

Tutorials by Mohammad Hashemi <hashemi@math.uni-leipzig.de>. Solutions will be collected during the lecture on Monday October 28.

1. [2+2 points] a) Show that a set of Lebesgue measure zero has no interior points.

b) Construct a set having Lebesgue measure zero whose closure is the entire space  $\mathbb{R}^d$ .

**3 points**] Show that a union of a finite or countable number of sets of Lebesgue measure zero is a set of Lebesgue measure zero.

3. [4 points] Let I be a rectangle in  $\mathbb{R}^d$  and  $f: I \to \mathbb{R}$  be bounded. Let, for a partition P of I, L(f, P) and U(f, P) denote the lower and upper Darboux sums, respectively. Using the Darboux criterion, show that f is integrable over I if and only if for every  $\varepsilon > 0$  there exists a partition P of I such that  $U(f, P) - L(f, P) < \varepsilon$ .

4. [4 points] Let  $f:[0,1] \to \mathbb{R}$  be a continuous function. Show that the graph of f

Gr = {
$$(x, f(x)) : x \in [0, 1]$$
}

has measure zero in  $\mathbb{R}^2$ .

- 5. [2 points] Prove that  $\partial S = \overline{S} \setminus S^{\circ}$  for any set  $S \subset \mathbb{R}^d$ , where  $\overline{S}$  and  $S^{\circ}$  denote the closure and the interior of S, respectively.
- 6 [2 points] Let  $S_1, S_2 \subset \mathbb{R}^d$ . Show that  $\partial(S_1 \cap S_2) \subset \partial S_1 \cup \partial S_2$ .
- 7. **[3+1 points]** a) Show that if a set  $S \subset \mathbb{R}^d$  is such that  $\mu(S) := \int_S dx$  exists and  $\mu(S) = 0$ , then  $\mu(\bar{S})$  also exists and equals zero for the closure  $\bar{S}$  of the set S.

b) Give an example of a bounded set  $S \subset \mathbb{R}^d$  of Lebesgue measure zero whose closure  $\overline{S}$  is not a set of Lebesgue measure zero.



Tutorials by Mohammad Hashemi <hashemi@math.uni-leipzig.de>. Solutions will be collected during the lecture on Monday November 4.

1. [2+2 points] Change the order of integrations in the following integrals

a) 
$$\int_0^2 \left( \int_x^{2x} f(x,y) dy \right) dx;$$
 b)  $\int_1^e \left( \int_0^{\ln x} f(x,y) dy \right) dx.$ 

2. [2+3+3 points] Evaluate the following integrals

- (a)  $\iint_{a} xy^2 dx dy$ , where S is bounded by the parabola  $y^2 = 4x$  and the line x = 1;
- (b)  $\iint_{S} (x^2 + y^2) dx dy$ , where S is the parallelogram bounded by the lines y = x, y = x + a, y = aand y = 3a (a > 0);
- (c)  $\iiint_{S} (xy)^{2} dx dy dz$ , where S is given by the inequalities  $0 \le x \le y \le z \le 1$ .
- 3. [3+3 points] Compute the following integrals
  - (a)  $\iint_S \sin \sqrt{x^2 + y^2} dx dy$ , where  $S = \{(x, y) : \pi^2 \le x^2 + y^2 \le 4\pi^2\};$
  - (b)  $\iiint_{S}(x^{2}+y^{2})dxdydz$ , where  $S = \left\{ (x, y, z) : \frac{x^{2}+y^{2}}{2} \le z \le 2 \right\}$ .

4. [4 points] Compute the volume bounded by the surfaces  $x^2 + y^2 + z^2 = 2az$ ,  $x^2 + y^2 \le z^2$ (a > 0).

5. [3 points] Let

$$B = \left\{ x \in \mathbb{R}^d : \sum_{k=1}^d x_k^2 \le 1 \right\}$$

be the unit ball in  $\mathbb{R}^d$  and

$$C = \left\{ x \in \mathbb{R}^d : \sum_{k=1}^d \frac{x_k^2}{a_k^2} \le 1 \right\}$$

be the *d*-dimensional ellipsoid  $(a_k > 0, k = 1, ..., d)$ . Prove that the volume  $\mu(C)$  of C equals  $a_1 \ldots a_d \mu(B)$ .



