Exam Solutions

Each exercise is graded between 0 and 5 points.

1. Determine all $\lambda \in \mathbb{R}$ for which the vectors $v_{1}=(1,0,0,-1), v_{2}=(2,1,1,0), v_{3}=(1,1, \lambda, 1)$, $v_{4}=(1,2,3, \lambda)$ form a basis in \mathbb{R}^{4}.
Solution. Recall that four vectors $v_{1}, v_{2}, v_{3}, v_{4}$ form a basis in \mathbb{R}^{4} if and only if they are linearly independent. So, we need to find all λ for which the following determinant is non-zero.

$$
\begin{aligned}
\left|\begin{array}{rrrr}
1 & 0 & 0 & -1 \\
2 & 1 & 1 & 0 \\
1 & 1 & \lambda & 1 \\
1 & 2 & 3 & \lambda
\end{array}\right| & =(-1)^{1+1} \cdot 1 \cdot\left|\begin{array}{ccc}
1 & 1 & 0 \\
1 & \lambda & 1 \\
2 & 3 & \lambda
\end{array}\right|+(-1)^{4+1} \cdot(-1) \cdot\left|\begin{array}{ccc}
2 & 1 & 1 \\
1 & 1 & \lambda \\
1 & 2 & 3
\end{array}\right|= \\
& =\lambda^{2}+2-3-\lambda+6+2+\lambda-1-3-4 \lambda=\lambda^{2}-4 \lambda+3=0
\end{aligned}
$$

provided $\lambda=1$ or $\lambda=3$. Thus the vectors $v_{1}, v_{2}, v_{3}, v_{4}$ form a basis in \mathbb{R}^{4} if and only if $\lambda \in \mathbb{R} \backslash\{1,3\}$.
2. Find the orthogonal projection of the vector $v=(1,-1,1)$ onto

$$
U=\left\{\left(x_{1}, x_{2}, x_{3}\right): x_{1}+x_{2}+x_{3}=0\right\}
$$

in \mathbb{R}^{3} with the standard inner product. Compute the distance $d(v, U)$ between v and U, where $d(v, U)=\inf \{\|v-u\|: u \in U\}$.
Solution. We first find an orthonormal basis in U. We remark that a vector $u=\left(x_{1}, x_{2}, x_{3}\right)$ belongs to U if and only if $x_{1}+x_{2}+x_{3}=0$. So, we need to find a fundamental system of solutions to the (system of) linear equation $x_{1}+x_{2}+x_{3}=0$, which will form a basis in U.

$$
\left(\begin{array}{r|rrr}
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right) \sim\left(\begin{array}{l|rrr}
1 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & -1 & 0 & 1
\end{array}\right) .
$$

Thus, the vectors $v_{1}=(-1,1,0)$ and $v_{2}=(-1,0,1)$ form a basis in U. Using the GramSchmidt orthogonalization procedure, we built an orthonormal basis in U. We take $e_{1}:=\frac{v_{1}}{\left\|v_{1}\right\|}=$ $\frac{1}{\sqrt{2}}(-1,1,0)$. Then, we set

$$
\tilde{v}_{2}:=v_{2}-\left\langle v_{2}, e_{1}\right\rangle e_{1}=(-1,0,1)-\frac{1}{2} \cdot 1 \cdot(-1,1,0)=\left(-\frac{1}{2},-\frac{1}{2}, 1\right)=\frac{1}{2}(-1,-1,2) .
$$

Take $e_{2}:=\frac{\tilde{v}_{2}}{\left\|\tilde{v}_{2}\right\|}=\frac{1}{\sqrt{6}}(-1,-1,2)$. Then we can compute

$$
P_{U}(v)=\left\langle v, e_{1}\right\rangle e_{1}+\left\langle v, e_{2}\right\rangle e_{2}=\frac{1}{2} \cdot(-2) \cdot(-1,1,0)+\frac{1}{6} \cdot 2 \cdot(-1,-1,2)=\frac{1}{3}(2,-4,2) .
$$

By properties of the orthogonal projection,

$$
d(v, U)=\left\|v-P_{U} v\right\|=\left\|(1,-1,1)-\frac{1}{3}(2,-4,2)\right\|=\left\|\frac{1}{3}(1,1,1)\right\|=\frac{1}{3}\|(1,1,1)\|=\frac{1}{\sqrt{3}} .
$$

