

Exam Solutions

Each exercise is graded between 0 and 5 points.

1. Determine all $\lambda \in \mathbb{R}$ for which the vectors $v_1 = (1, 0, 0, -1), v_2 = (2, 1, 1, 0), v_3 = (1, 1, \lambda, 1), v_4 = (1, 2, 3, \lambda)$ form a basis in \mathbb{R}^4 .

Solution. Recall that four vectors v_1 , v_2 , v_3 , v_4 form a basis in \mathbb{R}^4 if and only if they are linearly independent. So, we need to find all λ for which the following determinant is non-zero.

$$\begin{vmatrix} 1 & 0 & 0 & -1 \\ 2 & 1 & 1 & 0 \\ 1 & 1 & \lambda & 1 \\ 1 & 2 & 3 & \lambda \end{vmatrix} = (-1)^{1+1} \cdot 1 \cdot \begin{vmatrix} 1 & 1 & 0 \\ 1 & \lambda & 1 \\ 2 & 3 & \lambda \end{vmatrix} + (-1)^{4+1} \cdot (-1) \cdot \begin{vmatrix} 2 & 1 & 1 \\ 1 & 1 & \lambda \\ 1 & 2 & 3 \end{vmatrix} = \lambda^2 + 2 - 3 - \lambda + 6 + 2 + \lambda - 1 - 3 - 4\lambda = \lambda^2 - 4\lambda + 3 = 0$$

provided $\lambda = 1$ or $\lambda = 3$. Thus the vectors v_1 , v_2 , v_3 , v_4 form a basis in \mathbb{R}^4 if and only if $\lambda \in \mathbb{R} \setminus \{1,3\}$.

2. Find the orthogonal projection of the vector v = (1, -1, 1) onto

$$U = \{(x_1, x_2, x_3): x_1 + x_2 + x_3 = 0\}$$

in \mathbb{R}^3 with the standard inner product. Compute the distance d(v, U) between v and U, where $d(v, U) = \inf \{ ||v - u|| : u \in U \}$.

Solution. We first find an orthonormal basis in U. We remark that a vector $u = (x_1, x_2, x_3)$ belongs to U if and only if $x_1 + x_2 + x_3 = 0$. So, we need to find a fundamental system of solutions to the (system of) linear equation $x_1 + x_2 + x_3 = 0$, which will form a basis in U.

$$\left(\begin{array}{cccc} 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{array}\right) \sim \left(\begin{array}{cccc} 1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{array}\right).$$

Thus, the vectors $v_1 = (-1, 1, 0)$ and $v_2 = (-1, 0, 1)$ form a basis in U. Using the Gram-Schmidt orthogonalization procedure, we built an orthonormal basis in U. We take $e_1 := \frac{v_1}{\|v_1\|} = \frac{1}{\sqrt{2}}(-1, 1, 0)$. Then, we set

$$\tilde{v}_2 := v_2 - \langle v_2, e_1 \rangle e_1 = (-1, 0, 1) - \frac{1}{2} \cdot 1 \cdot (-1, 1, 0) = \left(-\frac{1}{2}, -\frac{1}{2}, 1\right) = \frac{1}{2}(-1, -1, 2).$$

Take $e_2 := \frac{\tilde{v}_2}{\|\tilde{v}_2\|} = \frac{1}{\sqrt{6}}(-1, -1, 2)$. Then we can compute

$$P_U(v) = \langle v, e_1 \rangle e_1 + \langle v, e_2 \rangle e_2 = \frac{1}{2} \cdot (-2) \cdot (-1, 1, 0) + \frac{1}{6} \cdot 2 \cdot (-1, -1, 2) = \frac{1}{3} (2, -4, 2).$$

By properties of the orthogonal projection,

$$d(v,U) = \|v - P_U v\| = \left\| (1,-1,1) - \frac{1}{3}(2,-4,2) \right\| = \left\| \frac{1}{3}(1,1,1) \right\| = \frac{1}{3} \| (1,1,1) \| = \frac{1}{\sqrt{3}}.$$

3. Find coordinates of the vector x = (1, 1, -2) in the basis $e'_1 = (1, 0, 1), e'_2 = (1, 1, 0), e'_3 = (0, 1, 1).$ Solution. We first write the change of basis matrix from the standard basis to the basis e'_1, e'_2, e'_3 .

UNIVERSITÄT LEIPZIG

$$Q_{ee'} = \left(\begin{array}{rrr} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{array}\right).$$

Then the coordinates of the vector x in the basis e'_1, e'_2, e'_3 can be computed by the formula

$$\begin{pmatrix} x_1' \\ x_2' \\ x_3' \end{pmatrix} = Q_{ee'}^{-1} \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}.$$

So, we need to compute $Q_{ee'}^{-1}$. We first find det $Q_{ee'} = 1 + 1 = 2$. Next computing i - j cofactors of $Q_{ee'}$, we obtain

$$Q_{ee'}^{-1} = \frac{1}{2} \begin{pmatrix} 1 & -1 & 1 \\ 1 & 1 & -1 \\ -1 & 1 & 1 \end{pmatrix}.$$

Hence, multiplication of $Q_{ee'}^{-1}$ and the vector column x gives $x = (-1, 2, -1)_{e'}$.