Tutorials by Mohammad Hashemi <hashemi@math.uni-leipzig.de>. Solutions will be collected during the lecture on Monday November 11.

1. **[3 points]** Find all  $\alpha \in \mathbb{R}$  for which the integral

$$\iint\limits_{x^2+y^2\leq 1}\frac{dxdy}{(x^2+y^2)^{\alpha}}$$

converges.

2. **[3 points]** Check if the following integral converges

$$\iint_{\mathbb{R}^2} \sin(x^2 + y^2) dx dy.$$

3. [4 points] Compute the integral

$$\iint_{\mathbb{R}^2} \frac{|x| dx dy}{(1+x^2+y^2)^2}.$$

4. [4 points] Let the curve  $\gamma$  is given by  $\rho = \rho(\varphi)$ ,  $\alpha \leq \varphi \leq \beta$ , in polar coordinates. Prove that the length of  $\gamma$  equals

$$l(\gamma) = \int_{\alpha}^{\beta} \sqrt{\rho^2(\varphi) + \dot{\rho}^2(\varphi)} d\varphi.$$

[3+4 points] Find the length of the curves given by

- (a)  $x = a \cos t, y = a \sin t, z = bt, t \in [0, 2\pi]$ , where a, b > 0;
- (b)  $\rho = a\varphi, 0 \le \varphi \le 2\pi$  (in polar coordinates).
- 6. [3 points] Find a natural parametrisation of the cycloid  $\gamma(t) = (a(t \sin t), a(1 \cos t)), t \in [0, 2\pi]$ , where a > 0.



Tutorials by Mohammad Hashemi <hashemi@math.uni-leipzig.de>. Solutions will be collected during the lecture on Monday November 18.

1. [2 points] Compute the line integral  $\int_{\gamma} xy ds$ , where  $\gamma$  is the part of the circle  $x^2 + y^2 = 1$  located in the positive quadrant  $\{(x, y) : x \ge 0, y \ge 0\}$ .

2. **[3 points**] Compute the line integral  $\int_{\gamma} z ds$ , where  $\gamma$  is the helix in  $\mathbb{R}^3$ ,  $\{(x, y, z) : x = t \cos t, y = t \sin t, z = t, 0 \le t \le 2\pi\}$ .

3 [2 points] Compute  $\int_{\gamma} 2xy dx + x^2 dy$ , where  $\gamma$  is the oriented curve  $\left\{ (x, y) : y = \frac{x^2}{4}, 0 \le x \le 2 \right\}$  with the orientation from x = 0 to x = 2.

4. **[3 points]** Compute  $\int_{\gamma} (y+z)dx + (z+x)dy + (x+y)dz$ , where  $\gamma$  is the oriented curve  $\{(x, y, z) : x = \sin^2 t, y = 2 \sin t \cos t, z = \cos^2 t, 0 \le t \le \pi\}$  with the orientation from t = 0 to  $t = \pi$ .

- 5. [3 points] Using Green's theorem, evaluate  $\oint_{\gamma} (x+y)dx (x-y)dy$ , where  $\gamma$  is the ellipse  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$  oriented counter clockwise.
- 6. [5 points] Evaluate  $\oint_{\gamma} \frac{xdy-ydx}{x^2+y^2}$ , where  $\gamma$  is a simple closed curve that does not pass through the origin and is oriented counter clockwise.

(*Hint:* Let S be the domain surrounded by  $\gamma$ . For the case  $(0,0) \notin S$  just use the Green's theorem for S. If  $(0,0) \in S$  then apply the Green's theorem for the domain  $S \setminus B_{\varepsilon}(0,0)$  and then make  $\varepsilon \to 0$ )

7. **[3 points]** Using Green's theorem, compute area of the domain bounded by the astroid  $x = a \cos^3 t$ ,  $y = b \sin^3 t$  ( $0 \le t \le 2\pi$ ).



Tutorials by Mohammad Hashemi <hashemi@math.uni-leipzig.de>. Solutions will be collected during the lecture on Monday November 25.

