Problem sheet 1

Tutorials by Mohammad Hashemi hashemi@math.uni-leipzig.de. Solutions will be collected during the lecture on Monday October 28.

1. $[\mathbf{2}+\mathbf{2}$ points $]$ a) Show that a set of Lebesgue measure zero has no interior points.
b) Construct a set having Lebesgue measure zero whose closure is the entire space \mathbb{R}^{d}.
2. [3 points] Show that a union of a finite or countable number of sets of Lebesgue measure zero is a set of Lebesgue measure zero.
3. [4 points] Let I be a rectangle in \mathbb{R}^{d} and $f: I \rightarrow \mathbb{R}$ be bounded. Let, for a partition P of I, $L(f, P)$ and $U(f, P)$ denote the lower and upper Darboux sums, respectively. Using the Darboux criterion, show that f is integrable over I if and only if for every $\varepsilon>0$ there exists a partition P of I such that $U(f, P)-L(f, P)<\varepsilon$.
(4.) [4 points] Let $f:[0,1] \rightarrow \mathbb{R}$ be a continuous function. Show that the graph of f

$$
\operatorname{Gr}=\{(x, f(x)): x \in[0,1]\}
$$

has measure zero in \mathbb{R}^{2}.
5. [2 points] Prove that $\partial S=\bar{S} \backslash S^{\circ}$ for any set $S \subset \mathbb{R}^{d}$, where \bar{S} and S° denote the closure and the interior of S, respectively.
(6. [2 points] Let $S_{1}, S_{2} \subset \mathbb{R}^{d}$. Show that $\partial\left(S_{1} \cap S_{2}\right) \subset \partial S_{1} \cup \partial S_{2}$.
7. [3+1 points] a) Show that if a set $S \subset \mathbb{R}^{d}$ is such that $\mu(S):=\int_{S} d x$ exists and $\mu(S)=0$, then $\mu(\bar{S})$ also exists and equals zero for the closure \bar{S} of the set S.
b) Give an example of a bounded set $S \subset \mathbb{R}^{d}$ of Lebesgue measure zero whose closure \bar{S} is not a set of Lebesgue measure zero.

Problem sheet 2

Tutorials by Mohammad Hashemi hashemi@math.uni-leipzig.de. Solutions will be collected during the lecture on Monday November 4.
(1.) $[2+2$ points $]$ Change the order of integrations in the following integrals

$$
\text { a) } \int_{0}^{2}\left(\int_{x}^{2 x} f(x, y) d y\right) d x ; \quad \text { b) } \int_{1}^{e}\left(\int_{0}^{\ln x} f(x, y) d y\right) d x \text {. }
$$

2. $[\mathbf{2}+\mathbf{3}+\mathbf{3}$ points $]$ Evaluate the following integrals
(a) $\iint_{S} x y^{2} d x d y$, where S is bounded by the parabola $y^{2}=4 x$ and the line $x=1$;
(b) $\iint_{S}\left(x^{2}+y^{2}\right) d x d y$, where S is the parallelogram bounded by the lines $y=x, y=x+a, y=a$ and $y=3 a(a>0)$;
(c) $\iiint_{S}(x y)^{2} d x d y d z$, where S is given by the inequalities $0 \leq x \leq y \leq z \leq 1$.
(3.) $[\mathbf{3}+\mathbf{3}$ points $]$ Compute the following integrals
(a) $\iint_{S} \sin \sqrt{x^{2}+y^{2}} d x d y$, where $S=\left\{(x, y): \pi^{2} \leq x^{2}+y^{2} \leq 4 \pi^{2}\right\}$;
(b) $\iiint_{S}\left(x^{2}+y^{2}\right) d x d y d z$, where $S=\left\{(x, y, z): \frac{x^{2}+y^{2}}{2} \leq z \leq 2\right\}$.
3. [4 points] Compute the volume bounded by the surfaces $x^{2}+y^{2}+z^{2}=2 a z, x^{2}+y^{2} \leq z^{2}$ $(a>0)$.
4. [3 points] Let

$$
B=\left\{x \in \mathbb{R}^{d}: \sum_{k=1}^{d} x_{k}^{2} \leq 1\right\}
$$

be the unit ball in \mathbb{R}^{d} and

$$
C=\left\{x \in \mathbb{R}^{d}: \sum_{k=1}^{d} \frac{x_{k}^{2}}{a_{k}^{2}} \leq 1\right\}
$$

be the d-dimensional ellipsoid $\left(a_{k}>0, k=1, \ldots, d\right)$. Prove that the volume $\mu(C)$ of C equals $a_{1} \ldots a_{d} \mu(B)$.

