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Exam Solutions

FEach exercise is graded between 0 and 5 points.

1. Determine all A € R for which the vectors v1 = (1,0,0,—1), vo = (2,1,1,0), vz = (1,1, A\, 1),
vy = (1,2,3,\) form a basis in R*.
Solution. Recall that four vectors vy, va, v3, v4 form a basis in R* if and only if they are linearly
independent. So, we need to find all A for which the following determinant is non-zero.

0

;1(1) (1) 110 2 1 1
L1y 1 =D N 1+ (=DM =D X | =
L2 3 2 3 A 1 2 3

=A42-3-A+6+2+A-1-3-4A=A2 -4\ +3=0
provided A = 1 or A = 3. Thus the vectors vi, va, v3, v4 form a basis in R* if and only if
AeR\{1,3}.
2. Find the orthogonal projection of the vector v = (1, —1,1) onto
U={(x1,z2,23) : &1+ 22+ 23 =0}
in R? with the standard inner product. Compute the distance d(v,U) between v and U, where
d(v,U) =inf{||lv—ul|: uweU}.

Solution. We first find an orthonormal basis in U. We remark that a vector u = (x1, 22, z3)
belongs to U if and only if 1 + 22 + 3 = 0. So, we need to find a fundamental system of
solutions to the (system of) linear equation x; + x3 + x3 = 0, which will form a basis in U.

17100 1 1 00

11010 ]~ 0| —-110

110 0 1 0] -1 0 1
Thus, the vectors v; = (—1,1,0) and v = (—1,0,1) form a basis in U. Using the Gram-
Schmidt orthogonalization procedure, we built an orthonormal basis in U. We take e; := ”;‘j—i” =
%(—1, 1,0). Then, we set

- 1 1 1 1
U2 = vz — (v, er)er = (=1,0,1) — o - 1-(-1,1,0) = <_2’—27 1) =5(-1,-1,2).

U2

_ 1
2l %(_

Take e := 1,—1,2). Then we can compute

=Y

Pu(v) = (v,e1)e1 + (v, e2)es = ~ - (=2) - (—1,1,0) + é 2. (—1,-1,2) = %(2, 4,2,

N |

By properties of the orthogonal projection,

1

dw0.0) = o= Povl = |1 -1.0) - g2 -42) = [30.10] = 1101
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3. Find coordinates of the vector x = (1,1, —2) in the basis ¢} = (1,0,1), ¢, = (1,1,0), €5 = (0,1, 1).
Solution. We first write the change of basis matrix from the standard basis to the basis €], €5, €.

1 10
Qeer = 01 1
1 01

Then the coordinates of the vector x in the basis €], €}, €5 can be computed by the formula

x) 1
/ _ —1

T4 = Qee, 1
/

Ty -2

So, we need to compute Qe_;. We first find det Qeer = 1+ 1 = 2. Next computing ¢ — j cofactors
of Q.er, we obtain

A T
Qu=5( 1 1 -1
-1 1 1

Hence, multiplication of er and the vector column z gives x = (—1,2, —1),.

4. Let V be a finite dimensional vector space over C and T be a linear operator on V. Show that T’
is normal if and only if T = T +iT5, where T} and 75 are self-adjoint operators which commute,
i.e. T1T2 = TQTl.

Solution. We first assume that T' = T1+iT5, where T and T5 are self-adjoint and commutate, and
show that 7" is normal, that is, 77 = T*T. We note that 7™ = (T} +iT5)* = 1T} —iT5 = Th — i1
and compute

TT* = (T1 +iTo)(Ty — iTy) = T2 — iy Ty + iToT) + T8 = T2 + T2

Similarly, T*T = T? + T%. This shows that T is normal.

Next, we check that any normal operator 1" can be written as 17 + i1, where 177 and T5 are

self-adjoint operators which commute. For this we take T = T+TT* and Ty = TE;‘F*. Then

