}
u_{t}(t, x) & =\frac{1}{2} u_{x x}(t, x)+x, \quad x \in \mathbb{R}, \quad t>0 \\
u(0, x) & =1, \quad x \in \mathbb{R}
\end{aligned}
$$

(b)

$$
\begin{aligned}
u_{t}(t, x) & =u_{x x}(t, x)+t, \quad 0<x<1, \quad t>0 \\
u(t, 0) & =0, \quad u(t, 1)=0, \quad t \geq 0 \\
u(0, x) & =0, \quad t \geq 0
\end{aligned}
$$

3. [$\mathbf{3}+\mathbf{6}$ points] Solve the following wave equations:
(a)

$$
\begin{aligned}
& u_{t t}(t, x)=u_{x x}(t, x), \quad x \in \mathbb{R}, \quad t>0 \\
& u(0, x)=x, \quad u_{t}(0, x)=x^{2}, \quad x \in \mathbb{R} .
\end{aligned}
$$

(b)

$$
\begin{aligned}
u_{t t}(t, x) & =4 u_{x x}(t, x), \quad 0<x<1, \quad t>0 \\
u(t, 0) & =0, \quad u(t, 1)=0, \quad t \geq 0, \\
u(0, x) & =0, \quad u_{t}(0, x)=x(1-x), \quad 0 \leq x \leq 1
\end{aligned}
$$