1. [1+1+2 points] Evaluate the following integrals (a)  $\int_{(-1,2)}^{(2,2)} x dy + y dx;$ (b)  $\int_{(1,-1)}^{(1,1)} (x-y)(dx-dy);$ (c)  $\int_{(x_1,y_1,z_1)}^{(x_2,y_2,z_2)} \frac{x dx + y dy + z dz}{\sqrt{x^2 + y^2 + z^2}},$  where the point  $(x_1, y_1, z_1)$  belongs to the sphere  $x^2 + y^2 + z^2 = a^2$ and  $(x_2, y_2, z_2)$  belongs to  $x^2 + y^2 + z^2 = b^2$  (a > 0, b > 0).

**[3 points]** Find a potential of the vector field  $\vec{f}(x,y) = (x^2 + 2xy - y^2, x^2 - 2xy - y^2)$ .

- 3. [2 points] Show that the vector field  $(e^x(\sin xy + y\cos xy) + 2x 2z, xe^x\cos xy + 2y, 1 2x)$  is conservative.
- 4. [3 points] Let  $\vec{F} : \mathbb{R}^3 \to \mathbb{R}^3$  be a force field and  $\gamma : [a, b] \to \mathbb{R}^3$  be a twice continuously differentiable curve. Use Newton's law  $\vec{F}(\gamma(t)) = m\gamma''(t)$ , show that the work W done by this force field in moving a particle of mass m along the curve  $\gamma$  is given by

$$W = \frac{m}{2} \left( \|\gamma'(b)\|^2 - \|\gamma'(a)\|^2 \right).$$

5. [4+4+4 points] Evaluate the following scalar surface integrals

- (a)  $\iint_{S} (x+y+z)dS$ , where S is the surface  $x^2 + y^2 + z^2 = a^2$ ,  $z \ge 0$   $(a \ne 0)$ ;
- (b)  $\iint_{S} z dS$ , where S is given by  $x = u \cos v$ ,  $y = u \sin v$ , z = v (0 < u < a,  $0 < v < 2\pi$ );
- (c)  $\iint_{S} (x^2 + y^2) dS$ , where S is the full surface of the cone  $\sqrt{x^2 + y^2} \le z \le 1$ .



Tutorials by Mohammad Hashemi <hashemi@math.uni-leipzig.de>. Solutions will be collected during the lecture on Tuesday December 3.

[3+4+4 points] Evaluate the following surface integrals

- (a)  $\iint_{S} (2z x) dy dz + (x + 2z) dz dx + 3z dx dy$ , where S is the upper side (oriented up) of the triangle x + 4y + z = 4,  $x \ge 0$ ,  $y \ge 0$ ,  $z \ge 0$ .
- (b)  $\iint_{S} \left( \frac{dydz}{x} + \frac{dzdx}{y} + \frac{dxdy}{z} \right)$ , where S is the ellipsoid  $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$  oriented outward;
- (c)  $\iint_{S} (y-z)dydz + (z-x)dzdx + (x-y)dxdy$ , where S is the surface  $x^2 + y^2 = z^2$   $(0 \le z \le h)$  oriented outward.

2. [3+3+5 points] Using the Gauss-Ostrogradskii divergence theorem evaluate the following integrals

- (a)  $\iint_{S} x^2 dy dz + y^2 dz dx + z^2 dx dy$ , where S is the boundary of the cube  $0 \le x \le a, 0 \le y \le a, 0 \le z \le a$  oriented outward.
- (b)  $\iint_{S} xy^2 dy dz + yz^2 dz dx + zx^2 dx dy$ , where S is the sphere  $x^2 + y^2 + z^2 = R^2$  oriented outward.
- (c)  $\iint_{S} x^2 dy dz + y^2 dz dx + z^2 dx dy$ , where S is the part of the cone  $x^2 + y^2 = z^2$   $(0 \le z \le h)$  oriented outward.

(*Hint*: Add the part of plane  $z = h, x^2 + y^2 \le h^2$ .)



Tutorials by Mohammad Hashemi <hashemi@math.uni-leipzig.de>. Solutions will be collected during the lecture on Monday December 9.