4. Let V be a finite dimensional vector space over \mathbb{C} and T be a linear operator on V. Show that T is normal if and only if $T = T_1 + iT_2$, where T_1 and T_2 are self-adjoint operators which commute, i.e. $T_1T_2 = T_2T_1$.

Solution. We first assume that $T = T_1 + iT_2$, where T_1 and T_2 are self-adjoint and commutate, and show that T is normal, that is, $TT^* = T^*T$. We note that $T^* = (T_1 + iT_2)^* = T_1^* - iT_2^* = T_1 - iT_2$ and compute

$$TT^* = (T_1 + iT_2)(T_1 - iT_2) = T_1^2 - iT_1T_2 + iT_2T_1 + T_2^2 = T_1^2 + T_2^2.$$

Similarly, $T^*T = T_1^2 + T_2^2$. This shows that T is normal.

Next, we check that any normal operator T can be written as $T_1 + iT_2$, where T_1 and T_2 are self-adjoint operators which commute. For this we take $T_1 = \frac{T+T^*}{2}$ and $T_2 = \frac{T-T^*}{2i}$. Then $T_1^* = \frac{T^*+T^{**}}{2} = \frac{T^*+T}{2} = T_1$ and, similarly, $T_2^* = -\frac{T^*-T^{**}}{2i} = \frac{T-T^*}{2i} = T_2$. Moreover, $T_1T_2 = \frac{T+T^*}{2} \frac{T-T^*}{2i} = \frac{T-T^*}{2i} \frac{T+T^*}{2} = T_2T_1$, since T and T^* commute.

Another solution could be the following. Since T is normal, there exists a basis v_1, \ldots, v_n in which the matrix of T has a diagonal form, that is,

$$M_T = \begin{pmatrix} \lambda_1 & \dots & 0\\ \dots & \dots & \dots\\ 0 & \dots & \lambda_n \end{pmatrix},$$

where $\lambda_1, \ldots, \lambda_n$ are eigenvalues of T. We take operators T_1 and T_2 whose matrices in the basis v_1, \ldots, v_n have the form

$$M_{T_1} = \begin{pmatrix} \operatorname{Re} \lambda_1 & \dots & 0 \\ \dots & \dots & \dots \\ 0 & \dots & \operatorname{Re} \lambda_n \end{pmatrix} \quad \text{and} \quad M_{T_2} = \begin{pmatrix} \operatorname{Im} \lambda_1 & \dots & 0 \\ \dots & \dots & \dots \\ 0 & \dots & \operatorname{Im} \lambda_n \end{pmatrix}.$$

Then, trivially, $M_{T_1+iT_2} = M_{T_1} + iM_{T_2} = M_T$. This yields $T = T_1 + iT_2$. Moreover, $M_{T_1^*} = M_{T_1}$ and, similarly, $M_{T_2^*} = M_{T_2}$ because M_{T_1} and M_{T_2} are diagonal with real entries. Consequently, $T_1^* = T_1$ and $T_2^* = T_2$ which implies that T_1 and T_2 are self-adjoint. Next, due to the diagonal form of the matrices M_{T_1} and M_{T_2} , we have,

UNIVERSITÄT LEIPZIG

$$M_{T_1T_2} = M_{T_1}M_{T_2} = M_{T_2}M_{T_1} = M_{T_2T_1}.$$

So, $T_1T_2 = T_2T_1$. It finishes the proof.

5. Show that the function $f(x, y) = (x \cos \frac{y}{x}, x \sin \frac{y}{x}), x \neq 0$, is invertible in a neighbourhood of every point $(x, y) \in \mathbb{R}^2, x \neq 0$.

Solution. In order to prove that $f = (f_1, f_2) = (x \cos \frac{y}{x}, x \sin \frac{y}{x})$ is invertible in a neighbourhood of every point $(x, y), x \neq 0$, we use the theorem about existence of in inverse function (see Theorem 20.1). For this we show that the Jacobian of f is non-zero at each point $(x, y), x \neq 0$.

$$\frac{\partial(f_1, f_2)}{\partial(x, y)} = \begin{vmatrix} \frac{\partial f_1}{\partial x} & \frac{\partial f_1}{\partial y} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} \end{vmatrix} = \begin{vmatrix} \cos \frac{y}{x} + \frac{y}{x} \sin \frac{y}{x} & -\sin \frac{y}{x} \\ \sin \frac{y}{x} - \frac{y}{x} \cos \frac{y}{x} & \cos \frac{y}{x} \end{vmatrix}$$
$$= \cos^2 \frac{y}{x} + \frac{y}{x} \cdot \sin \frac{y}{x} \cdot \cos \frac{y}{x} + \sin^2 \frac{y}{x} - \frac{y}{x} \cdot \cos \frac{y}{x} \cdot \sin \frac{y}{x} = 1 \neq 0,$$

for all $(x, y) \in \mathbb{R}^2$, $x \neq 0$.

