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1 Systems of Linear Equations (Lecture Notes)

1.1 Definitions

We consider the problem of finding n scalars x1, . . . , xn ∈ F which satisfy:
a11x1 + · · ·+ a1nxn = b1

...

am1x1 + · · ·+ amnxn = bm

(1.1)

where aij , bi (i = 1, . . . ,m j = 1, . . . , n) are given numbers from F.

Definition 1.1 We call (1.1) a system of linear equations with n unknowns. Any set of elements

x1, . . . , xn ∈ F is called a solution if it satisfies the system. The system is said to be homogeneous

if b1 = b2 = · · · = bn = 0.

Definition 1.2 If we multiply the jth equation by a scalar cj ∈ F, ∀ j = 1, . . . ,m and then add

them, we get a new equation which is called a linear combination of equations in (1.1).

Definition 1.3 Two systems are equivalent if each equation in each system is a linear combi-

nation of the equations in the other system.

Theorem 1.1 Equivalent systems have the same solutions.

Definition 1.4 A system is consistent if it has at least one solution, otherwise it is inconsistent.

1.2 Matrices and Elementary Row Operations

Definition 1.5 Given m,n ∈ N, a rectangular array of numbers aij ∈ F

A = (aij)
m,n
i,j=1 =


a11 . . . a1n

...
...

am1 . . . amn


is called an m×n matrix. The numbers aij are called the entries of A, where i indexes the rows

of A and j indexes the columns of A. We also say that A has size m× n.

Definition 1.6 The set of all m× n matrices with entries from F is denoted Fm×n.

Definition 1.7 If A,B ∈ Fm×n, then B is row-equivalent to A if B can be obtained from A by

a finite number of elementary row-operations.

Theorem 1.2 If A and B are row-equivalent augmented matrices of systems of linear equations,

then those systems have the same solutions.
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1.3 Row-Reduced Echelon Matrices

Let Ai be the ith row vector of A and Aj be the jth column vector of A.

Definition 1.8 A is in row-echelon form (REF) if the rows of A satisfy:

1. either Ai is the zero vector or the first non-zero entry is 1 when read from left to right

2. for i = 1, . . . ,m, if Ai = 0, then Ai+1 = Ai+2 = · · · = Am = 0

3. for i = 2, . . . ,m, if some Ai is not the zero vector, then the first non-zero entry is 1 and

occurs to the right of the initial 1 in Ai−1

Definition 1.9 The initial leading 1 is called the pivot.

Definition 1.10 A is in reduced row-echelon form (RREF) if A is in REF and if a column Aj

containing a pivot implies that the pivot is the only non-zero entry in that column.

Example 1 2 1 1

0 1 −1 1

0 0 0 1

 REF

0 1 0 0 2

0 0 1 2 3

0 0 0 0 0

 RREF

Theorem 1.3 Every m× n matrix is row-equivalent to a matrix in RREF.
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2 Vector Spaces (Lecture Notes)

2.1 Vector Spaces

Definition 2.1 A vector space over a field F is a set V , along with the operations addition and

multiplication, which satisfies the following conditions:

1. u+ v = v + u ∀u, v ∈ V

2. (v + u) + w = v + (u+ w) ∀u, v, w ∈ V

3. ∃ 0 ∈ V : 0 + v = v ∀ v ∈ V

4. ∀ v ∈ V ∃w ∈ V : v + w = 0, w := −v

5. 1 · v = v ∀ v ∈ V

6. a(u+ v) = au+ av, (a+ b)v = av + bv ∀u, v ∈ V, a, b ∈ F

Definition 2.2 U ⊆ V is called a subspace of V if U is a vector space over F under the same

operations.

Lemma 2.1 U ⊆ V is a subspace of V if and only if:

1. 0 ∈ U

2. ∀u, v ∈ U, u+ v ∈ U

3. ∀ a ∈ F, u ∈ U, au ∈ U

2.2 Bases

Definition 2.3 Vectors v1, . . . , vn ∈ V are linearly independent if the equation

a1v1 + · · ·+ anvn = 0

only has the solution a1 = a2 = · · · = an = 0. The set

span (v1, . . . , vn) = {a1v1 + · · ·+ anvn : ai ∈ F, i = 1, . . . , n}

is the linear span of vectors v1, . . . , vn.

Definition 2.4 Vectors v1, . . . , vn ∈ V form a basis of V if they are linearly independent and

if V = span(v1, . . . , vn).

Theorem 2.1 Let v1, . . . , vn be a basis of a vector space V . Then for each v ∈ V there exist

unique numbers a1, . . . , an such that v = a1v1 + · · ·+ anvn.

Definition 2.5 The numbers a1, . . . , an are the coordinates of v relative to the basis v1, . . . , vn.

3
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Definition 2.6 The number of basis elements of a vector space V is the dimension of the vector

space V and is denoted dimV .

Example

dimRn = n

dimCn = n

dimFm×n = m · n

dimFn[z] = n+ 1

2.3 Linear Maps

Definition 2.7 Let V and W be vector spaces over F. A function T : V 7→W is called a linear

transformation if:

1. T (u+ v) = T u+ T v ∀u, v ∈ V

2. T (av) = aT v ∀ a ∈ F, v ∈ V

The set of all linear transformations from V to W is denoted by L(V,W ). If W = V , then

L(V ) := L(V, V )

Remark The set L(V,W ) is a vector space over F under the usual operations of additions of

functions and multiplication of functions by a scalar.
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3 Invertible Matrices (Lecture Notes)

3.1 Matrix of a Linear Map

Definition 3.1 Let V be a vector space with basis v1, . . . , vn and let W be a vector space with

basis w1, . . . , wm. Given a map T ∈ L(V,W ), we can write the coordinates of T vj relative to

the basis w1, . . . , wm in a matrix MT vj : 
a1j

...

amj


that is,

T vj = a1jw1 + · · ·+ amjwm

We then form the following matrix:

MT :=


a11 . . . a1j . . . a1n

...
...

...

am1 . . . amj . . . amn


The matrix MT is called the matrix of T relative to the pair of bases v1, . . . , vn and w1, . . . , wm.

Theorem 3.1 Let U, V,W be vector spaces with bases u1, . . . , ul, v1, . . . , vn, w1, . . . , wm respec-

tively. Let T1, T2 be linear maps from V to W and let S be a linear map from U to V . Let Mv

be a matrix representing a vector v ∈ V . Then:

1. MT v = MT ·Mv

2. MTS = MT ·MS

3. McT = cMT , c ∈ F

4. MT1+T2 = MT1 +MT2

3.2 Isomorphism

1. A linear map T is injective if u 6= v ⇒ T u 6= T v (⇔ kerT = {v : T v = 0} = {0}).

2. A linear map T is surjective if rangeT = {T v : v ∈ V } = W .

3. A linear map T is bijective if it is both injective and surjective; for all w ∈W there exists

a unique v ∈ V such that T v = w. T is then said to be invertible and there exists T−1

which is the inverse of T . The vector v is then defined as v := T−1w.

4. dim (kerT ) + dim (rangeT ) = dimV

Definition 3.2 Two vector spaces V,W are called isomorphic if there exists T : V 7→ W such

that T is an invertible linear map.

5
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Theorem 3.2 Every n-dimensional vector space over F is isomorphic to Fn.

Theorem 3.3 Let V be an n-dimensional vector space over F and let W be an m-dimensional

vector space over F. Then the set of all linear maps from V to W is isomorphic to Fm×n.

Theorem 3.4 Vector spaces V,W are isomorphic if and only if dimV = dimW .

3.3 Invertible Linear Maps

Theorem 3.5 If T is an invertible linear map from V to W , then T−1 is a linear map from

W to V .

Definition 3.3 The matrix A ∈ Fn×n is called invertible if there exists B ∈ Fn×n such that

A ·B = B ·A = I, where I is the identity matrix

I =

1 0 0

0 1 0

0 0 1


and we then define B := A−1 as the inverse of A.

Theorem 3.6 Let A,B ∈ Fn×n and let V,W be vector spaces over F.

1. If A is invertible, then A−1 is invertible and (A−1)−1 = A.

2. If A,B are invertible, then AB is invertible and (AB)−1 = B−1A−1.

3. If A is a matrix of a linear map T ∈ L(V,W ), then A is invertible if and only if T is

invertible. Moreover A−1 is the matrix of T−1.

Theorem 3.7 If A ∈ Fn×n, the following conditions are equivalent:

1. A is invertible.

2. A is row-equivalent to the n×n identity matrix. Moreover if a sequence of elementary row

operations reduces A to the identity matrix, then the same sequence of operations reduces

I to A−1.

Theorem 3.8 For A ∈ Fn×n the following conditions are equivalent:

1. A is invertible.

2. Ax = 0 only has the trivial solution x = 0.

3. Ax = b has a unique solution x = A−1b.
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4 Rank of Matrices (Lecture Notes)

Definition 4.1 The dimension of rangeT = {T v : v ∈ V } is called the rank of a linear map T

from V to W , which are both vector spaces over F.

rankT = dim (rangeT )

dimV = dim (kerT ) + dim (rangeT ) = dim (kerT ) + rankT

Theorem 4.1 A linear map T : V 7→W is invertible if and only if

dimV = dimW = rankT

Proof: T is invertible if it is bijective. Then kerT = {0} and rangeT = W , therefore

dimV = dimW = rankT

If dimV = dimW = rankT , then dim (kerT ) = 0, thus T is injective. Since T : V 7→ W

and rangeT ⊆ W , we have that dim(rangeT ) = dimW , thus T is surjective. Therefore, T is

bijective and thus invertible.

Definition 4.2 For A ∈ Fm×n, the maximal number of linearly independent columns is called

the rank of the matrix A and is denoted rankA.

Theorem 4.2 The rank of a linear map T ∈ L(V,W ) is equal to the rank of its matrix MT ,

that is rankT = rankMT .

Corollary 4.1 A matrix A ∈ Fn×n is invertible if and only if rankA = n.

Theorem 4.3 The rank of A ∈ Fm×n is the maximal number of linearly independent rows.

Theorem 4.4 The rank of a matrix is preserved under elementary row and column transfor-

mations.

Definition 4.3 For a given matrix A = (aij)
m,n
i,j=1 ∈ Fm×n, the matrix AT = (aji)

n,m
j,i=1 is the

transposed matrix of A.

Corollary 4.2 rankA = rankAT

Theorem 4.5 (Rouché-Capelli Theorem) A system of linear equations with a matrix of coeffi-

cients A and augmented matrix A′ is consistent if and only if rankA = rankA′.