Problem sheet 3

Tutorials by Mohammad Hashemihashemi@math.uni-leipzig.de. Solutions will be collected during the lecture on Monday November 11.

1. $[3$ points $]$ Find all $\alpha \in \mathbb{R}$ for which the integral

$$
\iint_{x^{2}+y^{2} \leq 1} \frac{d x d y}{\left(x^{2}+y^{2}\right)^{\alpha}}
$$

converges.
2. [3 points] Check if the following integral converges

$$
\iint_{\mathbb{R}^{2}} \sin \left(x^{2}+y^{2}\right) d x d y
$$

(3.) $[4$ points $]$ Compute the integral

$$
\iint_{\mathbb{R}^{2}} \frac{|x| d x d y}{\left(1+x^{2}+y^{2}\right)^{2}} .
$$

4. [4 points] Let the curve γ is given by $\rho=\rho(\varphi), \alpha \leq \varphi \leq \beta$, in polar coordinates. Prove that the length of γ equals

$$
l(\gamma)=\int_{\alpha}^{\beta} \sqrt{\rho^{2}(\varphi)+\dot{\rho}^{2}(\varphi)} d \varphi
$$

5. $[\mathbf{3}+\mathbf{4}$ points $]$ Find the length of the curves given by
(a) $x=a \cos t, y=a \sin t, z=b t, t \in[0,2 \pi]$, where $a, b>0$;
(b) $\rho=a \varphi, 0 \leq \varphi \leq 2 \pi$ (in polar coordinates).
6. [3 points] Find a natural parametrisation of the cycloid $\gamma(t)=(a(t-\sin t), a(1-\cos t))$, $t \in[0,2 \pi]$, where $a>0$.

Problem sheet 4

Tutorials by Mohammad Hashemi hashemi@math.uni-leipzig.de. Solutions will be collected during the lecture on Monday November 18.

1. [2 points] Compute the line integral $\int_{\gamma} x y d s$, where γ is the part of the circle $x^{2}+y^{2}=1$ located in the positive quadrant $\{(x, y): x \geq 0, y \geq 0\}$.
2. [3 points] Compute the line integral $\int_{\gamma} z d s$, where γ is the helix in $\mathbb{R}^{3},\{(x, y, z): x=t \cos t, y=$ $t \sin t, z=t, 0 \leq t \leq 2 \pi\}$.
3) [2 points] Compute $\int_{\gamma} 2 x y d x+x^{2} d y$, where γ is the oriented curve $\left\{(x, y): y=\frac{x^{2}}{4}, 0 \leq x \leq 2\right\}$ with the orientation from $x=0$ to $x=2$.
4. [3 points] Compute $\int_{\gamma}(y+z) d x+(z+x) d y+(x+y) d z$, where γ is the oriented curve $\{(x, y, z)$: $\left.x=\sin ^{2} t, y=2 \sin t \cos t, z=\cos ^{2} t, 0 \leq t \leq \pi\right\}$ with the orientation from $t=0$ to $t=\pi$.
5. [3 points] Using Green's theorem, evaluate $\oint_{\gamma}(x+y) d x-(x-y) d y$, where γ is the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ oriented counter clockwise.
6. [5 points] Evaluate $\oint_{\gamma} \frac{x d y-y d x}{x^{2}+y^{2}}$, where γ is a simple closed curve that does not pass through the origin and is oriented counter clockwise.
(Hint: Let S be the domain surrounded by γ. For the case $(0,0) \notin S$ just use the Green's theorem for S. If $(0,0) \in S$ then apply the Green's theorem for the domain $S \backslash B_{\varepsilon}(0,0)$ and then make $\varepsilon \rightarrow 0$)
(7. [3 points] Using Green's theorem, compute area of the domain bounded by the astroid $x=$ $a \cos ^{3} t, y=b \sin ^{3} t(0 \leq t \leq 2 \pi)$.

Problem sheet 5

Tutorials by Mohammad Hashemi hashemi@math.uni-leipzig.de. Solutions will be collected during the lecture on Monday November 25.