1. [4x3 points] Using Stokes' theorem to compute the following line integrals

- (a)  $\int_{\gamma} y dx + z dy + x dz$ , where  $\gamma$  is the circle  $x^2 + y^2 + z^2 = a^2$ , x + y + z = 0 with counter clockwise orientation when viewed from the positive side of axes x;
- (b)  $\int_{\gamma} xy dx + yz dy + zx dz$ , where  $\gamma$  is the intersection of the cylinder  $x^2 + y^2 = 1$  with the plane x + y + z = 1 with counter clockwise orientation when viewed above;
- (c)  $\int_{\gamma} (z^2 x^2) dx + (x^2 y^2) dy + (y^2 z^2) dz$ , where  $\gamma$  is the intersection of the half sphere  $x^2 + y^2 + z^2 = 9$ ,  $z \ge 0$ , with the cone  $x^2 + y^2 = z^2$  with counter clockwise orientation when viewed above;
- (d)  $\int_{\gamma} z^2 dy + x^2 dz$ , where  $\gamma$  is the curve  $y^2 + z^2 = 9$ , 4x + 3z = 5 oriented clockwise viewed form the point (0, 0, 0).

**[2 points]** For which  $a \in \mathbb{C}$  the following function is continuous at 0?

$$f(z) = \begin{cases} \frac{\operatorname{Re} z}{z} & \text{if } z \neq 0, \\ a & \text{if } z = 0. \end{cases}$$

(3) [2+3 points] For which real numbers a and b the function f is holomorphic:

- (a) f(z) = x + ay + i(bx + cy), z = x + iy;
- (b)  $f(z) = \cos x (\cosh y + a \sinh y) + i \sin x (\cosh y + b \sinh y), \quad z = x + iy?$
- 4. [4 points] Let  $z = re^{i\varphi}$  and  $f(z) = u(r,\varphi) + iv(r,\varphi)$ . Obtain Cauchy-Riemann equations in polar coordinates.
- **[2 points]** Prove that the function  $f(z) = \overline{z}$  is not complex differentiable.



Tutorials by Mohammad Hashemi <hashemi@math.uni-leipzig.de>. Solutions will be collected during the lecture on Monday December 16.

1. [3 points] Let u is a harmonic function. For which twice continuously differentiable function  $f : \mathbb{R} \to \mathbb{R}$  the function f(u) is also harmonic?

[3+4 points] In the following situations, find a holomorphic function f whose real part is u.
(a) u = x<sup>2</sup> - y<sup>2</sup> + y;
(b) u = x<sup>2</sup> - y<sup>2</sup> + 5x + y - y/(x<sup>2</sup>+y<sup>2</sup>);

3. **[2+3 points]** For which  $\varphi$  the following functions are harmonic:

(a) 
$$u = \varphi(xy);$$

(b) 
$$u = \varphi(x^2 + y^2).$$

4. [3 points] Show that the functions  $e^z$ ,  $\cos z$  and  $\sin z$  are holomorphic in the whole complex plane and compute their derivatives.



Tutorials by Mohammad Hashemi <hashemi@math.uni-leipzig.de>. Solutions will be collected during the lecture on Tuesday January 7.

- 1. **[1+2 points]** Let  $f(z) = z^2, z \in \mathbb{C}$ .
  - (a) Determine the angle of rotation of the complex plane by f at the point z = 1 + i.
  - (b) Which part of the complex plane is stretched and which is contacted by f?

2. [3 points] Find the image of the interior of the circle  $\gamma$ : |z-2| = 2 under the linear fractional transformation  $w = f(z) = \frac{z}{2z-8}$ . Sketch the image and pre-image of  $\gamma$  under w = f(z).

- 3. [3 points] Show that the linear fractional transformation  $f(z) = \frac{a(z-z_0)}{\overline{z}_0 z-1}$  maps the disc  $B = \{z \in \mathbb{C} : |z| < 1\}$  onto itself, where  $|z_0| < 1$  and |a| = 1 are some complex numbers.
- 4. [3 points] Let  $\gamma$  be a continuously differentiable positively oriented boundary of a set  $S \subset \mathbb{C}$  with area A. Compute the integral  $\int_{\gamma} \operatorname{Re} z \, dz$ .
- 5. [1+2+3 points] Evaluate the complex line integral  $\int_{\gamma} f(z) dz$  in the following cases.
  - (a)  $f(z) = z^3$ ,  $\gamma$  is a part of the parabola  $x = y^2$ , that connects the points 0 and 1 + i in the complex plane.
  - (b)  $f(z) = |z|, \gamma$  is the half circular  $|z| = 1, 0 \le \arg z \le \pi$  (z = 1 is the initial point);
  - (c)  $f(z) = |z|\overline{z}, \gamma$  is the union of the half circular  $|z| = 1, y \ge 0$ , and the segment  $-1 \le x \le 1, y = 0,$