7
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5 Fundamental Systems of Solutions (Lecture Notes)

5.1 Rank

Theorem 5.1 Given the matrices A,B ∈ Fn×n:

rank (AB) ≤ min{rankA, rankB}

Corollary 5.1 A ∈ Fn×n is invertible if and only if there exists B ∈ Fn×n such that

AB = I (orBA = I)

5.2 General Solutions to Systems of Linear Equations

Lemma 5.1 Solutions x and x′ to a system of linear equations have a difference x− x′ that is

a solution to the corresponding homogeneous system of linear equations Ay = 0.

Corollary 5.2 Let x′ be a solution to Ax = b. Then the set of all solutions is the set {x′ + y},
where y is a solution to the homogeneous system Ay = 0.

Definition 5.1 Let U denote the set of all solutions to the homogeneous system of linear

equations. A basis of U = {y : Ay = 0} is called a fundamental system of solutions to the

equation Ay = 0. Let y1, . . . , yk be a fundamental system of solutions to Ay = 0. Then the

general solution to the equation Ax = b is:

x = x′ + a1y
1 + · · ·+ aky

k

where a1, . . . , ak ∈ F and x′ is a partial solution to Ax = b.

8
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Example (Finding the Fundamental System of Solutions) Let A be given:

A =

1 −2 1 0

1 −1 1 −1

0 1 0 −1


1. Transpose A:

AT =


1 1 0

−2 −1 1

1 1 0

0 −1 −1


2. Augment the identity matrix In to the right of AT :

1 1 0

−2 −1 1

1 1 0

0 −1 −1

∣∣∣∣∣∣∣∣∣∣
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


3. Reduce AT to REF: 

1 1 0

0 1 1

0 0 0

0 0 0

∣∣∣∣∣∣∣∣∣∣
1 0 0 0

2 1 0 0

−1 0 1 0

2 1 0 1


The fundamental system of solutions is then:

y1 =
(
−1 0 1 0

)
y2 =

(
2 1 0 1

)

9



Example (Method of Solving a System of Linear Equations) Let the following system be given:
x1 + 2x2 − x3 − x4 = 1

x1 + x3 + 2x4 = −1

2x1 + 2x2 + x4 = 0

(5.1)

We rearrange the system as follows:
a11x1 + · · ·+ a1nxn − b1xn+1 = 0

...

am1x1 + · · ·+ amnxn − bmxn+1 = 0

−→


x1 + 2x2 − x3 − x4 − x5 = 0

x1 + x3 + 2x4 + x5 = 0

2x1 + 2x2 + x4 = 0

Find the fundamental system of solutions of this new system as described in the previous example

and reduce it to the following form:
1 1 2

2 0 2

−1 1 0

−1 2 1

−1 1 0

∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1




1 1 2

0 0 0

0 0 0

0 1 1

0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 0 0

−4 3 0 2 0

−1 1 1 0 0

−1 1 0 1 0

−1 1 0 0 1


We find for this system the fundamental system of solutions:

y1 =
(
−4 3 0 2

)
y2 =

(
−1 1 1 0

)
and the partial solution:

y0 =
(
−1 1 0 0

)
We write the general solution to (5.1) in the form:

y = y0 + l1y
1 + · · ·+ lk−1y

k−1


x1

x2

x3

x4

 =


−1

1

0

0

+ l1


−4

3

0

2

+ l2


−1

1

1

0
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6 Determinants (Lecture Notes)

6.1 Permutations

Definition 6.1 A permutation π of n elements is a bijective map from {1, . . . , n} to {1, . . . , n}:(
1 2 3 . . . n

π1 π2 π3 . . . πn

)

The set of all permutations of n elements is denoted Sn.

Theorem 6.1 The number of all permutations of n elements |Sn| = n!.

Example (Composition)

π ◦ σ =

(
1 2 3

2 3 1

)
◦
(

1 2 3

1 3 2

)
=

(
1 2 3

2 1 3

)

π−1 =

(
1 2 3

3 1 2

)
Definition 6.2 An inversion pair (i, j) of π ∈ Sn is a pair i, j ∈ {1, . . . , n} for which i < j but

πi > πj.

Example

π =

(
1 2 3

2 3 1

)
(1, 3) and (2, 3) are inversion pairs.

Definition 6.3 The sign of π ∈ Sn is defined as:

signπ = (−1)m =

1, evenm

−1, oddm

where m is the number of inversion pairs. π is called an even or odd permutation, depending

on the value of signπ.

Example (Transpositions) tij is a transposition:

t23 =

(
1 2 3 4

1 3 2 4

)
t24 =

(
1 2 3 4

1 4 3 2

)

Example (
1 2 3 4 5 6

2 3 5 1 6 4

)
= (1, 2, 3, 5, 6, 4)
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Theorem 6.2 Each permutation can be written as a composition of transpositions, where each

cycle (i, . . . , ik) = (i1, ik) ◦ · · · ◦ (i1, i2).

Example

(1, 2, 3, 5, 6, 4) = (1, 4) ◦ (1, 6) ◦ (1, 5) ◦ (1, 3) ◦ (1, 2)

Theorem 6.3

sign (π ◦ σ) = signπ · signσ ∀π, σ ∈ Sn

Remark A permutation is even or odd if the number of transpositions from the decomposition

in Th. 6.2 is even or odd respectively.

6.2 Determinants

Definition 6.4 Given A = (aij) ∈ Fn×n, the number

detA =
∑
π∈Sn

signπ (a1,π1 . . . an,πn) =
∑
π∈Sn

(
signπ

n∏
i=1

ai,πi

)

is called the determinant of A.

Theorem 6.4 The determinant is a linear function of each row of the matrix:∣∣∣∣∣ 1 2

1 + 2 2 + 3

∣∣∣∣∣ =

∣∣∣∣∣1 2

1 2

∣∣∣∣∣+

∣∣∣∣∣1 2

2 3

∣∣∣∣∣
∣∣∣∣∣1c 2c

1 2

∣∣∣∣∣ = c

∣∣∣∣∣1 2

1 2

∣∣∣∣∣
If two rows of a matrix A are the same, then detA = 0:∣∣∣∣∣1 2

1 2

∣∣∣∣∣ = 0

The determinant of the identity matrix of any size is 1.

Remark The determinant is the only map from Fn×n 7→ F that satisfies the properties listed in

Th. 6.4.
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Theorem 6.5 Given A ∈ Fn×n:

1. detA = detAT

2. If B is obtained from A by adding a multiple of one row of A to another (or a multiple of

one column of A to another), then detA = detB.

3. Interchanging two rows or two columns introduces a factor of −1 to the determinant.

4. detAB = detA · detB

5. A matrix with zeros to the left of the diagonal will have a determinant equal to the product

of the entries along the diagonal:∣∣∣∣∣∣∣∣
a11 6= 0 6= 0

0
. . . 6= 0

0 0 ann

∣∣∣∣∣∣∣∣ = a11 · · · · · ann

6. Given matrices A,B,C of size p× p, p×m, m×m respectively, and the zero matrix:∣∣∣∣∣A B

0 C

∣∣∣∣∣ = detA · detC

6.3 Computing Determinants with Cofactor Expansions

Definition 6.5 For i, j = 1, . . . , n, the i − j minor of A, denoted by Mij, is defined to be the

determinant of the matrix obtained by removing the ith row and jth column from A. The i− j
cofactor of A is Aij = (−1)i+jMij.

Theorem 6.6 (Cofactor Expansion) For each ith row (jth column, respectively) the determinant

is

detA =
n∑
j=1

aijAij =
n∑
j=1

(−1)i+jaijMij

(
detA =

n∑
i=1

aijAij =
n∑
i=1

(−1)i+jaijMij

)
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7 Change of Basis (Lecture Notes)

7.1 Inverse Matrices

Definition 7.1 The matrix

adjA =


A11 . . . An1

...
...

A1n . . . Ann


where Aij is the i − j minor of A, is called the classical adjoint matrix of A. Note that Aij is

written in the jth row and ith column.

Theorem 7.1 The matrix A ∈ Fn×n is invertible if and only if detA 6= 0. If A is invertible,

then

A−1 =
1

detA
· adjA

Example

A =

(
1 2

3 4

)

detA = −2, adjA =

(
4 −2

−3 1

)

A−1 = −1

2

(
4 −2

−3 1

)
=

(
−2 1

3
2 −1

2

)

7.2 Cramer’s Rule

Consider a system of linear equations written in the form
a11 . . . a1n

...
...

an1 . . . ann



x1

...

xn

 =


b1
...

bn


where A is the matrix of coefficients of the system. By Th. 7.1

detA · x = adjA ·Ax = adjA · b

detAxj =

n∑
i=1

(adjA)ji yi =

n∑
i=1

Aijyi =

∣∣∣∣∣∣∣∣
a11 . . . b1 . . . a1n

...
...

...

an1 . . . bn . . . ann

∣∣∣∣∣∣∣∣ = detBj

whereBj is the n×nmatrix obtained from A by replacing the jth column of A by b = (b1, . . . , bn).

Thus, the system has a unique solution given by

xj =
detBj
detA

if and only if detA 6= 0.
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7.3 Change of Basis

Let V be an n-dimensional vector space over F with a basis e1, . . . , en. Any vector v ∈ V can

then be written as v = a1e1 + · · ·+ anvn, where a1, . . . , an ∈ F are called the coordinates of v.

We will denote them by

M e
v =

a1

. . .

an


e

with an index e emphasizing that they are coordinates in the basis e1, . . . , en. Let e′1, . . . , e
′
n be

another basis of V . Then we can write e′j =
n∑
i=1

τijei.

Definition 7.2 The matrix

Qee′ = Q =


τ11 . . . τ1n

...
...

τn1 . . . τnn


whose columns are the columns of the coordinates of the vectors e′1, . . . , e

′
n in the basis e1, . . . , en

is called the change-of-basis matrix from the basis e1, . . . , en to the basis e′1, . . . , e
′
n. Taking

e′ = (e′1, . . . , e
′
n), e = (e1, . . . , en), then

e′ = eQee′

Theorem 7.2 The change-of-basis matrix Qee′ is invertible and Q−1
ee′ is the change-of-basis

matrix from e′ to e.