1. $[\mathbf{1}+\mathbf{1}+\mathbf{2}$ points $]$ Evaluate the following integrals
(a) $\int_{(-1,2)}^{(2,2)} x d y+y d x$;
(b) $\int_{(1,-1)}^{(1,1)}(x-y)(d x-d y)$;
(c) $\int_{\left(x_{1}, y_{1}, z_{1}\right)}^{\left(x_{2}, y_{2}, z_{2}\right)} \frac{x d x+y d y+z d z}{\sqrt{x^{2}+y^{2}+z^{2}}}$, where the point $\left(x_{1}, y_{1}, z_{1}\right)$ belongs to the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ and $\left(x_{2}, y_{2}, z_{2}\right)$ belongs to $x^{2}+y^{2}+z^{2}=b^{2}(a>0, b>0)$.
2. [3 points] Find a potential of the vector field $\vec{f}(x, y)=\left(x^{2}+2 x y-y^{2}, x^{2}-2 x y-y^{2}\right)$.
3. [2 points] Show that the vector field $\left(e^{x}(\sin x y+y \cos x y)+2 x-2 z, x e^{x} \cos x y+2 y, 1-2 x\right)$ is conservative.
4. [3 points] Let $\vec{F}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a force field and $\gamma:[a, b] \rightarrow \mathbb{R}^{3}$ be a twice continuously differentiable curve. Use Newton's law $\vec{F}(\gamma(t))=m \gamma^{\prime \prime}(t)$, show that the work W done by this force field in moving a particle of mass m along the curve γ is given by

$$
W=\frac{m}{2}\left(\left\|\gamma^{\prime}(b)\right\|^{2}-\left\|\gamma^{\prime}(a)\right\|^{2}\right) .
$$

5. $[\mathbf{4 + 4 + 4}$ points $]$ Evaluate the following scalar surface integrals
(a) $\iint_{S}(x+y+z) d S$, where S is the surface $x^{2}+y^{2}+z^{2}=a^{2}, z \geq 0(a \neq 0)$;
(b) $\iint_{S} z d S$, where S is given by $x=u \cos v, y=u \sin v, z=v(0<u<a, 0<v<2 \pi)$;
(c) $\iint_{S}\left(x^{2}+y^{2}\right) d S$, where S is the full surface of the cone $\sqrt{x^{2}+y^{2}} \leq z \leq 1$.

Problem sheet 6

Tutorials by Mohammad Hashemi hashemi@math.uni-leipzig.de. Solutions will be collected during the lecture on Tuesday December 3.

1. $3+4+4$ points] Evaluate the following surface integrals
(a) $\iint_{S}(2 z-x) d y d z+(x+2 z) d z d x+3 z d x d y$, where S is the upper side (oriented up) of the triangle $x+4 y+z=4, x \geq 0, y \geq 0, z \geq 0$.
(b) $\iint_{S}\left(\frac{d y d z}{x}+\frac{d z d x}{y}+\frac{d x d y}{z}\right)$, where S is the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ oriented outward;
(c) $\iint_{S}(y-z) d y d z+(z-x) d z d x+(x-y) d x d y$, where S is the surface $x^{2}+y^{2}=z^{2}(0 \leq z \leq h)$ oriented outward.
2. $[\mathbf{3}+\mathbf{3}+\mathbf{5}$ points $]$ Using the Gauss-Ostrogradskii divergence theorem evaluate the following integrals
(a) $\iint_{S} x^{2} d y d z+y^{2} d z d x+z^{2} d x d y$, where S is the boundary of the cube $0 \leq x \leq a, 0 \leq y \leq a$, $0 \leq z \leq a$ oriented outward.
(b) $\iint_{S} x y^{2} d y d z+y z^{2} d z d x+z x^{2} d x d y$, where S is the sphere $x^{2}+y^{2}+z^{2}=R^{2}$ oriented outward.
(c) $\iint_{S} x^{2} d y d z+y^{2} d z d x+z^{2} d x d y$, where S is the part of the cone $x^{2}+y^{2}=z^{2}(0 \leq z \leq h)$ oriented outward.
(Hint: Add the part of plane $z=h, x^{2}+y^{2} \leq h^{2}$.)