3. Find coordinates of the vector $x=(1,1,-2)$ in the basis $e_{1}^{\prime}=(1,0,1), e_{2}^{\prime}=(1,1,0), e_{3}^{\prime}=(0,1,1)$. Solution. We first write the change of basis matrix from the standard basis to the basis $e_{1}^{\prime}, e_{2}^{\prime}, e_{3}^{\prime}$.

$$
Q_{e e^{\prime}}=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right)
$$

Then the coordinates of the vector x in the basis $e_{1}^{\prime}, e_{2}^{\prime}, e_{3}^{\prime}$ can be computed by the formula

$$
\left(\begin{array}{r}
x_{1}^{\prime} \\
x_{2}^{\prime} \\
x_{3}^{\prime}
\end{array}\right)=Q_{e e^{\prime}}^{-1}\left(\begin{array}{r}
1 \\
1 \\
-2
\end{array}\right) .
$$

So, we need to compute $Q_{e e^{\prime}}^{-1}$. We first find $\operatorname{det} Q_{e e^{\prime}}=1+1=2$. Next computing $i-j$ cofactors of $Q_{e e^{\prime}}$, we obtain

$$
Q_{e e^{\prime}}^{-1}=\frac{1}{2}\left(\begin{array}{rrr}
1 & -1 & 1 \\
1 & 1 & -1 \\
-1 & 1 & 1
\end{array}\right) .
$$

Hence, multiplication of $Q_{e e^{\prime}}^{-1}$ and the vector column x gives $x=(-1,2,-1)_{e^{\prime}}$.
4. Let V be a finite dimensional vector space over \mathbb{C} and T be a linear operator on V. Show that T is normal if and only if $T=T_{1}+i T_{2}$, where T_{1} and T_{2} are self-adjoint operators which commute, i.e. $T_{1} T_{2}=T_{2} T_{1}$.

Solution. We first assume that $T=T_{1}+i T_{2}$, where T_{1} and T_{2} are self-adjoint and commutate, and show that T is normal, that is, $T T^{*}=T^{*} T$. We note that $T^{*}=\left(T_{1}+i T_{2}\right)^{*}=T_{1}^{*}-i T_{2}^{*}=T_{1}-i T_{2}$ and compute

$$
T T^{*}=\left(T_{1}+i T_{2}\right)\left(T_{1}-i T_{2}\right)=T_{1}^{2}-i T_{1} T_{2}+i T_{2} T_{1}+T_{2}^{2}=T_{1}^{2}+T_{2}^{2}
$$

Similarly, $T^{*} T=T_{1}^{2}+T_{2}^{2}$. This shows that T is normal.
Next, we check that any normal operator T can be written as $T_{1}+i T_{2}$, where T_{1} and T_{2} are self-adjoint operators which commute. For this we take $T_{1}=\frac{T+T^{*}}{2}$ and $T_{2}=\frac{T-T^{*}}{2 i}$. Then $T_{1}^{*}=\frac{T^{*}+T^{* *}}{2}=\frac{T^{*}+T}{2}=T_{1}$ and, similarly, $T_{2}^{*}=-\frac{T^{*}-T^{* *}}{2 i}=\frac{T-T^{*}}{2 i}=T_{2}$. Moreover, $T_{1} T_{2}=$ $\frac{T+T^{*}}{2} \frac{T-T^{*}}{2 i}=\frac{T-T^{*}}{2 i} \frac{T+T^{*}}{2}=T_{2} T_{1}$, since T and T^{*} commute.
Another solution could be the following. Since T is normal, there exists a basis v_{1}, \ldots, v_{n} in which the matrix of T has a diagonal form, that is,

$$
M_{T}=\left(\begin{array}{ccc}
\lambda_{1} & \ldots & 0 \\
\ldots & \ldots & \ldots \\
0 & \ldots & \lambda_{n}
\end{array}\right)
$$

where $\lambda_{1}, \ldots, \lambda_{n}$ are eigenvalues of T. We take operators T_{1} and T_{2} whose matrices in the basis v_{1}, \ldots, v_{n} have the form

$$
M_{T_{1}}=\left(\begin{array}{ccc}
\operatorname{Re} \lambda_{1} & \ldots & 0 \\
\ldots & \ldots & \ldots \\
0 & \ldots & \operatorname{Re} \lambda_{n}
\end{array}\right) \quad \text { and } \quad M_{T_{2}}=\left(\begin{array}{ccc}
\operatorname{Im} \lambda_{1} & \ldots & 0 \\
\ldots & \ldots & \ldots \\
0 & \ldots & \operatorname{Im} \lambda_{n}
\end{array}\right) .
$$