Now we consider the transformation of vector coordinates. Let

v = a1e1 + · · ·+ anen = a′1e
′
1 + · · ·+ a′ne

′
n

that is,

M e
v =


a1

...

an


e

M e′
v =


a′1
...

a′n


e′

We can then compute

v =

n∑
j=1

a′j

n∑
i=1

τijei =

n∑
i=1

n∑
j=1

a′jτijei ⇒ ai =

n∑
j=1

a′jτij

and, in matrix form, we have
a′1
...

a′n


e′

= Q−1
ee′


a1

...

an


e

= Qe′e


a1

...

an


e

15



7.4 Matrices of Linear Maps in Different Bases

Let V and W be vector spaces over F. Let e = (e1, . . . , en) and e′ = (e′1, . . . , e
′
n) be bases in

V , and let ε = (ε1, . . . , εm) and ε′ = (ε′1, . . . , ε
′
m) be bases in W . Let Qee′ be a change-of-basis

matrix from e to e′, and let Qεε′ be a change-of-basis matrix from ε to ε′, that is,

e′ = eQee′ ε′ = εQεε′

We consider a linear map T : V 7→ W and its matrix M = M eε
T relative to the bases e, ε, as

well as its matrix M ′ = M e′ε′
T relative to the bases e′, ε′. Since the coordinates of T ej in ε are

written in the jth column of M , we have that

T e = (T e1, . . . , T en) = εM

and similarly

T e′ = ε′M ′

We then have

T e′ = T (eQee′) = ε′M ′ = (εQεε′)M
′

T (eQee′) = (εQεε′)M
′ = ε(Qεε′M

′)

εM Qee′ = εQεε′M
′

By the linear independence of ε, we obtain

M ′ = Q−1
εε′ M Qee′ = Qε′εM Qee′

If W = V and ε = e, ε′ = e′, then we obtain

M e′e′ = Q−1
ee′M

ee
T Qee′

Definition 7.3 Square matrices A and B are called similar if there exists a matrix Q, such

that Q is invertible and A = Q−1BQ.

Remark Two matrices are similar if and only if they represent one and the same linear map

in different bases.

Corollary 7.1 Let A and B be similar matrices. Then detA = detB.
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8 Eigenvalues and Eigenvectors (Lecture Notes)

8.1 Definitions

Definition 8.1 A linear operator T : V 7→ V is called diagonalizable if there exists a basis

v1, . . . , vn ∈ V such that

MT =


λ1 0 . . . 0

0 λ2 . . .
...

...
...

. . .
...

0 . . . . . . λn


Remark If MT is of the form described in Def 8.1, then T vi = λivi, i = 1, . . . , n.

Definition 8.2 A number λ ∈ F is called an eigenvalue of a linear operator T if there exists

v 6= 0 such that T v = λv. The vector v is called an eigenvector of T corresponding to the

eigenvalue λ.

Example Consider T : R3 7→ R3 : T (x, y, z) = (x, y, 0). It has eigenvalues λ1 = 1 and λ2 = 0.

The corresponding eigenvectors for λ1 = 1 are v1 = (1, 0, 0) and v2 = (0, 1, 0), as well as any

linear combination of the two. The corresponding eigenvector for λ2 = 0 is v3 = (0, 0, 1) and

any scalar multiple of v3.

Definition 8.3 The set of all eigenvalues of a linear map T : V 7→ V is called the spectrum of

T and is denoted SpecT .

Definition 8.4 The set Vλ = {v : T v = λv} = ker (T − λI) is called the eigenspace of the

linear map T corresponding to the eigenvalue λ.

Proposition The following statements are equivalent:

1. λ is an eigenvalue of T .

2. T − λI is not injective (ker (T − λI) 6= {0}).

3. T − λI is not surjective (rank (T − λI) ≤ n− 1, n = dimV ).

4. T − λI is not invertible.
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8.2 Characteristic Polynomials

Definition 8.5 The matrix

A− λI =


a11 − λ a12 . . . a1n

a21 a22 − λ . . . a2n

...
...

. . .
...

an1 an2 . . . ann − λ


is called the characteristic matrix of A and

det (A− λI)

is called the characteristic polynomial of A.

Theorem 8.1 A number λ is an eigenvalue of a linear map T if and only if it is a root of the

characteristic polynomial of MT .

λ ∈ SpecT ⇔ det (MT − λI) = 0

Example Consider T : R2 7→ R2 : T (x, y) = (−y, x). The matrix of T is

MT =

(
0 −1

1 0

)

Setting its characteristic polynomial to 0:∣∣∣∣∣−λ −1

1 −λ

∣∣∣∣∣ = λ2 + 1 = 0

we find that it has no roots in R and therefore T has no eigenvalues or eigenvectors.

Theorem 8.2 Matrices M e
T and M e′

T of a linear map T in bases e1, . . . , en and e′1, . . . , e
′
n

respectively, have the same characteristic polynomial, i.e. det (M e
T − λI) = det (M e′

T − λI).

Corollary 8.1 The characteristic polynomials of similar matrices coincide.

Theorem 8.3 If λ1, . . . , λn are distinct eigenvalues of a linear map T with corresponding eigen-

vectors v1, . . . , vn respectively, then v1, . . . , vn are linearly independent.
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8.3 Diagonalization

Theorem 8.4 A linear map T : V 7→ V is diagonalizable if and only if there exists a basis

v1, . . . , vn ∈ V consisting of eigenvectors of T . Moreover, if T is diagonalizable, then the matrix

MT , which is the matrix of T in the basis v1, . . . , vn, is

MT =


λ1 0 . . . 0

0 λ2 . . .
...

...
...

. . .
...

0 . . . . . . λn


where λi is the eigenvalue of T corresponding to vi.

Example

T : R2 7→ R2 : MT = A =

(
1 3

4 2

)
e∣∣∣∣∣1− λ 3

4 2− λ

∣∣∣∣∣ = (1− λ)(2− λ)− 12 = 0⇒ λ1 = −2, λ2 = 5

For λ1 we have:x+ 3y = −2x

4x+ 2y = −2y
⇒

3x+ 3y = 0

4x+ 4y = 0
⇒ x = 1, y = −1⇒ v1 = (1,−1)

For λ2 we have:x+ 3y = 5x

4x+ 2y = 5y
⇒

−4x+ 3y = 0

4x+−3y = 0
⇒ x = 3, y = 4⇒ v2 = (3, 4)

The vectors v1 and v2 are the eigenvectors of λ1 and λ2 respectively. We then have

MT =

(
−2 0

0 5

)

which is the diagonal matrix of T in the basis v1, v2.
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9 Inner Products (Lecture Notes)

9.1 Diagonalization of Linear Maps

Theorem 9.1 If dimV = n and if λ1, . . . , λn are distinct eigenvalues of the linear map T with

corresponding eigenvectors v1, . . . , vn, then T is diagonalizable.

Theorem 9.2 Given T : V 7→ V, dimV = n and distinct eigenvalues λ1, . . . , λm of T with

corresponding eigenspaces Vλi = {v : T v = λiv} = ker (MT − λI), the following statements are

equivalent:

1. T is diagonalizable.

2. det (MT − λI) = (λ1 − λ)n1 . . . (λm − λ)nm and dimVλi = ni

3. dimVλi + · · ·+ dimVλm = n

9.2 Scalar Products in R3 or R2

Definition 9.1 The scalar or dot product of vectors u and v is defined as

(u, v) = u · v = |u||v| cosϕ

where ϕ is the angle between u and v.

Theorem 9.3 Given u, v, w ∈ R3 (R2), a ∈ R:

1. (u+ v) · w = u · w + v · w, au · v = a(u · v)

2. u · u = |u|2 ≥ 0

3. u · u = 0⇔ u = 0

4. u · v = v · u

5. u · v = 0⇔ u ⊥ v

6. u · v = (a1, a2, a3) · (b1, b2, b3) = a1b1 + a2b2 + a3b3

7. cosϕ =
u · v
|u||v| =

a1b1 + a2b2 + a3b3√
(a2

1 + a2
2 + a2

3)(b21 + b22 + b23)

Definition 9.2 Vectors v1, v2, v3 ∈ R3 are called an orthonormal basis in R3 if they are orthog-

onal and have unit length, that is

vi · vj =

1, i = j

0, i 6= j
= δij
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9.3 Vector Products in R3

Definition 9.3 The vector or cross product

w = u× v = |u||v| sinϕ

is defined as a vector w that is orthogonal to u and v with a direction given by the right hand

rule. The length of w is given by the area of the parallelogram that the vectors u and v span.

Note that u× v = −v × u.

Theorem 9.4 Given u, v, w ∈ R3 and a ∈ R:

1. u× v = 0⇔ u ‖ v

2. (u+ v)× w = u× w + v × w

3. (au)× v = a(u× v)

4. If i, j, k form an orthonormal basis and i× j = k, then

u× v = (a1i+ a2j + a3k)× (b1i+ b2j + b3k) =

∣∣∣∣∣∣∣
i j k

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣∣
5. u · (v × w) = v · (w × u) = w · (u× v)

6. u× (v × w) = v(u · w)− w(u · v)

9.4 Inner Products

Definition 9.4 An inner product on a vector space V over F is a map 〈·, ·〉 : V × V 7→ F such

that we have:

1. Linearity in the first slot:

〈u+ v, w〉 = 〈u,w〉+ 〈v, w〉 ∀u, v, w ∈ V

〈au, v〉 = a〈u, v〉 ∀u, v ∈ V, a ∈ F

2. Positivity:

〈u, u〉 ≥ 0 ∀u ∈ V

3. Positive definiteness:

〈u, u〉 = 0⇔ u = 0

4. Conjugate symmetry:

〈u, v〉 = 〈v, u〉 ∀u, v ∈ V

(if F = R, 〈u, v〉 = 〈v, u〉)
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Remark

〈u, av〉 = a〈u, v〉

Definition 9.5 An inner product space is a vector space over F together with an inner product

〈·, ·〉.

Example

1. V = R3

〈u, v〉 = (u, v) = u · v = a1b1 + a2b2 + a3b3

2. V = Fn

〈u, v〉 =
n∑
i=1

aibi = a1b1 + · · ·+ anbn

(V = Rn ⇒ 〈u, v〉 = a1b1 + · · ·+ anbn)

3. V = F[z] or V = C([0, 1])

〈f, g〉 =

1∫
0

f(z)g(z) dz

Definition 9.6 A map ‖ · ‖ : V 7→ [0,∞) is a norm on V if we have:

1. Positive homogeneity:

‖av‖ = |a|‖v‖ ∀ a ∈ F, v ∈ V

2. Positive definiteness:

‖v‖ = 0⇔ v = 0

3. Triangle inequality:

‖u+ v‖ ≤ ‖u‖+ ‖v‖ ∀u, v ∈ F

Theorem 9.5 (Cauchy-Schwarz Inequality) Let ‖v‖ =
√
〈v, v〉. Then for all u, v ∈ V

|〈u, v〉| ≤ ‖u‖‖v‖

Moreover, we have equality if and only if u and v are linearly dependent.
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10 Orthonormal Bases (Lecture Notes)

10.1 Inner Product and Norm Maps

Definition 10.1 A map 〈·, ·〉 : V × V 7→ F satisfying:

1. 〈u+ v, w〉 = 〈u,w〉+ 〈v, w〉 ∀u, v, w ∈ V
〈au, v〉 = a〈u, v〉 ∀u, v ∈ V, a ∈ F

2. 〈u, u〉 ≥ 0 ∀u ∈ V

3. 〈u, u〉 = 0⇔ u = 0

4. 〈u, v〉 = 〈v, u〉 ∀u, v ∈ V

is called an inner product on the vector space V over F.