Problem sheet 7

Tutorials by Mohammad Hashemi hashemi@math.uni-leipzig.de. Solutions will be collected during the lecture on Monday December 9.
(1.) $[4 \times 3$ points $]$ Using Stokes' theorem to compute the following line integrals
(a) $\int_{\gamma} y d x+z d y+x d z$, where γ is the circle $x^{2}+y^{2}+z^{2}=a^{2}, x+y+z=0$ with counter clockwise orientation when viewed from the positive side of axes x;
(b) $\int_{\gamma} x y d x+y z d y+z x d z$, where γ is the intersection of the cylinder $x^{2}+y^{2}=1$ with the plane $x+y+z=1$ with counter clockwise orientation when viewed above;
(c) $\int_{\gamma}\left(z^{2}-x^{2}\right) d x+\left(x^{2}-y^{2}\right) d y+\left(y^{2}-z^{2}\right) d z$, where γ is the intersection of the half sphere $x^{2}+y^{2}+z^{2}=9, z \geq 0$, with the cone $x^{2}+y^{2}=z^{2}$ with counter clockwise orientation when viewed above;
(d) $\int_{\gamma} z^{2} d y+x^{2} d z$, where γ is the curve $y^{2}+z^{2}=9,4 x+3 z=5$ oriented clockwise viewed form the point $(0,0,0)$.
[2 points] For which $a \in \mathbb{C}$ the following function is continuous at 0 ?

$$
f(z)= \begin{cases}\frac{\operatorname{Re} z}{z} & \text { if } z \neq 0 \\ a & \text { if } z=0\end{cases}
$$

3. $[\mathbf{2}+\mathbf{3}$ points $]$ For which real numbers a and b the function f is holomorphic:
(a) $f(z)=x+a y+i(b x+c y), z=x+i y$;
(b) $f(z)=\cos x(\cosh y+a \sinh y)+i \sin x(\cosh y+b \sinh y), z=x+i y$?
4. [4 points] Let $z=r e^{i \varphi}$ and $f(z)=u(r, \varphi)+i v(r, \varphi)$. Obtain Cauchy-Riemann equations in polar coordinates.
(Y [2 points] Prove that the function $f(z)=\bar{z}$ is not complex differentiable.

Problem sheet 8

Tutorials by Mohammad Hashemi hashemi@math.uni-leipzig.de. Solutions will be collected during the lecture on Monday December 16.

1. [3 points] Let u is a harmonic function. For which twice continuously differentiable function $f: \mathbb{R} \rightarrow \mathbb{R}$ the function $f(u)$ is also harmonic?
(2. $[3+4$ points $]$ In the following situations, find a holomorphic function f whose real part is u.
(a) $u=x^{2}-y^{2}+y$;
(b) $u=x^{2}-y^{2}+5 x+y-\frac{y}{x^{2}+y^{2}}$;
2. $[\mathbf{2}+\mathbf{3}$ points] For which φ the following functions are harmonic:
(a) $u=\varphi(x y)$;
(b) $u=\varphi\left(x^{2}+y^{2}\right)$.
3. [3 points] Show that the functions $e^{z}, \cos z$ and $\sin z$ are holomorphic in the whole complex plane and compute their derivatives.

Problem sheet 9

Tutorials by Mohammad Hashemi hashemi@math.uni-leipzig.de. Solutions will be collected during the lecture on Tuesday January 7.

1. $[\mathbf{1}+\mathbf{2}$ points $]$ Let $f(z)=z^{2}, z \in \mathbb{C}$.
(a) Determine the angle of rotation of the complex plane by f at the point $z=1+i$.
(b) Which part of the complex plane is stretched and which is contacted by f ?
2. [3 points] Find the image of the interior of the circle $\gamma:|z-2|=2$ under the linear fractional transformation $w=f(z)=\frac{z}{2 z-8}$. Sketch the image and pre-image of γ under $w=f(z)$.
3. [3 points] Show that the linear fractional transformation $f(z)=\frac{a\left(z-z_{0}\right)}{\bar{z}_{0} z-1}$ maps the disc $B=$ $\{z \in \mathbb{C}:|z|<1\}$ onto itself, where $\left|z_{0}\right|<1$ and $|a|=1$ are some complex numbers.
4. [3 points] Let γ be a continuously differentiable positively oriented boundary of a set $S \subset \mathbb{C}$ with area A. Compute the integral $\int_{\gamma} \operatorname{Re} z d z$.
5. $[\mathbf{1 + 2 + 3}$ points $]$ Evaluate the complex line integral $\int_{\gamma} f(z) d z$ in the following cases.
(a) $f(z)=z^{3}, \gamma$ is a part of the parabola $x=y^{2}$, that connects the points 0 and $1+i$ in the complex plane.
(b) $f(z)=|z|, \gamma$ is the half circular $|z|=1,0 \leq \arg z \leq \pi(z=1$ is the initial point);
(c) $f(z)=|z| \bar{z}, \gamma$ is the union of the half circular $|z|=1, y \geq 0$, and the segment $-1 \leq x \leq 1$, $y=0$,
6. [5 points] Prove that $\int_{0}^{\infty} \cos x^{2} d x=\int_{0}^{\infty} \sin x^{2} d x=\frac{\sqrt{\pi}}{2 \sqrt{2}}$.
(Hint: Integrate the function $f(z)=e^{i z^{2}}$ along the boundary of the domain $0 \leq|z| \leq R, 0 \leq \arg z \leq \frac{\pi}{4}$, and then pass to the limit as $R \rightarrow \infty$.)