# 6. [5 points] Prove that $\int_0^\infty \cos x^2 dx = \int_0^\infty \sin x^2 dx = \frac{\sqrt{\pi}}{2\sqrt{2}}$ .

(*Hint*: Integrate the function  $f(z) = e^{iz^2}$  along the boundary of the domain  $0 \le |z| \le R$ ,  $0 \le \arg z \le \frac{\pi}{4}$ , and then pass to the limit as  $R \to \infty$ .)



Tutorials by Mohammad Hashemi <hashemi@math.uni-leipzig.de>. Solutions will be collected during the lecture on Monday January 13.

- (a)  $\gamma$  surrounds the point 3i, but does not surround the point -3i;
- (b)  $\gamma$  surrounds the points 3i and -3i;
- (c)  $\gamma$  surrounds neither the point 3i not -3i.

**[3 points]** Use Cauchy's integral formula to compute the integral  $\int_{\gamma} \frac{zdz}{z^4-1}$ , where  $\gamma$  is a positively oriented circle |z| = a and a > 1 is a real number.

3. [4 points] Let  $f_n : U \to \mathbb{C}$  be continuous function on an open subset U of  $\mathbb{C}$  for all  $n \ge 0$ . Let the series  $\sum_{n=0}^{\infty} f_n$  converges uniformly on U. Show that for every  $z_0 \in U$ 

$$\lim_{z \to z_0} \sum_{n=0}^{\infty} f_n(z) = \sum_{n=0}^{\infty} f_n(z_0).$$

4 [4 points] Show that the series

$$\sum_{n=0}^{\infty} \frac{nz^n}{1-z^n}$$

converges uniformly on each closed disc  $|z| \leq R$  for every  $R \in (0, 1)$ .

- 5. [2+3 points] Let  $f : \mathbb{C} \to \mathbb{C}$  be an entire function (holomorphic on  $\mathbb{C}$ ). Show that
  - (a) if  $|f(z)| \ge 1$  for all  $z \in \mathbb{C}$ , then f is constant in  $\mathbb{C}$ ; (*Hint:* Apply the Liouville theorem to the function  $\frac{1}{f(z)}$ )
  - (b) if

$$\lim_{z \to \infty} \frac{f(z)}{1 + |z|^{\frac{7}{2}}} = 0,$$

then f is a polynomial of degree less or equal than 3. (*Hint:* Use the Cauchy inequality)



Tutorials by Mohammad Hashemi <hashemi@math.uni-leipzig.de>. Solutions will be collected during the lecture on Monday January 20.

[1+2 points] Using Uniqueness theorem prove the following formulas:

 (a) sin<sup>2</sup> z = 1-cos 2z/2, z ∈ C;
 (b) sin (z<sub>1</sub> + z<sub>2</sub>) = sin z<sub>1</sub> cos z<sub>2</sub> + cos z<sub>1</sub> sin z<sub>2</sub>, z<sub>1</sub>, z<sub>2</sub> ∈ C.

 [1+1 points] Find the radius of convergence of the following power series:

 (a) ∑<sub>n=0</sub><sup>∞</sup> (z-1)<sup>n</sup>/n<sup>2</sup>;
 (b) ∑<sub>n=0</sub><sup>∞</sup> nz<sup>2n</sup>.
 [2+3 points] Expand the function z<sup>2</sup>/(z+1)<sup>2</sup> in the power series
 (a) ∑<sub>n=0</sub><sup>∞</sup> a<sub>n</sub>z<sup>n</sup>;
 (b) ∑<sub>n=0</sub><sup>∞</sup> a<sub>n</sub>(z - 1)<sup>n</sup>.

 [2 points] Use Cauchy's integral formula for derivatives in order to compute the integral

$$\frac{1}{2\pi i}\int_{\gamma}\frac{ze^{z}}{(z-a)^{3}}dz,$$

where  $\gamma$  is a positively oriented simple path surrounding  $a \in \mathbb{C}$ .

