Retake Solutions

Each exercise is graded between 0 and 5 points.

1. Is the following matrix A invertible? If yes, compute the inverse matrix.

$$
A=\left(\begin{array}{rrrr}
1 & -2 & 1 & 0 \\
-1 & 1 & 4 & -1 \\
2 & -1 & -3 & 2 \\
3 & -4 & 3 & 1
\end{array}\right)
$$

Solution. We first compute the rank of the matrix A. So,

$$
\begin{aligned}
& \left(\begin{array}{rrrr}
1 & -2 & 1 & 0 \\
-1 & 1 & 4 & -1 \\
2 & -1 & -3 & 2 \\
3 & -4 & 3 & 1
\end{array}\right) \begin{array}{l}
I I+I \\
I I I-2 I \\
I V-3 I
\end{array} \sim\left(\begin{array}{rrrr}
1 & -2 & 1 & 0 \\
0 & -1 & 5 & -1 \\
0 & 3 & -5 & 2 \\
0 & 2 & 0 & 1
\end{array}\right) \begin{array}{l}
I I I+3 I I \\
I V+2 I I
\end{array} \\
& \sim\left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & -1 & 5 & -1 \\
0 & 0 & 10 & -1 \\
0 & 0 & 10 & -1
\end{array}\right) \sim\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

Hence, $\operatorname{rank} A=3$. It implies that A is not invertible.
2. Let the matrix of the operator $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ in the canonical basis be $M_{T}=\left(\begin{array}{ll}0 & 1 \\ 2 & 1\end{array}\right)$. Is T diagonalizable? If yes, find a basis of \mathbb{R}^{2} in which the matrix of T is diagonal.
Solution. Let us compute the eigenvalues and eigenvectors of the matrix M_{T}. For this, we have to find roots of characteristic polynomial:

$$
\left|\begin{array}{cc}
-\lambda & 1 \\
2 & 1-\lambda
\end{array}\right|=-\lambda(1-\lambda)-2=\lambda^{2}-\lambda-2=(\lambda-2)(\lambda+1)=0 .
$$

So, $\lambda_{1}=2$ and $\lambda_{2}=-1$ are two distinct eigenvalues of the map T. Thus, the map T is diagonalizable in the basis consisting of eigenvectors of T. Next, we find the corresponding eigenvectors from the system of linear equations

$$
\left(\begin{array}{cc}
-\lambda & 1 \\
2 & 1-\lambda
\end{array}\right)\binom{x}{y}=0
$$

So, for $\lambda=\lambda_{1}=2$ one has

$$
\left\{\begin{array}{l}
-2 x+y=0, \\
2 x-y=0 .
\end{array}\right.
$$

Hence, $(1,2)$ is en eigenvector corresponding to $\lambda_{1}=2$. Similarly, the second eigenvector corresponding to $\lambda=\lambda_{2}=-1$ equals $(1,-1)$. Hence, the operator T has a diagonal matrix $M_{T}^{\prime}=\left(\begin{array}{rr}2 & 0 \\ 0 & -1\end{array}\right)$ in the basis $(1,2),(1,-1)$.

3. Prove that

$$
\left\langle\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right\rangle=x_{1} y_{1}+2 x_{1} y_{2}+2 x_{2} y_{1}+6 x_{2} y_{2}, \quad\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \in \mathbb{R}^{2}
$$

is an inner product on \mathbb{R}^{2}. Find an orthonormal basis (with respect to this inner product) using Gram-Schmidt orthogonalisation procedure.
Solution. We remark that the $\operatorname{map}\langle\cdot, \cdot\rangle: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ is linear in the first slot and symmetric, i.e.

$$
\langle x+z, y\rangle=\langle x, y\rangle+\langle z, y\rangle \quad \text { and } \quad\langle x, y\rangle=\langle y, x\rangle
$$

for all $x=\left(x_{1}, x_{2}\right), y=\left(y_{1}, y_{2}\right)$ and $z=\left(z_{1}, z_{2}\right)$ from \mathbb{R}^{2}. So, we have to check only positive definiteness:

$$
\langle x, x\rangle=x_{1}^{2}+2 x_{1} x_{2}+2 x_{2} x_{1}+6 x_{2}^{2}=\left(x_{1}+2 x_{2}\right)^{2}+2 x_{2}^{2} \geq 0
$$