Problem sheet 10

Tutorials by Mohammad Hashemi hashemi@math.uni-leipzig.de. Solutions will be collected during the lecture on Monday January 13.
(1. $[\mathbf{1}+\mathbf{2}+\mathbf{1}$ points $]$ Let γ be a positively oriented closed path in \mathbb{C}. Use Cauchy's integral formula to compute $\int_{\gamma} \frac{d z}{z^{2}+9}$ if
(a) γ surrounds the point $3 i$, but does not surround the point $-3 i$;
(b) γ surrounds the points $3 i$ and $-3 i$;
(c) γ surrounds neither the point $3 i$ not $-3 i$.
2. [3 points] Use Cauchy's integral formula to compute the integral $\int_{\gamma} \frac{z d z}{z^{4}-1}$, where γ is a positively oriented circle $|z|=a$ and $a>1$ is a real number.
3. [4 points] Let $f_{n}: U \rightarrow \mathbb{C}$ be continuous function on an open subset U of \mathbb{C} for all $n \geq 0$. Let the series $\sum_{n=0}^{\infty} f_{n}$ converges uniformly on U. Show that for every $z_{0} \in U$

$$
\lim _{z \rightarrow z_{0}} \sum_{n=0}^{\infty} f_{n}(z)=\sum_{n=0}^{\infty} f_{n}\left(z_{0}\right) .
$$

(4.

4 points] Show that the series

$$
\sum_{n=0}^{\infty} \frac{n z^{n}}{1-z^{n}}
$$

converges uniformly on each closed disc $|z| \leq R$ for every $R \in(0,1)$.
5. [2+3 points] Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be an entire function (holomorphic on \mathbb{C}). Show that
(a) if $|f(z)| \geq 1$ for all $z \in \mathbb{C}$, then f is constant in \mathbb{C};
(Hint: Apply the Liouville theorem to the function $\frac{1}{f(z)}$)
(b) if

$$
\lim _{z \rightarrow \infty} \frac{f(z)}{1+|z|^{\frac{7}{2}}}=0
$$

then f is a polynomial of degree less or equal than 3 .
(Hint: Use the Cauchy inequality)

Problem sheet 11

Tutorials by Mohammad Hashemi hashemi@math.uni-leipzig.de. Solutions will be collected during the lecture on Monday January 20.
(1. $[\mathbf{1}+\mathbf{2}$ points $]$ Using Uniqueness theorem prove the following formulas:
(a) $\sin ^{2} z=\frac{1-\cos 2 z}{2}, z \in \mathbb{C}$;
(b) $\sin \left(z_{1}+z_{2}\right)=\sin z_{1} \cos z_{2}+\cos z_{1} \sin z_{2}, z_{1}, z_{2} \in \mathbb{C}$.
2. $[1+1$ points $]$ Find the radius of convergence of the following power series:
(a) $\sum_{n=0}^{\infty} \frac{(z-1)^{n}}{n^{2}}$;
(b) $\sum_{n=0}^{\infty} n z^{2 n}$.
(3.) $[\mathbf{2}+\mathbf{3}$ points $]$ Expand the function $\frac{z^{2}}{(z+1)^{2}}$ in the power series
(a) $\sum_{n=0}^{\infty} a_{n} z^{n}$;
(b) $\sum_{n=0}^{\infty} a_{n}(z-1)^{n}$.
4. [2 points] Use Cauchy's integral formula for derivatives in order to compute the integral

$$
\frac{1}{2 \pi i} \int_{\gamma} \frac{z e^{z}}{(z-a)^{3}} d z
$$

where γ is a positively oriented simple path surrounding $a \in \mathbb{C}$.
5. $[\mathbf{1}+\mathbf{1}+\mathbf{2}$ points $]$ Does there exist a function f holomorphic at $z=0$ and such that $f\left(\frac{1}{n}\right), n \geq 1$, equals
(a) $0,1,0,1,0,1,0,1, \ldots$;
(b) $0, \frac{1}{2}, 0, \frac{1}{4}, 0, \frac{1}{6}, 0, \frac{1}{8}, \ldots$;
(c) $\frac{1}{2}, \frac{1}{2}, \frac{1}{4}, \frac{1}{4}, \frac{1}{6}, \frac{1}{6}, \frac{1}{8}, \frac{1}{8}, \ldots$

