Problem sheet 10

Tutorials by Mohammad Hashemi hashemi@math.uni-leipzig.de. Solutions will be collected during the lecture on Monday January 13.

1. [$\mathbf{1 + 2 + 1}$ points] Let γ be a positively oriented closed path in \mathbb{C}. Use Cauchy's integral formula to compute $\int_{\gamma} \frac{d z}{z^{2}+9}$ if
(a) γ surrounds the point $3 i$, but does not surround the point $-3 i$;
(b) γ surrounds the points $3 i$ and $-3 i$;
(c) γ surrounds neither the point $3 i$ not $-3 i$.
2. [3 points] Use Cauchy's integral formula to compute the integral $\int_{\gamma} \frac{z d z}{z^{4}-1}$, where γ is a positively oriented circle $|z|=a$ and $a>1$ is a real number.
3. [4 points] Let $f_{n}: U \rightarrow \mathbb{C}$ be continuous function on an open subset U of \mathbb{C} for all $n \geq 0$. Let the series $\sum_{n=0}^{\infty} f_{n}$ converges uniformly on U. Show that for every $z_{0} \in U$

$$
\lim _{z \rightarrow z_{0}} \sum_{n=0}^{\infty} f_{n}(z)=\sum_{n=0}^{\infty} f_{n}\left(z_{0}\right) .
$$

4. [4 points] Show that the series

$$
\sum_{n=0}^{\infty} \frac{n z^{n}}{1-z^{n}}
$$

converges uniformly on each closed disc $|z| \leq R$ for every $R \in(0,1)$.
5. [2+3 points] Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be an entire function (holomorphic on \mathbb{C}). Show that
(a) if $|f(z)| \geq 1$ for all $z \in \mathbb{C}$, then f is constant in \mathbb{C};
(Hint: Apply the Liouville theorem to the function $\frac{1}{f(z)}$)
(b) if

$$
\lim _{z \rightarrow \infty} \frac{f(z)}{1+|z|^{\frac{7}{2}}}=0,
$$

then f is a polynomial of degree less or equal than 3 .
(Hint: Use the Cauchy inequality)