Moreover, $\langle x, x\rangle=0$ if and only if $x=(0,0)$. Thus, $\langle\cdot, \cdot\rangle$ is an inner product on \mathbb{R}^{2}.
In order to find an orthonormal basis, we apply the Gram-Schmidt orthogonalisation procedure to linearly independent vectors $v_{1}=(1,0)$ and $v_{2}=(0,1)$. We take $e_{1}:=\frac{v_{1}}{\left\|v_{1}\right\|}=(1,0)$. Next, we define

$$
u_{2}=v_{2}-\left\langle v_{2}, e_{1}\right\rangle e_{1}=(0,1)-2(1,0)=(-2,1)
$$

and $e_{2}=\frac{u_{2}}{\left\|u_{2}\right\|}=\frac{(-2,1)}{\sqrt{6}}=\left(-\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right)$. So, vectors e_{1} and e_{2} form a basis in \mathbb{R}^{2} with respect to the inner product $\langle\cdot, \cdot\rangle$.
4. If T is a normal operator, prove that eigenvectors for T which are associated with distinct eigenvalues are orthogonal.
Solution. We first remark that if T is normal and λ is an eigenvalue of T, then $\bar{\lambda}$ is an eigenvalue of T^{*}. Indeed, let x is a corresponding eigenvector. We consider

$$
\begin{aligned}
0 & =\|T x-\lambda x\|^{2}=\langle T x-\lambda x, T x-\lambda x\rangle=\langle(T-\lambda I) x,(T-\lambda I) x\rangle \\
& =\left\langle(T-\lambda I)^{*}(T-\lambda I) x, x\right\rangle \stackrel{\left(T T^{*}=T^{*} T\right)}{=}\left\langle(T-\lambda I)(T-\lambda I)^{*} x, x\right\rangle \\
& =\left\langle(T-\lambda I)^{*} x,(T-\lambda I)^{*} x\right\rangle=\left\|T^{*} x-\bar{\lambda} x\right\|^{2}
\end{aligned}
$$

where I denotes the identity operator. Next, let λ and μ be two distinct eigenvalues of T which correspond to eigenvectors x and y, respectively. Then

$$
(\lambda-\mu)\langle x, y\rangle=\langle\lambda x, y\rangle-\langle x, \bar{\mu} y\rangle=\langle T x, y\rangle-\left\langle x, T^{*} y\right\rangle=\langle T x, y\rangle-\langle T x, y\rangle=0
$$

Hence, $\langle x, y\rangle=0$ which implies the orthogonality of x and y.
5. Find all $\lambda \in \mathbb{R}$ for which the following quadratic form on \mathbb{R}^{3} is positive definite

$$
Q\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2}+x_{2}^{2}+2 x_{3}^{2}+2 \lambda x_{1} x_{2}-2 x_{1} x_{3}-2 x_{2} x_{3}
$$

Solution. In order to check for which λ the quadratic form Q is positive definite, we use the Sylvester's criterion. We compute the principal minors of matrix A of Q, where

$$
A=\left(\begin{array}{rrr}
1 & \lambda & -1 \\
\lambda & 1 & -1 \\
-1 & -1 & 2
\end{array}\right)
$$

So,

$$
M_{1}=1>0, \quad M_{2}=\left|\begin{array}{cc}
1 & \lambda \\
\lambda & 1
\end{array}\right|=1-\lambda^{2}>0
$$

and

$$
M_{3}=\operatorname{det} A=2-2 \lambda-1-1-2 \lambda^{2}=-2 \lambda-2 \lambda^{2}>0
$$

Hence, the quadratic form is positive definite for $\lambda \in(-1,0)$.
6. Let

$$
f(x, y)= \begin{cases}\frac{x^{3}-y^{2}}{x^{2}+y^{2}} & \text { if } x^{2}+y^{2} \neq 0 \\ 0 & \text { if } x=y=0\end{cases}
$$

Determine all directions $l=\left(l_{1}, l_{2}\right) \in \mathbb{R}^{2}$ along which $\frac{\partial f}{\partial l}(0,0)$ exists.
Solution. We fix a direction $l=\left(l_{1}, l_{2}\right) \in \mathbb{R}^{2}, l \neq(0,0)$. By the definition of directional derivative, we have

$$
\frac{\partial f}{\partial l}(0,0)=\lim _{t \rightarrow 0} \frac{f\left(t l_{1}, t l_{2}\right)-f(0,0)}{t}=\lim _{t \rightarrow 0} \frac{t^{3} l_{1}^{3}-t^{2} l_{2}^{2}}{t\left(t^{2} l_{1}^{2}+t^{2} l_{2}^{2}\right)}=\lim _{t \rightarrow 0} \frac{l_{1}^{3}-\frac{1}{t} l_{2}^{2}}{l_{1}^{2}+l_{2}^{2}}
$$