- 5. [1+1+2 points] Does there exist a function f holomorphic at z = 0 and such that  $f(\frac{1}{n}), n \ge 1$ , equals
  - (a)  $0, 1, 0, 1, 0, 1, 0, 1, \ldots$ ;
  - (b)  $0, \frac{1}{2}, 0, \frac{1}{4}, 0, \frac{1}{6}, 0, \frac{1}{8}, \ldots;$
  - (c)  $\frac{1}{2}, \frac{1}{2}, \frac{1}{4}, \frac{1}{4}, \frac{1}{6}, \frac{1}{6}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \dots$

Justify your answers.

6. [2+4+3 points] Find the Laurent series for the following functions:

- (a)  $\frac{1}{z+3}$  in the annulus  $3 < |z| < \infty$ ;
- (b)  $\frac{1}{z(1-z)}$  in the annuli 0 < |z| < 1 and 0 < |z-1| < 1;
- (c)  $z^2 \sin \frac{1}{z-1}$  in  $0 < |z-1| < \infty$ .



 $Tutorials \ by \ Mohammad \ Hashemi < hashemi@math.uni-leipzig.de>.$ Solutions will be collected during the lecture on Monday January 27.

1. [3+2+3+3 points] Evaluate residues of the following functions at all isolated singularities: (a)  $\frac{1}{z^3 - z^5}$ ; (b)  $\frac{\sin 2z}{(z+1)^2};$ (c)  $z^3 \cos \frac{1}{z-2};$ 

(d)  $\sin \frac{z}{z+1}$ .

2. [2+2+3+4+4 points] Use the residue theorem to evaluate the following complex line integrals:

(a) 
$$\int_{|z-2|=\frac{1}{2}} \frac{zdz}{(z-1)(z-2)^2};$$

(b) 
$$\int_{|z|=1} \sin \frac{1}{z} dz;$$

(c) 
$$\frac{1}{2\pi i} \int_{|z|=2} \sin^2 \frac{1}{z} dz;$$

- (d)  $\frac{1}{2\pi i} \int_{|z|=1} z^n e^{\frac{2}{z}} dz$ , where *n* is an integer number;
- (e)  $\int_{|z|=4} \frac{z^{11}dz}{(z^6+2)^2}$ . (*Hint:* Compute via residue at infinity)



Tutorials by Mohammad Hashemi <hashemi@math.uni-leipzig.de>. Solutions will be collected during the lecture on Thursday January 30.

Points for solved exercises have to be included as bonus points for the homework

(1.)[3 points] Find a solution to the transport equation

 $\begin{aligned} &2u_t(t,x) + x^3 u_x(t,x) = 0, \ \ x \in \mathbb{R}, \ \ t > 0, \\ &u(0,x) = \sin x, \ \ x \in \mathbb{R}. \end{aligned}$ 

2. [3+6 points] Solve the following heat equations:

$$u_t(t,x) = \frac{1}{2}u_{xx}(t,x) + x, \quad x \in \mathbb{R}, \quad t > 0,$$
  
$$u(0,x) = 1, \quad x \in \mathbb{R};$$

(b)

(a)

$$u_t(t,x) = u_{xx}(t,x) + t, \quad 0 < x < 1, \quad t > 0,$$
  
$$u(t,0) = 0, \quad u(t,1) = 0, \quad t \ge 0,$$
  
$$u(0,x) = 0, \quad t \ge 0;$$

3. [3+6 points] Solve the following wave equations:

$$u_{tt}(t,x) = u_{xx}(t,x), \quad x \in \mathbb{R}, \quad t > 0,$$
  
 $u(0,x) = x, \quad u_t(0,x) = x^2, \quad x \in \mathbb{R}.$ 

(b)

(a)

$$u_{tt}(t,x) = 4u_{xx}(t,x), \quad 0 < x < 1, \quad t > 0,$$
  

$$u(t,0) = 0, \quad u(t,1) = 0, \quad t \ge 0,$$
  

$$u(0,x) = 0, \quad u_t(0,x) = x(1-x), \quad 0 \le x \le 1.$$