* * %k * . . * __ * %k _ *
17 = T +2T =T 2+T = T1 and, similarly, T35 = T QZ.T = TQZ.T = T5. Moreover, T11T5 =
* * * * .
TET TEZ.T = TE;‘F T+2T = T5T}, since T and T* commute.
Another solution could be the following. Since T is normal, there exists a basis vy,...,v, in

which the matrix of T has a diagonal form, that is,

AM ... O
Mp=1| ... ... ... ],
0 ... M\
where A1, ..., A\, are eigenvalues of T'. We take operators T7 and T5 whose matrices in the basis
v1,..., U, have the form
Re)\1 0 Im)\1 0
MT1: and MT2: .
0 ... Re\, 0 oo Im A,
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Then, trivially, M7, yi7, = M7, + i¢Mp, = Mp. This yields T' = 17 + 1. Moreover, MTf =
M}l = My, and, similarly, MT; = My, because M, and My, are diagonal with real entries.
Consequently, 17 = T} and T5 = T which implies that 77 and 75 are self-adjoint. Next, due to
the diagonal form of the matrices M7, and Mr,, we have,

MT1T2 = MTlMTQ = MTQMTl = MTQTI'
So, T1T5 = T5Ty. It finishes the proof.

5. Show that the function f(z,y) = (a: cos%,a:sin %), x # 0, is invertible in a neighbourhood of
every point (x,y) € R?, z # 0.

Solution. In order to prove that f = (f1, f2) = (x cos £, xsin %) is invertible in a neighbourhood

of every point (z,y), x # 0, we use the theorem about existence of in inverse function (see
Theorem 20.1). For this we show that the Jacobian of f is non-zero at each point (z,y), x # 0.

] . .
o(f1, f2) % af}; _ cosy 4+ Ygin¥  —sin ¥
A(z,y) % %—; sin —Ycos?  cos ¥
:COSQQ—Fgﬂing-cosg+sim2g—g 'cosg-sing =1+#0,
xr  x x x x x x x
for all (z,y) € R?, x # 0.
6. Consider the function
fle,y) = Vad + 43, (2,y) € R%
Check if the function f is differentiable at (0,0).
Solution. If f is differentiable at zero, then

lim
(2,y)—(0,0) V2 + y?

where L(z,y) = %(0,0) s+ 2—5(0,0) -y and partial derivatives of f at (0,0) exist, by the
definition of differentiable function (see Definition 18.4) and Theorem 19.2. We first compute

_ 3/+3
g(0,0) = lim f(5,0) = /(0.0 = lim v 1.
oz t—0 t t—0 t

Similarly, 3—5(0, 0) = 1. Thus, we need to compute

b f@y) = f0.0) —Ly) . Yy oa—y

(x,y)—(0,0) V2 + y? (x,y)—(0,0) V2 + y?

Taking z = y, we have

\3/m3+y3—x—y_\3/x3+x3—2x (V2 —2)x No)

= — , as x—>0+4.

Va2 +y? Va2 a2 V2| 2

So, the function f is not differentiable at (0, 0).
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7. Find all local extrema of the function f(z,y,2) = 2? + y? + 222 — 222 — 22.
Solution. We first find critical points of f from the equality V f(z,y,z) = 0.

of of of

= =2x—22—-2=0, 2 =2y=0, —— =4z—2x=0.

Ox v T Oy y=% 52 e
Hence, v =2,y =0, z = 1. So, the point (2,0, 1) is a critical point of f. In order to check if this
point is a point of local extrema, we check whether Hess(; o 1)(f) is positive or negative defined.
We compute

2 0 -2

Hess(g,oJ) (f) = 0 2 0

-2 0 4
By Sylvester’s criterion (see Theorem 14.6), Hess<27071)(f) is positive definite, since M; =2 > 0,
My = ‘ (2) (2) = 2> 0, and M3 = det(Hess2,1)(f)) =16 =8 =8 > 0. So, (2,0,1) is a point of

local minimum.

8. Find general solution to the differential equation x%y’ 4 2y = Zeiy%.

Solution. We devide the equation by z? which is not zero. So, we obtain the differential equation

2 9
Y + = ery?. (1)

The general solution to this equation is given by
2
Yy = Ce_f?dz = Ce%.

One needs to find solutions to Bernoulli equation (1) in the form y = u(x)e%, where u is a new
unknown function. Substituting y into equation (1), we have

2 2 2 2 2 1

2 1
/] £ S S = =
uwes —u—ex —|—u—261 = —geruzer.
x x x

8=

So, we obtain a separable equation

u = " V. (2)
Integration it, we have
/ du  [dx
2v/u ) 22’
1
Vu=—--+C.
x

Hence, v = (—%+C)2 for all x such that z # 0 and —% + C > 0. Consequently, y =

(—% +C )2 e+ for all 2 > % and x # 0, where C is any non-zero constant. Solving equation (2),
we have lost a solution u = 0. So, y = 0 is a particular solution to Bernoulli equation (1).
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