Then, trivially, $M_{T_{1}+i T_{2}}=M_{T_{1}}+i M_{T_{2}}=M_{T}$. This yields $T=T_{1}+i T_{2}$. Moreover, $M_{T_{1}^{*}}=$ $M_{T_{1}}^{*}=M_{T_{1}}$ and, similarly, $M_{T_{2}^{*}}=M_{T_{2}}$ because $M_{T_{1}}$ and $M_{T_{2}}$ are diagonal with real entries. Consequently, $T_{1}^{*}=T_{1}$ and $T_{2}^{*}=T_{2}$ which implies that T_{1} and T_{2} are self-adjoint. Next, due to the diagonal form of the matrices $M_{T_{1}}$ and $M_{T_{2}}$, we have,

$$
M_{T_{1} T_{2}}=M_{T_{1}} M_{T_{2}}=M_{T_{2}} M_{T_{1}}=M_{T_{2} T_{1}} .
$$

So, $T_{1} T_{2}=T_{2} T_{1}$. It finishes the proof.
5. Show that the function $f(x, y)=\left(x \cos \frac{y}{x}, x \sin \frac{y}{x}\right), x \neq 0$, is invertible in a neighbourhood of every point $(x, y) \in \mathbb{R}^{2}, x \neq 0$.
Solution. In order to prove that $f=\left(f_{1}, f_{2}\right)=\left(x \cos \frac{y}{x}, x \sin \frac{y}{x}\right)$ is invertible in a neighbourhood of every point $(x, y), x \neq 0$, we use the theorem about existence of in inverse function (see Theorem 20.1). For this we show that the Jacobian of f is non-zero at each point $(x, y), x \neq 0$.

$$
\begin{aligned}
\frac{\partial\left(f_{1}, f_{2}\right)}{\partial(x, y)} & =\left|\begin{array}{ll}
\frac{\partial f_{1}}{\partial x} & \frac{\partial f_{1}}{\partial y} \\
\frac{\partial f_{2}}{\partial x} & \frac{\partial f_{2}}{\partial y}
\end{array}\right|=\left|\begin{array}{cc}
\cos \frac{y}{x}+\frac{y}{x} \sin \frac{y}{x} & -\sin \frac{y}{x} \\
\sin \frac{y}{x}-\frac{y}{x} \cos \frac{y}{x} & \cos \frac{y}{x}
\end{array}\right| \\
& =\cos ^{2} \frac{y}{x}+\frac{y}{x} \cdot \sin \frac{y}{x} \cdot \cos \frac{y}{x}+\sin ^{2} \frac{y}{x}-\frac{y}{x} \cdot \cos \frac{y}{x} \cdot \sin \frac{y}{x}=1 \neq 0
\end{aligned}
$$

for all $(x, y) \in \mathbb{R}^{2}, x \neq 0$.
6. Consider the function

$$
f(x, y)=\sqrt[3]{x^{3}+y^{3}}, \quad(x, y) \in \mathbb{R}^{2}
$$

Check if the function f is differentiable at $(0,0)$.
Solution. If f is differentiable at zero, then

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{f(x, y)-f(0,0)-L(x, y)}{\sqrt{x^{2}+y^{2}}}=0
$$

where $L(x, y)=\frac{\partial f}{\partial x}(0,0) \cdot x+\frac{\partial f}{\partial y}(0,0) \cdot y$ and partial derivatives of f at $(0,0)$ exist, by the definition of differentiable function (see Definition 18.4) and Theorem 19.2. We first compute

$$
\frac{\partial f}{\partial x}(0,0)=\lim _{t \rightarrow 0} \frac{f(t, 0)-f(0,0)}{t}=\lim _{t \rightarrow 0} \frac{\sqrt[3]{t^{3}}}{t}=1
$$

Similarly, $\frac{\partial f}{\partial y}(0,0)=1$. Thus, we need to compute

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{f(x, y)-f(0,0)-L(x, y)}{\sqrt{x^{2}+y^{2}}}=\lim _{(x, y) \rightarrow(0,0)} \frac{\sqrt[3]{x^{3}+y^{3}}-x-y}{\sqrt{x^{2}+y^{2}}}
$$