Definition 10.2 A map ‖ · ‖ : V 7→ [0,∞) satisfying

1. ‖av‖ = |a|‖v‖ ∀ a ∈ F, v ∈ V

2. ‖v‖ = 0⇔ v = 0

3. ‖u+ v‖ ≤ ‖u‖+ ‖v‖ ∀u, v ∈ F

is called a norm on the vector space V over F.

Example For V = Cn, u = (a1, . . . , an), v = (b1, . . . , bn), w = (d1, . . . , dn) we check that 〈·, ·〉
satisfies the properties of the inner product:

1. 〈u+ v, w〉 = (a1 + b1)d1 + · · ·+ (an + bn)dn = a1d1 + · · ·+ andn + · · ·+ b1d1 + · · ·+ bndn

= 〈u,w〉+ 〈v, w〉

2. 〈u, u〉 = a1a1 + · · ·+ anan = |a1|2 + · · ·+ |an|2 ≥ 0

3. 〈u, u〉 = a1a1 + · · ·+ anan = |a1|2 + · · ·+ |an|2 = 0⇒ u = 0

4. 〈u, v〉 = a1b1 + · · ·+ anbn = a1b1 + · · ·+ anbn = b1a1 + · · ·+ bnan = 〈v, u〉

Definition 10.3 A vector space V over F with an inner product 〈·, ·〉 is called an inner product

space.

Theorem 10.1 (Triangle Inequality) Let ‖u‖ :=
√
〈u, u〉. Then for all u, v ∈ V

‖u+ v‖ ≤ ‖u‖+ ‖v‖

Remark For all u, v, w ∈ V, a ∈ F

〈u, v + w〉 = 〈v + w, u〉 = 〈v, u〉+ 〈w, u〉 = 〈u, v〉+ 〈u,w〉

〈u, av〉 = a〈u, v〉
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Example For V = Rn, u = (a1, . . . , an), v = (b1, . . . , bn), we have:

〈u, v〉 = a1b1 + · · ·+ anbn

‖u‖ =
√
〈u, u〉 =

√
a2

1 + · · ·+ a2
n

Cauchy-Schwarz Inequality:

|a1b1 + · · ·+ anbn| ≤
√

(a2
1 + · · ·+ a2

n)(b21 + · · ·+ b2n)

Triangle Inequality:√
(a1 + b1)2 + · · ·+ (an + bn)2 ≤

√
(a2

1 + · · ·+ a2
n)(b21 + · · ·+ b2n)

Corollary 10.1 The function ‖u‖ =
√
〈u, u〉 is a norm on the inner product space V .

Example We check that ‖u‖ =
√
〈u, u〉 is a norm:

1. ‖av‖ =
√
〈av, av〉 =

√
aa〈v, v〉 =

√
|a|2〈v, v〉 = |a|‖v‖

2. ‖v‖ =
√
〈v, v〉 = 0⇒ v = 0

3. ‖u+ v‖ ≤ ‖u‖+ ‖v‖

10.2 Orthonormal Bases

Definition 10.4 Vectors u and v are orthogonal if 〈u, v〉 = 0

Theorem 10.2 (Pythagorean Theorem) If u, v ∈ V are orthogonal, then

‖u+ v‖2 = ‖u‖2 + ‖v‖2

Definition 10.5 Vectors e1, . . . , en ∈ V are called orthogonal if

〈ei, ej〉 = 0, i 6= j

They are orthonormal if

〈ei, ej〉 = δij

Theorem 10.3 Every list of non-zero orthogonal vectors in V is linearly independent.

Definition 10.6 An orthonormal basis of V is a list of orthonormal vectors that form a basis

in V .

Theorem 10.4 If e1, . . . , en form an orthonormal basis in V , then

v = 〈v, e1〉e1 + · · ·+ 〈v, en〉en, ∀ v ∈ V

‖v‖2 = 〈v, v〉 = |〈v, e1〉|2 + · · ·+ |〈v, en〉|2
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10.3 The Gram-Schmidt Orthogonalization Procedure

Theorem 10.5 If v1, . . . , vn is a list of linearly independent vectors in an inner product space

V , then there exist vectors e1, . . . , en that are orthonormal such that

span {v1, . . . , vk} = span {e1, . . . , ek}, k = 1, . . . ,m

Proof: First we set e1 =
v1

‖v1‖
. Then e2 =

v2 − 〈v2, e1〉e1

‖v2 − 〈v2, e1〉e1‖
. In general:

ek =
vk − 〈vk, e1〉e1 − · · · − 〈vk, ek−1〉ek−1

‖vk − 〈vk, e1〉e1 − · · · − 〈vk, ek−1〉ek−1‖

Example Take v1 = (1, 1, 0), v2 = (2, 1, 1) ∈ R3.

e1 =
v1

‖v1‖
=

1√
2

(1, 1, 0)

〈v2, e1〉 =
1√
2

(2, 1, 1) · (1, 1, 0) =
3√
2

e2 =
v2 − 〈v2, e1〉e1

‖v2 − 〈v2, e1〉e1‖
=

(2, 1, 1)− 3
2(1, 1, 0)

‖(2, 1, 1)− 3
2(1, 1, 0)‖ =

1
2(1,−1, 2)

‖1
2(1,−1, 2)‖ =

1√
6

(1,−1, 2)

Corollary 10.2 Every finite-dimensional inner product space has an orthonormal basis.

Corollary 10.3 Every orthonormal list of vectors in V can be extended to an orthonormal basis

of V .
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11 Orthogonal Projections (Lecture Notes)

Definition 11.1 Let V be a vector space over F. Let U be a subset, but not necessarily a

subspace, of V . The set

U⊥ = {v ∈ V : 〈v, u〉 = 0 ∀u ∈ U}

is the orthogonal complement of U .

Lemma 11.1 If U is a subset of V , then U⊥ = (spanU)⊥.

Proposition (from Mathematics 1) Let U1 and U2 be vector subspaces of V . Then V = U1⊕U2

if and only if:

1. ∀ v ∈ V, v = u1 + u2, u1 ∈ U1, u2 ∈ U2

2. U1 ∩ U2 = {0}

Theorem 11.1 If U is a vector subspace of V , then V = U ⊕ U⊥.

Proof: Let e1, . . . , em be an orthonormal basis of U . Then

u1 = 〈v, e1〉e1 + · · ·+ 〈v, em〉em ∈ U

Checking that u2 = v − u1 ∈ U⊥:

〈u2, e1〉 = 〈v, e1〉 − 〈v, e1〉〈e1, e1〉 − · · · − 〈v, em〉〈em, e1〉 = 0⇒ 〈u2, ej〉 = 0

We have

u2 ∈ {e1, . . . , em}⊥ = span {e1, . . . , em}⊥ = U⊥

Thus the first condition v = u1 + u2 is fulfilled. Now let u ∈ U ∩ U⊥. Then

〈u ∈ U, u ∈ U⊥〉 = 0 = ‖u‖2 ⇒ u = 0

Thus the second condition U ∩ U⊥ = {0} is fulfilled and V = U ⊕ U⊥.

Theorem 11.2 If U is a subset of V , then (U⊥)⊥ = spanU . In particular, if U is a subspace

of V , then (U⊥)⊥ = U .

Definition 11.2 The map PU : V 7→ V defined as PU (v) = u1, where u1 ∈ U is such that

v = u1 + u2, u2 ∈ U⊥, is called an orthogonal projection. If e1, . . . , em form an orthonormal

basis in U , then

PU (v) = 〈v, e1〉e1 + · · ·+ 〈v, em〉em

Theorem 11.3 Let U be a subspace of V and v ∈ V . Then

‖v − PU (v)‖ ≤ ‖v − u‖ ∀u ∈ U

Moreover, the equality holds if and only if u = PU (v).
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12 Adjoint Operators (Lecture Notes)

12.1 Dual Space

Let V be a finite-dimensional inner product space over F. Take u ∈ V and consider the map

fu(v) = 〈v, u〉 ∀ v ∈ V

fu is a linear map from V to F and is called a functional on V .

Theorem 12.1 (Riesz Representation Theorem) Given a finite-dimensional inner product space

V and f ∈ L(V,R), there exists a unique u ∈ V such that

f(v) = 〈v, u〉 ∀ v ∈ V

Proof: Given an orthonormal basis e1, . . . , en, any vector can be written as

v = 〈v, e1〉e1 + · · ·+ 〈v, en〉en

f(v) = f
(
〈v, e1〉e1 + · · ·+ 〈v, en〉en

)
= 〈v, e1〉f(e1) + · · ·+ 〈v, en〉f(en)

=
〈
v, f(e1)e1 + · · ·+ f(en)en〉 = 〈v, u

〉
We find that there exists u ∈ V such that f(v) = 〈v, u〉. Additionally, taking v = u1 − u2:

f(v) = 〈v, u1〉 = 〈v, u2〉

0 = f(v)− f(v) = 〈v, u1 − u2〉 = 〈u1 − u2, u1 − u2〉 = ‖u1 − u2‖2 ⇒ u1 = u2

we find that u is unique.

Definition 12.1 The set V ∗ = L(V,F) is the set of all linear functionals on V and is called

the dual space of V .

Remark

〈v, u1〉 = 〈v, u2〉 ∀ v ∈ V ⇒ u1 = u2

Remark By Th. 12.1, V ∗ only contains functionals of the form f(v) = 〈v, u〉 ∀ v ∈ V .
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12.2 Adjoint Operators

Theorem 12.2 For T ∈ L(V ) there exists a unique linear map T ∗ ∈ L(V ) such that

〈T v, u〉 = 〈v, T ∗ u〉 u, v ∈ V

Proof: Consider fu(v) = 〈T v, u〉. Then there exists u′ ∈ V such that

fu(v) = 〈T v, u〉 = 〈v, u′〉

Simply take T ∗ u = u′, then

〈T v, u〉 = 〈v, T ∗ u〉 ∀ v, u ∈ V

and T ∗ is a unique map from V to V . Now take u1, u2 ∈ V .

