

Problem sheet 1

Tutorials by Mohammad Hashemi <hashemi@math.uni-leipzig.de>. Solutions will be collected during the lecture on Monday October 28.

- 1. [2+2 points] a) Show that a set of Lebesgue measure zero has no interior points.
 - b) Construct a set having Lebesgue measure zero whose closure is the entire space \mathbb{R}^d .
- 2. [3 points] Show that a union of a finite or countable number of sets of Lebesgue measure zero is a set of Lebesgue measure zero.
- 3. [4 points] Let I be a rectangle in \mathbb{R}^d and $f: I \to \mathbb{R}$ be bounded. Let, for a partition P of I, L(f, P) and U(f, P) denote the lower and upper Darboux sums, respectively. Using the Darboux criterion, show that f is integrable over I if and only if for every $\varepsilon > 0$ there exists a partition P of I such that $U(f, P) - L(f, P) < \varepsilon$.
- 4. [4 points] Let $f:[0,1] \to \mathbb{R}$ be a continuous function. Show that the graph of f

Gr = {
$$(x, f(x)) : x \in [0, 1]$$
}

has measure zero in \mathbb{R}^2 .

- 5. [2 points] Prove that $\partial S = \overline{S} \setminus S^{\circ}$ for any set $S \subset \mathbb{R}^d$, where \overline{S} and S° denote the closure and the interior of S, respectively.
- 6. [2 points] Let $S_1, S_2 \subset \mathbb{R}^d$. Show that $\partial(S_1 \cap S_2) \subset \partial S_1 \cup \partial S_2$.
- 7. **[3+1 points]** a) Show that if a set $S \subset \mathbb{R}^d$ is such that $\mu(S) := \int_S dx$ exists and $\mu(S) = 0$, then $\mu(\bar{S})$ also exists and equals zero for the closure \bar{S} of the set S.

b) Give an example of a bounded set $S \subset \mathbb{R}^d$ of Lebesgue measure zero whose closure \bar{S} is not a set of Lebesgue measure zero.