Justify your answers.
6. $[\mathbf{2}+\mathbf{4}+\mathbf{3}$ points $]$ Find the Laurent series for the following functions:
(a) $\frac{1}{z+3}$ in the annulus $3<|z|<\infty$;
(b) $\frac{1}{z(1-z)}$ in the annuli $0<|z|<1$ and $0<|z-1|<1$;
(c) $z^{2} \sin \frac{1}{z-1}$ in $0<|z-1|<\infty$.

Problem sheet 12

Tutorials by Mohammad Hashemi hashemi@math.uni-leipzig.de. Solutions will be collected during the lecture on Monday January 27.

1. $[\mathbf{3}+\mathbf{2}+\mathbf{3}+\mathbf{3}$ points $]$ Evaluate residues of the following functions at all isolated singularities:
(a) $\frac{1}{z^{3}-z^{5}}$;
(b) $\frac{\sin 2 z}{(z+1)^{2}}$;
(c) $z^{3} \cos \frac{1}{z-2}$;
(d) $\sin \frac{z}{z+1}$.
2. $[2+2+3+4+\mathbf{4}$ points $]$ Use the residue theorem to evaluate the following complex line integrals:
(a) $\int_{|z-2|=\frac{1}{2}} \frac{z d z}{(z-1)(z-2)^{2}}$;
(b) $\int_{|z|=1} \sin \frac{1}{z} d z$;
(c) $\frac{1}{2 \pi i} \int_{|z|=2} \sin ^{2} \frac{1}{z} d z$;
(d) $\frac{1}{2 \pi i} \int_{|z|=1} z^{n} e^{\frac{2}{z}} d z$, where n is an integer number;
(e) $\int_{|z|=4} \frac{z^{11} d z}{\left(z^{6}+2\right)^{2}}$. (Hint: Compute via residue at infinity)

Problem sheet 13

Tutorials by Mohammad Hashemi hashemi@math.uni-leipzig.de. Solutions will be collected during the lecture on Thursday January 30.
Points for solved exercises have to be included as bonus points for the homework

1. [3 points] Find a solution to the transport equation

$$
\begin{aligned}
& 2 u_{t}(t, x)+x^{3} u_{x}(t, x)=0, \quad x \in \mathbb{R}, \quad t>0 \\
& u(0, x)=\sin x, \quad x \in \mathbb{R} .
\end{aligned}
$$

2. [$\mathbf{3}+\mathbf{6}$ points] Solve the following heat equations:
(a)

$$
\begin{aligned}
u_{t}(t, x) & =\frac{1}{2} u_{x x}(t, x)+x, \quad x \in \mathbb{R}, \quad t>0 \\
u(0, x) & =1, \quad x \in \mathbb{R}
\end{aligned}
$$

(b)

$$
\begin{aligned}
u_{t}(t, x) & =u_{x x}(t, x)+t, \quad 0<x<1, \quad t>0 \\
u(t, 0) & =0, \quad u(t, 1)=0, \quad t \geq 0 \\
u(0, x) & =0, \quad t \geq 0
\end{aligned}
$$

3. [3+6 points] Solve the following wave equations:
(a)

$$
\begin{aligned}
u_{t t}(t, x)=u_{x x}(t, x), \quad x \in \mathbb{R}, \quad t>0 \\
u(0, x)=x, \quad u_{t}(0, x)=x^{2}, \quad x \in \mathbb{R} .
\end{aligned}
$$

(b)

$$
\begin{aligned}
u_{t t}(t, x) & =4 u_{x x}(t, x), \quad 0<x<1, \quad t>0 \\
u(t, 0) & =0, \quad u(t, 1)=0, \quad t \geq 0, \\
u(0, x) & =0, \quad u_{t}(0, x)=x(1-x), \quad 0 \leq x \leq 1
\end{aligned}
$$