〈v, T ∗(u1 + u2)〉 = 〈T v, u1 + u2〉 = 〈T v, u1〉+ 〈T v, u2〉 = 〈v, T ∗ u1〉+ 〈v, T ∗ u2〉

= 〈v, T ∗ u1 + T ∗ u2〉 ∀ v ∈ V

⇒ T ∗(u1 + u2) = T ∗ u1 + T ∗ u2

The same can be shown for T ∗(au) = a T ∗ u, a ∈ F. Thus T ∗ is linear.

Definition 12.2 The operator T ∗ is called the adjoint of T .

Theorem 12.3 Let e1, . . . , en form an orthonormal basis in V and T ∈ L(V ). Then the entries

of the matrix MT of T in the basis e1, . . . , en are given by

aij = 〈T ej , ei〉

Theorem 12.4 The matrix MT ∗ in any orthonormal basis of V is the complex conjugate,

transposed matrix of the matrix MT of T ∈ L(V ).

Proof:

MT ∗ = (bij)

bij = 〈T ∗ ej , ei〉 = 〈ei, T ∗ ej〉 = 〈T ei, ej〉 = aji

Theorem 12.5 For T, S ∈ L(V ), a ∈ F:

1. (T + S)∗ = T ∗ + S∗

2. (a T )∗ = a T ∗

3. (TS)∗ = S∗T ∗

4. (T ∗)∗ = T
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12.3 Self-Adjoint Operators

Definition 12.3 If T ∈ L(V ) satisfies T = T ∗, then T is called self-adjoint. If a matrix A

satisfies A = A∗, then A is self-adjoint.

Remark T is self-adjoint if its matrix MT , in any orthonormal basis, is adjoint.

Remark If each entry of A is real and A is self-adjoint, then A is symmetric.

Theorem 12.6 Let T, S ∈ L(V ) be self-adjoint and a ∈ F. Then T 2, T + S, a T, TS + ST are

also self-adjoint.

Theorem 12.7 If T ∈ L(V ) is self-adjoint, then each eigenvalue of T is real and eigenvectors

corresponding to distinct eigenvalues are orthogonal.

Proof:

λ〈v, v〉 = 〈λv, v〉 = 〈T v, v〉 = 〈v, T ∗ v〉 = 〈v, T v〉 = 〈v, λv〉 = λ〈v, v〉

⇒ λ = λ⇒ λ ∈ R

λ1〈v1, v2〉 = 〈T v1, v2〉 = 〈v1, T v2〉 = λ2〈v1, v2〉

⇒ 〈v1, v2〉 = 0⇒ v1 ⊥ v2

Theorem 12.8 Given that T ∈ L(V ) is self-adjoint:

1. There exists an orthogonal basis of V , each vector of which is an eigenvector of T corre-

sponding to a real eigenvalue of T .

2. There exists an orthonormal basis in which MT has a diagonal form, where each entry is

real.
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13 Unitary Operators (Lecture Notes)

13.1 Definitions

Let V and W be inner product vectors spaces over the same field F.

Definition 13.1 T ∈ L(V,W ) preserves inner products if

〈T v, T u〉W = 〈v, u〉V ∀u, v ∈ V

T is then called an isomorphism of V onto W .

Theorem 13.1 Let dimV = dimW be finite. Given T ∈ L(V,W ), the following statements

are equivalent:

1. T preserves inner products.

2. T is an inner product vector space isomorphism, i.e. it is invertible and preserves inner

products.

3. T maps some (then every) orthonormal basis in V to an orthonormal basis in W .

Corollary 13.1 Inner product spaces V and W are isomorphic if and only if dimV = dimW .

Theorem 13.2 T ∈ L(V,W ) preserves inner products if and only if

‖T v‖ = ‖v‖ ∀ v ∈ V

Definition 13.2 If the operator T ∈ L(V ) preserves inner products, then T is called a unitary

operator.

Theorem 13.3 T ∈ L(V ) is unitary if and only if

T ∗T = TT ∗ = I ⇔ T ∗ = T−1

Definition 13.3 A matrix A ∈ Fn×n is called unitary if

A∗A = AA∗ = I ⇔ A∗ = A−1

If A ∈ Rn×n is unitary, i.e. ATA = I, then A is called an orthogonal matrix.

Theorem 13.4 T ∈ L(V ) is unitary if and only if its matrix in some (then every) orthonormal

basis is unitary.

Theorem 13.5

1. Given a self-adjoint matrix A ∈ Fn×n, there exists a unique matrix P such that P−1AP

is diagonal.

2. If A is a real symmetric matrix, then there exists a real orthogonal matrix P such that

P−1AP is diagonal.

Theorem 13.6 A ∈ Fn×n is unitary if and only if its rows (columns) form an orthonormal

basis in Fn.
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13.2 Normal Operators

Definition 13.4 A linear map T ∈ L(V ) is called normal if TT ∗ = T ∗T . A matrix A is called

normal if AA∗ = A∗A.

Theorem 13.7 (Spectral Theorem) If V is a finite-dimensional inner product space over C
and T ∈ L(V ), then T is normal if and only if there exists an orthonormal basis in V consisting

of eigenvectors of T .

Corollary 13.2 Let T ∈ L(V ) be a normal operator and let V be a finite-dimensional inner

product space over C. Let λ1, . . . , λm be distinct eigenvalues of T . Then

1. V = Vλ1 ⊕ · · · ⊕ Vλm , Vλi = {v : T v = λiv} = ker(T − λiI)

2. i 6= j ⇒ Vλi ⊥ Vλj i.e. ∀ v ∈ Vλi , u ∈ Vλj , 〈v, u〉 = 0

Remark Th. 13.7 tells us that T ∈ L(V ) is normal if and only if MT is diagonal with respect

to an orthonormal basis e1, . . . , en ∈ V , i.e. there exists a unitary matrix U such that

UMT U
∗ = UMT U

−1 =


λ1 . . . 0
...

. . .
...

0 . . . λn


Remark Diagonal decomposition allows us to easily compute powers and functions of matrices.

Let

A = UDU−1 D =


λ1 . . . 0
...

. . .
...

0 . . . λn


Then

An = (UDU−1)n = UDnU−1 = U


λn1 . . . 0
...

. . .
...

0 . . . λnn

U−1

Thus we can define

f(A) = U


f(λ1) . . . 0

...
. . .

...

0 . . . f(λn)

U−1

Take the example of calculating eA:

eA =

∞∑
k=0

1

k!
Ak = U

( ∞∑
k=0

1

k!
Dk

)
U−1

= U



∞∑
k=0

1

k!
λk1 . . . 0

...
. . .

...

0 . . .
∞∑
k=0

1

k!
λkn


U−1 = U


eλ

n
1 . . . 0

...
. . .

...

0 . . . eλ
n
n

U−1
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14 Bilinear Forms (Lecture Notes)

14.1 Definitions

Definition 14.1 A function B : V × V 7→ F, where V is a vector space over F, is called a

bilinear form if

1. B(au+ bv, w) = aB(u,w) + bB(v, w)

2. B(w, au+ bv) = aB(w, u) + bB(w, v)

Example

1. For a vector space V over R, the inner product is a bilinear form: B(u, v) = 〈u, v〉.

2. For vectors u = (x1, . . . , xn) and v = (y1, . . . , yn) in F, a bilinear form can be defined as

the following:

B(u, v) =
n∑

i,j=1

aij xi yj

If n = 2, this is, for example

B(u, v) =
2∑

i,j=1

aij xi yj = x1y1 + 2x2y1 + 3x1y2 + 7x2y2

where aij are arbitrary scalars.

3. For functions f, g ∈ C([0, 1]), we can define the bilinear form as

B(f, g) =

1∫
0

k(x)f(x)g(x) dx k(x) ∈ C([0, 1])

Definition 14.2 The matrix A = (aij)
n
i,j=1, where aij = B(ei, ej), is called the matrix of B in

the basis e1, . . . , en, also called the Gram matrix of B.

B(v, u) =
(
x1 . . . xn

)
a11 . . . a1n

...
. . .

...

an1 . . . ann



y1

...

yn

 = MT
v AMu
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14.2 Change of Basis

When changing bases, a bilinear form B can be written as follows:

B(v, u) =
(
M e
v

)T
AeM e

u =
(
QM e′

v

)T
Ae
(
QM e′

u

)
=
(
M e′
v

)T (
QTAeQ

)
M e′
u

where Q = Qee′ is the change-of-basis matrix from the basis e to the basis e′.

Theorem 14.1 Let Ae be the matrix of B in the basis e. Then

Ae
′

= QTee′A
eQee′ = QTAeQ

where Q is the change-of-basis matrix from e to e′, is the matrix of B in the basis e′.

Definition 14.3 The rank of the matrix of a bilinear form B is called the rank of B and is

denoted rankB.

Theorem 14.2 If dimV = n, then the following conditions are equivalent:

1. rankB = n

2. ∀ v 6= 0 ∃u : B(v, u) 6= 0

3. ∀u 6= 0 ∃ v : B(v, u) 6= 0

Definition 14.4 If B satisfies one of the conditions in Th. 14.2, then it is non-degenerate.

Theorem 14.3 Let B be a symmetric bilinear form in a real vector space V . Then there exists

a basis e1, . . . , en ∈ V in which the matrix of B is diagonal with only 1’s, -1’s, and 0’s on the

diagonal, that is

∃ e1, . . . , en ∈ V, s ≤ r ≤ n : aij = B(ei, ej) =



1, i = j ≤ s
−1, s < i = j ≤ r
0, i = j > r

0, i 6= j

In this case, B(v, u) = x1y1 + · · ·+ xsys − xs+1 ys+1 − · · · − xryr.

Theorem 14.4 (Sylvester’s Law of Inertia) The number of 1’s, -1’s, and 0’s in Th. 14.3 is

independent of the basis in which the matrix of B is written.

14.3 Quadratic Forms

Let B be a symmetric bilinear form in the vector space V .

Definition 14.5 The map from V to F given by v 7→ B(v, v) is called the quadratic form

associated with B.