where the limit exists if and only if $l_{2}=0$. Hence, the directional derivative $\frac{\partial f}{\partial l}(0,0)$ only exists for all $l=\left(l_{1}, 0\right), l_{1} \in \mathbb{R}$.
7. Find a local extrema of the function

$$
f(x, y)=\left(y^{2}+x\right) e^{x-2 y}, \quad(x, y) \in \mathbb{R}^{2}
$$

Solution. We find first all critical points from the system of equations

$$
\left\{\begin{array}{l}
\frac{\partial f}{\partial x}(x, y)=e^{x-2 y}+\left(y^{2}+x\right) e^{x-2 y}=0 \\
\frac{\partial f}{\partial y}(x, y)=2 y e^{x-2 y}-2\left(y^{2}+x\right) e^{x-2 y}=0
\end{array}\right.
$$

It is equivalent to

$$
\left\{\begin{array}{l}
1+y^{2}+x=0 \\
2 y-2 y^{2}-2 x=0
\end{array}\right.
$$

Hence, $x=-2, y=-1$. So, $(-2,-1)$ is a critical point of f. Next, we compute the second derivatives of f

$$
\begin{aligned}
\frac{\partial^{2} f}{\partial x^{2}} & =2 e^{x-2 y}+\left(y^{2}+x\right) e^{x-2 y}=\left(2+x+y^{2}\right) e^{x-2 y} \\
\frac{\partial^{2} f}{\partial y^{2}} & =2 e^{x-2 y}-4 y e^{x-2 y}-4 y e^{x-2 y}+4\left(y^{2}+x\right) e^{x-2 y}=\left(2+4 x-8 y+4 y^{2}\right) e^{x-2 y} \\
\frac{\partial^{2} f}{\partial x \partial y} & =-2 e^{x-2 y}+2 y e^{x-2 y}-2\left(y^{2}+x\right) e^{x-2 y}=\left(-2-2 x+2 y-2 y^{2}\right) e^{x-2 y}
\end{aligned}
$$

Hence $\frac{\partial^{2} f}{\partial x^{2}}(-2,-1)=1>0$ and $\frac{\partial^{2} f}{\partial x^{2}}(-2,-1) \frac{\partial^{2} f}{\partial y^{2}}(-2,-1)-\left(\frac{\partial^{2} f}{\partial x \partial y}(-2,-1)\right)^{2}=1 \cdot 6-(-2)^{2}=$ $2>0$. This implies that $(-2,-1)$ is a point of local minimum.
8. Find the general solution to the equation $y^{(4)}-2 y^{\prime \prime \prime}+5 y^{\prime \prime}=0$.

Solution. We first write find roots of the characteristic polynomials:

$$
\lambda^{4}-2 \lambda^{3}+5 \lambda^{2}=\lambda^{2}\left(\lambda^{2}-2 \lambda+5\right)=\lambda^{2}(\lambda-1-2 i)(\lambda-1+2 i)=0 .
$$

Thus, $\lambda_{1}=0, \lambda_{2}=0, \lambda_{3}=1+2 i$ and $\lambda_{4}=1-2 i$. Consequently, the general solution is given by the formula

$$
y=C_{1}+C_{2} x+C_{3} e^{x} \sin 2 x+C_{4} e^{x} \cos 2 x .
$$

9. Solve the initial value problem $x^{2} y^{\prime}+x y+1=0, \quad y(1)=0$. What is the maximal interval where this solution is defined?
Solution. We start from solving the homogeneous equation

$$
x^{2} y^{\prime}+x y=0 .
$$

So,

$$
\begin{aligned}
\int \frac{d y}{y} & =-\int \frac{d x}{x} \\
\ln |y| & =-\ln |x|+\ln |C|, \\
y & =\frac{C}{x} .
\end{aligned}
$$

Next, we assume that the constant C depends on x and plug in $y=\frac{C(x)}{x}$ into the initial equation. We obtain

$$
\begin{aligned}
\frac{x^{2} C^{\prime}(x)}{x}-\frac{x^{2} C(x)}{x^{2}}+\frac{x C(x)}{x}+1 & =0, \\
x C^{\prime}(x)+1 & =0 .
\end{aligned}
$$

Hence, $C(x)=-\ln |x|+C_{1}$, and consequently, the general solution to the equation $x^{2} y^{\prime}+x y+1=$ 0 is given by the formula $y=-\frac{\ln |x|}{x}+\frac{C_{1}}{x}$. From the initial condition $y(1)=0$, we find $C_{1}=0$. Hence, $y(x)=-\frac{\ln |x|}{x}, x>0$. The interval $(0, \infty)$ is the maximal one, where the solution to the initial value problem is defined.