6. Consider the function

$$f(x,y) = \sqrt[3]{x^3 + y^3}, \quad (x,y) \in \mathbb{R}^2.$$

Check if the function f is differentiable at (0,0).

Solution. If f is differentiable at zero, then

$$\lim_{(x,y)\to(0,0)}\frac{f(x,y)-f(0,0)-L(x,y)}{\sqrt{x^2+y^2}}=0,$$

where $L(x,y) = \frac{\partial f}{\partial x}(0,0) \cdot x + \frac{\partial f}{\partial y}(0,0) \cdot y$ and partial derivatives of f at (0,0) exist, by the definition of differentiable function (see Definition 18.4) and Theorem 19.2. We first compute

$$\frac{\partial f}{\partial x}(0,0) = \lim_{t \to 0} \frac{f(t,0) - f(0,0)}{t} = \lim_{t \to 0} \frac{\sqrt[3]{t^3}}{t} = 1.$$

Similarly, $\frac{\partial f}{\partial y}(0,0) = 1$. Thus, we need to compute

$$\lim_{(x,y)\to(0,0)}\frac{f(x,y)-f(0,0)-L(x,y)}{\sqrt{x^2+y^2}} = \lim_{(x,y)\to(0,0)}\frac{\sqrt[3]{x^3+y^3}-x-y}{\sqrt{x^2+y^2}}.$$

Taking x = y, we have

$$\frac{\sqrt[3]{x^3 + y^3} - x - y}{\sqrt{x^2 + y^2}} = \frac{\sqrt[3]{x^3 + x^3} - 2x}{\sqrt{x^2 + x^2}} = \frac{(\sqrt[3]{2} - 2)x}{\sqrt{2}|x|} \to \frac{\sqrt[3]{2} - 2}{\sqrt{2}}, \quad \text{as} \ x \to 0 + .$$

So, the function f is not differentiable at (0,0).

7. Find all local extrema of the function $f(x, y, z) = x^2 + y^2 + 2z^2 - 2xz - 2x$. Solution. We first find critical points of f from the equality $\nabla f(x, y, z) = 0$.

$$\frac{\partial f}{\partial x} = 2x - 2z - 2 = 0, \quad \frac{\partial f}{\partial y} = 2y = 0, \quad \frac{\partial f}{\partial z} = 4z - 2x = 0.$$

Hence, x = 2, y = 0, z = 1. So, the point (2, 0, 1) is a critical point of f. In order to check if this point is a point of local extrema, we check whether $\text{Hess}_{(2,0,1)}(f)$ is positive or negative defined. We compute

$$\operatorname{Hess}_{(2,0,1)}(f) = \begin{pmatrix} 2 & 0 & -2 \\ 0 & 2 & 0 \\ -2 & 0 & 4 \end{pmatrix}.$$

By Sylvester's criterion (see Theorem 14.6), $\operatorname{Hess}_{(2,0,1)}(f)$ is positive definite, since $M_1 = 2 > 0$, $M_2 = \begin{vmatrix} 2 & 0 \\ 0 & 2 \end{vmatrix} = 2 > 0$, and $M_3 = \det(\operatorname{Hess}_{(2,0,1)}(f)) = 16 - 8 = 8 > 0$. So, (2,0,1) is a point of local minimum.

8. Find general solution to the differential equation $x^2y' + 2y = 2e^{\frac{1}{x}}y^{\frac{1}{2}}$. Solution. We devide the equation by x^2 which is not zero. So, we obtain the differential equation

$$y' + \frac{2y}{x^2} = \frac{2}{x^2} e^{\frac{1}{x}} y^{\frac{1}{2}}.$$
 (1)

which is a Bernoulli equation. So, we first need to solve the corresponding homogeneous equation

$$y' + \frac{2y}{x^2} = 0$$

The general solution to this equation is given by

$$y = Ce^{-\int \frac{2}{x^2} dx} = Ce^{\frac{2}{x}}.$$

One needs to find solutions to Bernoulli equation (1) in the form $y = u(x)e^{\frac{2}{x}}$, where u is a new unknown function. Substituting y into equation (1), we have

$$u'e^{\frac{2}{x}} - u\frac{2}{x^2}e^{\frac{2}{x}} + u\frac{2}{x^2}e^{\frac{2}{x}} = \frac{2}{x^2}e^{\frac{1}{x}}u^{\frac{1}{2}}e^{\frac{1}{x}}.$$

So, we obtain a separable equation

$$u' = \frac{2}{x^2}\sqrt{u}.$$
 (2)

Integration it, we have

$$\int \frac{du}{2\sqrt{u}} = \int \frac{dx}{x^2},$$
$$\sqrt{u} = -\frac{1}{x} + C.$$

Hence, $u = (-\frac{1}{x} + C)^2$ for all x such that $x \neq 0$ and $-\frac{1}{x} + C > 0$. Consequently, $y = (-\frac{1}{x} + C)^2 e^{\frac{2}{x}}$ for all $x > \frac{1}{C}$ and $x \neq 0$, where C is any non-zero constant. Solving equation (2), we have lost a solution u = 0. So, y = 0 is a particular solution to Bernoulli equation (1).