Remark Any quadratic form in a real vector space uniquely determines the associated bilinear

form:

B(v, u) =
1

2

[
B(v + u, v + u)−B(v, v)−B(u, u)

]
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Theorem 14.5 For every quadratic form B(v, v) ∈ Rn, there exists a basis such that

B(v, v) = x2
1 + · · ·+ x2

s − x2
s+1 − · · · − x2

r

Example Consider the quadratic form B(v, v) = x2
1 + 2x1x2 − 4x1x3 + 4x2

3 − 6x2x3. We can

rewrite it as

B(v, v) = (x2
1 + 2x1x2 − 2x12x3 − 2x22x3 + x2

2 + 4x2
3) + 2x22x3 − x2

2 − 6x2x3

= (x1 + x2 − 2x3)2 − 2x2x3 − x2
2

= (x1 + x2 − 2x3)2 − (x2
2 + 2x2x3 + x2

3) + x2
3

= (x1 + x2 − 2x3)2 − (x2 + x3)2 + x2
3

We can then simply assign a new basis:

z1 = x1 + x2 − 2x3 z2 = x3 z3 = x2 + x3

such that B(v, v) = z2
1 + z2

2 − z2
3.

Definition 14.6 A quadratic form B is positive-definite if B(v, v) > 0 ∀ v 6= 0. It is negative-

definite if B(v, v) < 0 ∀ v 6= 0.

Theorem 14.6 A quadratic form B is positive-definite if and only if M1 > 0, . . . ,Mn > 0. It

is negative-definite if and only if M1 < 0, M2 > 0, M3 < 0, M4 > 0 . . . . The numbers Mi are

the principal minors of the matrix of B given by

M1 = a11, M2 =

∣∣∣∣∣a11 a12

a21 a22

∣∣∣∣∣ , M3 =

∣∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣ , . . .
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15 Topology in Rd
(Lecture Notes)

15.1 Norms in Rd

The distance between x = (x1, . . . , xn) and y = (y1, . . . , yn) is given by

‖x− y‖ =
√

(x1 − y1)2 + · · ·+ (xn − yn)2

Properties of norms and distance:

1. ‖x‖ ≥ 0

2. ‖x‖ = 0⇔ x = (0, . . . , 0)

3. ‖ax‖ = |a|‖x‖

4. ‖x+ y‖ ≤ ‖x‖+ ‖y‖

5.
∣∣‖x‖ − ‖y‖∣∣ ≤ ‖x− y‖

6. ‖x− y‖ ≥ 0

7. ‖x− y‖ = 0⇔ x = y

8. ‖x− y‖ = ‖y − x‖

9. ‖x− y‖ ≤ ‖x− z‖+ ‖z − y‖

10.
∣∣‖x− z‖ − ‖y − z‖∣∣ ≤ ‖x− y‖

15.2 Limits in Rd

Definition 15.1 A sequence
(
x(n)

)
n≥1

of elements in Rd converges if there exists x ∈ Rd such

that

‖x(n) − x‖ → 0, n→∞

That is

∀ ε > 0 ∃N ∈ N : ∀n ≥ N ‖x(n) − x‖ < ε

Theorem 15.1 If x(n) → x, n→∞ and x(n) → y, n→∞, then x = y.

Theorem 15.2 If x(n) → x, n→∞, then

∀ y ∈ Rd
∥∥x(n) − y

∥∥→ ‖x− y‖, n→∞
15.3 Limit Points in Rd

Definition 15.2 The set

Br(x) = {y ∈ Rd : ‖x− y‖ < r}

is called an open ball of radius r > 0 and center x ∈ Rd.

Definition 15.3 The set

Br(x) = {y ∈ Rd : ‖x− y‖ ≤ r}

is called a closed ball of radius r > 0 and center x ∈ Rd.

Definition 15.4 A set A ⊆ Rd is bounded if ∃ r > 0 : A ⊆ Br(0).

Definition 15.5 A point x0 ∈ Rd is a limit point of A ⊆ Rd if

∀ r > 0 ∃x ∈ A, x 6= x0 : x ∈ Br(x0)
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Theorem 15.3 A point x0 ∈ Rd is a limit point of A ⊆ Rd if and only if there exists a sequence(
x(n)

)
n≥1

such that

1. x0 6= x(n) ∈ A ∀n

2. x(n) → x0, n→∞

15.4 Open Sets

Definition 15.6 A point x0 ∈ A is called an inner point of A if ∃ r > 0 : Br(x0) ⊆ A.

Definition 15.7 A set A ⊆ Rd is open if each point of A is an inner point of A, that is

∀x ∈ A ∃ r > 0 : Br(x) ⊆ A

Example The set A = {(x1, x2) ∈ R2 : x1 > 0} is open. If x = (x1, x2) ∈ A, we can take

r = x1 > 0. Then Br(x) ⊆ A.

Remark The set A = {(x1, x2) ∈ R2 : x1 ≥ 0} is not open, since the points (0, x2), where

x2 ∈ R, are not inner points of A.

Theorem 15.4 The union of any number of open sets is open.

Theorem 15.5 The intersection of a finite number of open sets is open.

Remark The intersection of any number of open sets is not open in general.

Example Consider the open set Ar = Br(x). Then consider⋂
r>0

Ar = {x : x ∈ Ar = Br(x) ∀ r > 0} = {x}

Note that the set {x} is not open.

15.5 Closed Sets

Definition 15.8 A set A is closed if it contains all its limit points.

Theorem 15.6 A set A ⊆ Rd is closed if and only if the set

Rd \A = {x ∈ Rd : x 6∈ A}

is open.

Theorem 15.7 The intersection of any number of closed sets is a closed set, and the union of

a finite number of closed sets is also a closed set.

Definition 15.9 The set Ā, which consists of all points of A and all limit points of A, is called

the closure of A.

Example

A = {x ∈ R2 : x1 > 0} ⇒ Ā = {x ∈ R2 : x1 ≥ 0}

Br(x) = {y : ‖x− y‖ ≤ r} = Br(x)
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16 Functions of Several Variables (Lecture Notes/Slides)

16.1 Compact Sets in Rd

Definition 16.1 An open cover of a set K ⊆ Rd is a collection Gα, α ∈ T of open subsets of

R such that K ⊆
⋃
α∈T

Gα.

Definition 16.2 A subset K ⊆ Rd is called a compact set if every open cover Gα, α ∈ T of K

contains a finite subcover, that is

∃α1, . . . , αn : K ⊆
n⋃
i=1

Gαi

Theorem 16.1 If K ⊆ Rd, then the following statements are equivalent:

1. K is compact.

2. K is closed and bounded.

3. If
(
x(n)

)
n≥1

is a sequence of elements from K, then there always exists a subsequence(
x(nk)

)
n≥1

such that xnk → x0 and x0 ∈ K.

16.2 Examples of Functions of Several Variables

1. Real-valued functions of one variable f : D 7→ R, D ⊆ R:

(a) f(x) = 2x

(b) f(x) = sinx

(c) f(x) =
√

1− x2, x ∈ [−1, 1]

2. Real-valued functions of several variables f : D 7→ R, D ⊆ Rd:

(a) f(x, y) = 3x+ 2y

(b) f(x, y) = x2 + y2

(c) f(x, y) = sinx sin y

The set Da = {x ∈ D : f(x) = a} is called a level set of f .

3. Vector-valued functions of several variables f : D 7→ Rm, D ⊆ Rd:

(a) f(x, y) = (cosx sin y, sinx cos y) = ∇ sinx sin y

4. Vector-valued functions of one variable f : D 7→ Rd, D ⊆ R:

(a) f(t) = (1 + 2t, t, 3− t)
(b) f(t) = (cos t, sin t)
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16.3 Limits of Functions

Definition 16.3 Given f : D 7→ Rm, D ⊆ Rd and a limit point x0 of D, the point P ∈ Rm is

called the limit of f at the point x0 if

∀
(
x(n)

)
n≥1
∈ D : x(n) 6= x0, x

(n) → x0

one has f
(
x(n)

)
→ P . We write p = lim

x→x0
f(x).

Theorem 16.2 Given f : D 7→ Rm and a limit point x0 of D, we have p = lim
x→x0

f(x) if and

only if

∀ ε > 0 ∃ δ > 0 : ∀x ∈ D, x 6= x0, ‖x− x0‖ < δ ⇒ ‖f(x)− p‖ < ε

Remark If f : D 7→ Rm and f = (f1, . . . , fm), then p = lim
x→x0

f(x) if and only if

∀ i pi = lim
x→x0

fi(x), p = (p1, . . . , pm)

Example

1. For f(x, y) =
x2y

x2 + y2
, (x, y) ∈ R \ {0} we have

0 ≤
∣∣∣∣ x2y

x2 + y2

∣∣∣∣ =
x2|y|
x2 + y2

≤ (x2 + y2)|y|
x2 + y2

= |y| ⇒ lim
(x,y)→(0,0)

x2y

x2 + y2
= 0

2. For f(x, y) =
xy

x2 + y2
, (x, y) ∈ R \ {0}, consider x = y, then x = −y:

f(x, x) =
x2

x2 + x2
=

1

2
f(x,−x) =

−x2

x2 + x2
= −1

2

This implies that lim
(x,y)→(0,0)

xy

x2 + y2
does not exist.

Theorem 16.3 Given f : D 7→ Rm, D ⊆ Rd and a limit point x0 of D, then p = lim
x→x0

f(x) if

and only if for any map α : (0, ε) 7→ D such that

1. lim
t→0

α(t) = x0 2. α(t) 6= x0 ∀ t ∈ (0, ε)

one has lim
t→0

f(α(t)) = p.

Example lim(x,y)→(0,0)
x2y

x4 + y2
exists along every line, but does not exist in general. Consider

the following two cases:

x := at, y := bt⇒ f(x, y) =
a2t2bt

a4t4b2t2
=

a2bt

a4t2 + b2
⇒ f(x, y) = f(at, bt)→ 0, t→ 0

x := t, y := t2 ⇒ f(x, y) =
t4

t4 + t4
=

1

2
⇒ f(x, y) = f(t, t2)→ 1

2
, t→ 0

This implies that the limit does not exist.
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17 Continuous Functions (Lecture Notes)

17.1 Definitions and Basic Properties

Definition 17.1 A function f : D 7→ Rm, D ⊆ Rd is continuous at a limit point x0 ∈ D if

lim
x→x0

f(x) = f(x0). This definition is equivalent to the following:

∀ ε > 0 ∃ δ > 0 : ∀x ∈ D ‖x− x0‖ < δ ⇒ ‖f(x)− f(x0)‖ < ε

Definition 17.2 A point x0 ∈ D is called an isolated point of D if there exists r > 0 such that

Br(x0) ∩D = {x0}. We assume that any function is continuous at any isolated point.