Taking $x=y$, we have

$$
\frac{\sqrt[3]{x^{3}+y^{3}}-x-y}{\sqrt{x^{2}+y^{2}}}=\frac{\sqrt[3]{x^{3}+x^{3}}-2 x}{\sqrt{x^{2}+x^{2}}}=\frac{(\sqrt[3]{2}-2) x}{\sqrt{2}|x|} \rightarrow \frac{\sqrt[3]{2}-2}{\sqrt{2}}, \quad \text { as } \quad x \rightarrow 0+.
$$

So, the function f is not differentiable at $(0,0)$.
7. Find all local extrema of the function $f(x, y, z)=x^{2}+y^{2}+2 z^{2}-2 x z-2 x$.

Solution. We first find critical points of f from the equality $\nabla f(x, y, z)=0$.

$$
\frac{\partial f}{\partial x}=2 x-2 z-2=0, \quad \frac{\partial f}{\partial y}=2 y=0, \quad \frac{\partial f}{\partial z}=4 z-2 x=0
$$

Hence, $x=2, y=0, z=1$. So, the point $(2,0,1)$ is a critical point of f. In order to check if this point is a point of local extrema, we check whether $\operatorname{Hess}_{(2,0,1)}(f)$ is positive or negative defined. We compute

$$
\operatorname{Hess}_{(2,0,1)}(f)=\left(\begin{array}{rrr}
2 & 0 & -2 \\
0 & 2 & 0 \\
-2 & 0 & 4
\end{array}\right)
$$

By Sylvester's criterion (see Theorem 14.6), $\operatorname{Hess}_{(2,0,1)}(f)$ is positive definite, since $M_{1}=2>0$, $M_{2}=\left|\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right|=2>0$, and $M_{3}=\operatorname{det}\left(\operatorname{Hess}_{(2,0,1)}(f)\right)=16-8=8>0$. So, $(2,0,1)$ is a point of local minimum.
8. Find general solution to the differential equation $x^{2} y^{\prime}+2 y=2 e^{\frac{1}{x}} y^{\frac{1}{2}}$.

Solution. We devide the equation by x^{2} which is not zero. So, we obtain the differential equation

$$
\begin{equation*}
y^{\prime}+\frac{2 y}{x^{2}}=\frac{2}{x^{2}} e^{\frac{1}{x}} y^{\frac{1}{2}} \tag{1}
\end{equation*}
$$

which is a Bernoulli equation. So, we first need to solve the corresponding homogeneous equation

$$
y^{\prime}+\frac{2 y}{x^{2}}=0
$$

The general solution to this equation is given by

$$
y=C e^{-\int \frac{2}{x^{2}} d x}=C e^{\frac{2}{x}}
$$

One needs to find solutions to Bernoulli equation (1) in the form $y=u(x) e^{\frac{2}{x}}$, where u is a new unknown function. Substituting y into equation (1), we have

$$
u^{\prime} e^{\frac{2}{x}}-u \frac{2}{x^{2}} e^{\frac{2}{x}}+u \frac{2}{x^{2}} e^{\frac{2}{x}}=\frac{2}{x^{2}} e^{\frac{1}{x}} u^{\frac{1}{2}} e^{\frac{1}{x}}
$$

So, we obtain a separable equation

$$
\begin{equation*}
u^{\prime}=\frac{2}{x^{2}} \sqrt{u} \tag{2}
\end{equation*}
$$

Integration it, we have

$$
\begin{gathered}
\int \frac{d u}{2 \sqrt{u}}=\int \frac{d x}{x^{2}} \\
\sqrt{u}=-\frac{1}{x}+C
\end{gathered}
$$

Hence, $u=\left(-\frac{1}{x}+C\right)^{2}$ for all x such that $x \neq 0$ and $-\frac{1}{x}+C>0$. Consequently, $y=$ $\left(-\frac{1}{x}+C\right)^{2} e^{\frac{2}{x}}$ for all $x>\frac{1}{C}$ and $x \neq 0$, where C is any non-zero constant. Solving equation (2), we have lost a solution $u=0$. So, $y=0$ is a particular solution to Bernoulli equation (1).