Definition 17.3 A function f : D 7→ Rm is called continuous on D if it is continuous at each

point of D. In this case f ∈ C(D,Rm). Additionally, if m = 1, we write C(D,R) := C(D)

Remark If x0 is an inner point of D, then f is continuous at x0 if and only if

∀ ε > 0 ∃ δ > 0 : f(Bδ(x0)) ⊆ Bε(f(x0))

Theorem 17.1 For functions f : D 7→ R, g : D 7→ R that are continuous at x0, the following

are also continuous at x0:

1. c f ∀ c ∈ R 2. f + g 3. fg 4.
f

g
, g(x0) 6= 0

Theorem 17.2 A function f = (f1, . . . , fm) : D 7→ Rm is continuous at x0 if and only if

fi : D 7→ R is continuous at x0 for each i = 1, . . . ,m.

Theorem 17.3 If a function f : D 7→ M, D ⊆ Rd, M ⊆ Rm is continuous at x0 ∈ D and

g : M 7→ Rn is continuous at y0 = f(x0) ∈ M , then h(x) = g(f(x)) = (g ◦ f)(x) is continuous

at x0.

17.2 Examples of Continuous Functions

1. Constant Functions

f(x) = c, x ∈ Rd, c ∈ R

2. Coordinate Functions

πk : Rd 7→ R, k = 1, . . . , d

πk(x1, . . . , xd) = xk, x = (x1, . . . , xd) ∈ Rd

Proof of continuity: Let x0 = (x0
1, . . . , x

0
d). Let ε > 0 be given. We have

|πk(x)− πk(x0)| = |xk − x0
k|

=
√

(xk − x0
k)

2 ≤
√

(x1 − x0
1)2 + · · ·+ (xd − x0

d)
2 = ‖x− x0‖

Taking δ = ε, we have ‖x− x0‖ < δ ⇒ |πk(x)− πk(x0)| < ε.
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3. Polynomials

P (x1, . . . , xd) =

n1∑
k1=0

· · ·
nd∑
kd=0

ak1...kd x
k1
1 . . . xkdd , x ∈ Rd

4. Rational Functions

R(x) = P (x)
Q(x) , x ∈ D

for polynomials P,Q on Rd and D = {x ∈ Rd : Q(x) 6= 0}

5. Other Functions

f(x1, x2) = e
√
x21+x22 sin(x1 + x1x

2
2), (x1, x2) ∈ R2

17.3 Characterization of Continuous Functions

Given f : D 7→ Rm and B ⊆ Rm, we set the preimage of B:

f−1(B) = {x ∈ D : f(x) ∈ B}

If A ⊆ D, then we say that A is open in D if

∀x ∈ A ∃ r > 0 : D ∩Br(x0) ⊆ A

Remark If D is open, then A is open in D if and only if A is open in Rd.

Theorem 17.4 If f : D 7→ Rm, D ⊆ Rd, then f is continuous on D if and only if, for any

open set G ∈ Rm, the set f−1(G) = {x ∈ D : f(x) ∈ G} is open in D.

17.4 Continuous Functions on Compact Sets

Theorem 17.5 Given a compact set D in Rd and f ∈ C(D,Rm), the set

f(D) = {f(x) : x ∈ D}

is compact in Rm.

Theorem 17.6 Given a compact set K in Rd and a continuous function f : K 7→ R:

1. f is bounded on K, i.e. ∃C > 0 : |f(x)| ≤ C ∀x ∈ K

2. ∃x∗, x∗ ∈ K : f(x∗) = min
x∈K

f(x), f(x∗) = max
x∈K

f(x)

Theorem 17.7 If K is a compact set and f : K 7→ Rm is continuous, then f is uniformly

continuous, that is,

∀ ε > 0 ∃ δ < 0 : ∀x′, x′′ ∈ K ‖x′ − x′′‖ < δ ⇒ ‖f(x′)− f(x′′)‖ < ε
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18 Differentiation of Functions of Several Variables (Part I)
(Lecture Notes/Slides)

18.1 Functions of One Variable

Consider the function f : (a, b) 7→ R, which is differentiable at x0 ∈ (a, b). Then there exists

lim
∆x→0

f(x+ ∆x)− f(x0)

∆x
= f ′(x0)

We take any line

g(x) = f(x0) +m(x− x0)

through the point (x0, f(x0)), and consider the approximation

f(x)− g(x) = f(x)− f(x0)−m(x− x0)

Then
f(x)− g(x)

x− x0
=
f(x)− f(x0)

x− x0
−m→ 0, x→ x0 ⇔ m = f ′(x0)

Thus f(x)− g(x) = f(x)− f(x0)−m(x− x0) = o(x− x0) if and only if g is the tangent line to

f at x0, i.e. m = f ′(x0).

18.2 Definitions

The functional L : Rd 7→ R is called linear if ∀x, y ∈ Rd, a ∈ R

1. L(x+ y) = L(x) + L(y) 2. L(ax) = aL(x)

Additionally, by Th. 12.1 (Riesz Representation Theorem)

∃ v = (v1, . . . , vd) ∈ Rd : L(x) = 〈v, x〉 ∀x ∈ Rd

As before, we will approximate a function f : Rd 7→ R by another function

g(x) = a+ L(x− x0) = a+ 〈v, x− x0〉

Definition 18.1 Let x0 be an inner point of D ⊆ Rd. The function f : D 7→ R is called

differentiable at x0 if there exists a linear function L(x) = 〈v, x〉 such that

f(x)− f(x0)− L(x− x0) = o(‖x− x0‖), x→ x0 ⇔ lim
x→x0

f(x)− f(x0)− L(x− x0)

‖x− x0‖
= 0

The function g(x) = f(x0) + L(x − x0), x ∈ Rd is the tangent plane to f through the point

(x0, f(x0)).

Definition 18.2 The function L is called the differential of f at x0 and is denoted df(x0) = L.

Alternatively, df(x0) = v1 dx
0
1 + · · ·+ vd dx

0
d.
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18.3 Partial Derivatives

Let e1, . . . , ed be the standard basis in Rd.

Definition 18.3 The limit

∂f

∂xk
(x0) = f ′xk(x0) = lim

∆xk→0

f(x0
1, . . . , x

0
k + ∆xk, . . . , x

0
d)− f(x0

1, . . . , x
0
k, . . . , x

0
d)

∆xk

= lim
t→0

f(x0 + t ek)− f(x0)

t

if it exists, is called the partial derivative of f at x0 with respect to xk.

Definition 18.4 The vector

∇f(x0) =

(
∂f

∂x1
(x0), . . . ,

∂f

∂xd
(x0)

)
is called the gradient of f at x0.

Theorem 18.1 If f is differentiable at x0, then for each k = 1, . . . , d, there exists

∂f

∂xk
(x0) = lim

∆xk→0

f(x0
1, . . . , x

0
k + ∆xk, . . . , x

0
d)− f(x0

1, . . . , x
0
d)

∆xk

Moreover, the differential of f is defined as

df(x0) =
∂f

∂x1
(x0) dx1 + · · ·+ ∂f

∂xd
(x0) dxd

The linear map in Def. 18.1 then has the following form:

Lx = 〈∇f(x0), x〉

Proof: Assume f is differentiable. Then

lim
x→x0

f(x)− f(x0)− L(x− x0)

‖x− x0‖
= 0

This also means that

lim
t→0

f(x0 + t ek)− f(x0)− L(t ek)

‖t ek‖
= lim

t→0

f(x0 + t ek)− f(x0)

t
− Lek = 0

Then ∂f
∂xk

(x0) = Lek = vk.

Remark g(x) = f(x0)+∇f(x0)(x−x0) is the tangent plane to the graph of f through the point

(x0, f(x0)).

Theorem 18.2 If f is differentiable at x0, then f is continuous at x0.

Example The function f(x, y) = xy
x2+y2

is discontinuous at 0, so f is not differentiable at 0,

but the partial derivatives of f exist at each point of R2. Therefore, the inverse statement to

Th. 18.1 is not true.
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Theorem 18.3 Let x0 be an inner point of D and let f : D 7→ R be given. If

1. ∃ ε > 0 : ∀ z ∈ Bε(x0) ∃ ∂f
∂xk

(z) ∀ k = 1, . . . , d

2.
∂f

∂xk
is continuous at x0 for all k = 1, . . . , d

then f is differentiable at x0.

Corollary 18.1 If f has continuous partial derivatives on D, where D is open, then f is

differentiable at each point of D. The set C1(D) is the set of all differentiable functions on D.

Thus

f ∈ C1(D)⇔ ∂f

∂xk
∈ C(A) ∀ k

Theorem 18.4 If f : D 7→ R and g : D 7→ R are differentiable at x0 ∈ D, then the following

are also differentiable at x0:

1. c f 2. f + g 3. fg 4.
f

g
, g(x0) 6= 0

Theorem 18.5 Let f : D 7→ R be differentiable at x0. Let xk = xk(t1, . . . , tm) be such that

x0
k = xk(t

0
1, . . . , t

0
m) and ∃ ∂xk∂tj

(t0), ∀ j, k. Then for the function h(t) = f(x(t)), there exist

partial derivatives

∂h

∂tj
(t0) =

d∑
k=1

∂f

∂xk
(x0)

∂xk
∂tj

(t0)
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19 Differentiation of Functions of Several Variables (Part II)
(Lecture Notes)

19.1 Derivatives of Real-Valued Functions

Theorem 19.1 (Chain Rule I) Let the function f : D 7→ R be differentiable at x0 and let

xk = xk(t1, . . . , tm) be such that the partial derivatives ∂xk
∂tj

(t0) exist for all j, k. We take

x0
k = xk(t

0
1, . . . , t

0
m). Then for the function

h(t1, . . . , tm) = f
(
x1(t1, . . . , tm), . . . , xd(t1, . . . , tm)

)
there exists

∂h

∂tj
(t0) =

d∑
k=1

∂f

∂xk
(x0)

∂xk
∂tj

(t0), x(t0) = x0

Definition 19.1 The limit

∂f

∂l
(x0) = lim

t→0

f(x0 + tl)− f(x0)

t

if it exists, is the directional derivative of f : D 7→ R at an inner point x0 of D in the direction

of the vector l = (l1, . . . , ld) ∈ Rd.

Theorem 19.2 If f : D 7→ R is differentiable at an inner point x0 of D, then for any vector

l = (l1, . . . , ld) ∈ Rd, the directional derivative in the direction of l exists and

∂f

∂l
(x0) = 〈∇f(x0), l〉 =

d∑
k=1

∂f

∂xk
(x0) · lk

Theorem 19.3 If f : D 7→ R is differentiable at an inner point x0 of D, then

max
‖l‖=1

∂f

∂l
(x0) = ‖∇f(x0)‖

Moreover, the maximum is attained by a vector with the same direction as ∇f(x0).

Proof: By the Cauchy-Schwarz inequality,

∂f

∂l
(x0) = 〈∇f(x0), l〉 ≤ ‖∇f(x0)‖‖l‖ = ‖∇f(x0)‖

Taking l̃ = ∇f(x0)
‖∇f(x0)‖ ,

∂f

∂l
= 〈∇f(x0), l̃〉 =

1

‖∇f(x0)‖〈∇f(x0),∇f(x0)〉 = ‖∇f(x0)‖
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19.2 Derivatives of Vector-Valued Functions

Definition 19.2 Let x0 be an inner point of D. A function f : D 7→ Rm, D ⊆ Rd is called

differentiable at x0 if there exists a linear map L : Rd 7→ Rm such that

f(x)− f(x0)− L(x− x0) = o(‖x− x0‖), x→ x0

In the standard basis, the linear map L can be given by a matrix, which is called the derivative

of f at x0:

f ′(x0) =


v11 . . . v1d

...
...

vm1 . . . vmd


Theorem 19.4 A function f : D 7→ Rm, f = (f1, . . . , fm) is differentiable at x0 if and only if

fk : D 7→ R is differentiable at x0 for all k = 1, . . . ,m. Moreover

f ′(x0) =

(
∂fi
∂xj

(x0)

)m,d
i,j=1

=



∂f1

x1
(x0) . . .

∂f1

xd
(x0)

...
...

∂fm
x1

(x0) . . .
∂fm
xd

(x0)


Definition 19.3 The matrix

f ′(x0) =

(
∂fi
∂xj

(x0)

)m,d
i,j=1

is called the Jacobian matrix of f at x0. If m = d then the determinant

∂(f1, . . . , fd)

∂(x1, . . . , xd)
= det f ′(x0)

is called the Jacobian determinant of f at x0. A point x0 at which det f ′(x0) = 0 is called a

singular point.

Theorem 19.5 (Chain Rule II) Let D ⊆ Rd, M ⊆ Rm be open. If f : D 7→M is differentiable

at x0 and if g : M 7→ Rm is differentiable at y0 = f(x0), then the function h = g ◦ f : D 7→ Rm

is differentiable at x0 and

h′(x0) = g′(f(x0)) · f ′(x0)

Corollary 19.1 Under the assumptions of Th. 19.5 and if n = m = d, then

∂(h1, . . . , hd)

∂(x1, . . . , xd)
=
∂(g1, . . . , gd)

∂(f1, . . . , fd)

∂(f1, . . . , fd)

∂(x1, . . . , xd)
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20 Implicit Function Theorem, Higher Order Derivatives
(Lecture Notes)

20.1 Implicit Function Theorem

Let D be an open set in Rd. We denote by C1(D,Rm) the set of functions f : D 7→ Rm which

are differentiable at each point x ∈ D and for which f ′ : D 7→ Rm+d is continuous.

Theorem 20.1 Let D be an open set in Rd. For f : D 7→ Rd, x0 ∈ D, and y0 = f(x0), assume

that the following conditions hold:

1. f ∈ C1(D,Rd)

2. det f ′(x0) 6= 0

Then an open set G ⊆ D, which contains x0, and a ball Br(y0) exist such that

1. f : G 7→ Br(y0) is a bijective map

2. the inverse map g = f−1 : Br(y0) 7→ G belongs to C1(Br(y0),Rd)

3. g′(y) = (f−1)′(y) =

(
f ′
(
g(y)

))−1

∀ y ∈ Br(y0)

Theorem 20.2 (Implicit Function Theorem) Let G be an open set in Rd+m and take a point

(x0, y0) ∈ G, where x0 ∈ Rd and y0 ∈ Rm. Assume that F : G 7→ Rm satisfies the following

properties:

1. F (x0, y0) = 0

2. F ∈ C1(G,Rm)

3. detF ′y(x0, y0) 6= 0, where F ′y is the derivative of F with respect to y

Then a ball Br(x0) ⊂ Rd and a unique function h : Br(x0) 7→ Rm, h ∈ C1(Br(x0),Rm) exist

such that

1. h(x0) = y0

2. F (x, h(x)) = 0 ∀x ∈ Br(x0)

3. h′(x) = −
(
F ′y
(
x, h(x)

))−1

F ′x(x, h(x))
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Example Consider F (x1, x2, y) = x2
1 +x2

2 + y2− 1. This equality defines the unit sphere in R3.

Take x0 = (0, 0) and y0 = 1. Then

1. F (x0, y0) = 0

2. F ∈ C1(G,R)

3. F ′y(x0, y0) = 2y0 = 2 6= 0

So, a ball Br(x0) and a unique function y = h(x1, x2) : Br(x0) 7→ R exist, in this example,

y = h(x1, x2) =
√

1− x2
1 − x2

2, such that

1. y0 = h(x0
1, x

0
2)

2. F (x1, x2, h(x1, x2)) = 0

3. F ′x(x, y) = (2x1, 2x2)

h′(x1, x2) = − 1
2y (2x1, 2x2) = −

(
x1

h(x1, x2)
,

x2

h(x1, x2)

)
∀ (x1, x2) ∈ Br(x0)

20.2 Higher Order Derivatives

Let D be an open set in Rd and consider a function f : D 7→ Rd.

Definition 20.1 The second order partial derivative of f at x0 ∈ D, if it exists, is

∂

∂xi

(
∂f

∂xj

)
(x0) =

∂2f

∂xi ∂xj
(x0)

(
=
∂2f

∂x2
i

if i = j

)

Theorem 20.3 (Schwarz’s Theorem) If the second order partial derivatives ∂2f
∂x ∂y and ∂2f

∂y ∂x

exist and are continuous on D, then they are equal:

∂2f

∂x ∂y
=

∂2f

∂y ∂x

Definition 20.2 The matrix

Hessx0 f = f ′′(x0) =

(
∂2f

∂xi ∂xj

)d
i,j=1

is called the second order derivative of f at x0, or the Hessian matrix of f .

Example Consider f(x, y) = xey + y. Then ∂f
∂x = ey and ∂f

∂y = xey + 1. Thus we obtain

f ′′(x, y) =

(
0 ey

ey xey

)

By the same way, one can introduce the nth-order derivative of f :

∂nf

∂xi1 . . . ∂xin
(x0) =

∂

∂xi1

(
∂

∂xi2
. . .

(
∂f

∂xin

)
. . .

)
(x0)
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Definition 20.3 We define Cn(D) as a class of functions f : D 7→ R such that

∂nf

∂xi1 . . . ∂xin

exists and is continuous on D for every i1, . . . , in = 1, . . . , d.

20.3 Taylor’s Theorem

Theorem 20.4 We assume f ∈ Cn(D). Let x0, x ∈ D be given and for all θ ∈ [0, 1] we have

(1− θ)x0 + θx ∈ D. Then

f(x) = f(x0) + f ′(x0)(x− x0) +
1

2
f ′′(x0)(x− x0)2 + . . .

· · ·+ 1

(n− 1)!
f (n−1)(x0)(x− x0)n−1 +

1

n!
f (n)

(
(1− θ)x0 + θx

)
(x− x0)n

where θ is some point from [0, 1], and

f (k)(x0)(x− x0)k =

d∑
i1,...,ik=1

∂kf(x0)

∂xi1 . . . ∂xik
(xi1 − x0

i1) . . . (xik − x0
ik

)

Remark If n = 2, then

f(x) = f(x0) +
〈
∇f(x0), x− x0

〉
+

1

2

〈
f ′′(x̃)(x− x0), x− x0

〉
where x̃ = (1− θ)x0 + θx, θ ∈ [0, 1] and

〈
f ′′(x̃)(x− x0), x− x0

〉
is a bilinear form.

Example Consider f(x, y) = sinx sin y. Then

∇f(x, y) = (cosx sin y, sinx cos y)

f ′′(x, y) =

(
− sinx sin y cosx cos y

cosx cos y − sinx sin y

)(
=

(
0 1

1 0

)
at (0, 0)

)

Close to the point x0 = (0, 0), f(x, y) ≈ 0 + 0 +
1

2
xy +

1

2
xy = xy.
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21 Extrema of Functions of Several Variables (Lecture Notes/Slides)

21.1 Necessary Conditions of Local Extrema

Consider f : D 7→ R, D ⊆ Rd.

Definition 21.1

• A point x0 ∈ D is called a local maximum (minimum) of f if there exists r > 0 such that

1. Br(x0) ⊆ D
2. f(x) ≤ f(x0) ∀x ∈ Br(x0)

(
f(x) ≥ f(x0) ∀x ∈ Br(x0)

)
• If f(x0) ≥ f(x) ∀x ∈ D

(
f(x0) ≤ f(x) ∀x ∈ D

)
, then the point x0 is called the global

maximum (minimum).

• If x0 is a local maximum or a local minimum then x0 is called a local extremum.

Theorem 21.1 If x0 is a local extremum of f , then assuming ∇f(x0) exists, ∇f(x0) = 0.

Definition 21.2 If x0 is an inner point of D for which ∇f(x0) = 0, then x0 is called a critical

point of f .

Remark In general, if x0 is a critical point, it is not necessarily a local extremum.

Example Consider the function f(x, y) = x2 − y2 from Figure 1. The point x0 = (0, 0) is a

critical point of f but it is not a local extremum. In the case of f(x, y) = x2 − y2, the point

x0 = (0, 0) is called a saddle point.

�4
�2

0
2

4�4
�2

0
2

4

�10

0

10

x
y

1

Figure 1: f(x, y) = x2 − y2
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21.2 Sufficient Conditions of Local Extrema

Theorem 21.2 Let D be an open set in Rd. Consider f ∈ C2(D) and assume x0 ∈ D is a

critical point of f .

1. If f ′′(x0) is positive-definite, then x0 is a local minimum of f .

2. If f ′′(x0) is negative-definite, then x0 is a local maximum of f .

3. If f ′′(x0) is indefinite, i.e. 〈f ′′(x0)u, u〉 > 0 and 〈f ′′(x0) v, v〉 < 0 for some u and v, then

x0 is not a local extremum of f .

(Refer to Def. 20.2 and Th. 14.6)

Corollary 21.1 Let D be open in R2. Assume ∂f
∂x (x0, y0) = 0 and ∂f

∂y (x0, y0) = 0.

1. If
∂2f

∂x2
(x0, y0) > 0 and det f ′′(x0, y0) > 0, then (x0, y0) is a local minimum.

2. If
∂2f

∂x2
(x0, y0) < 0 and det f ′′(x0, y0) > 0, then (x0, y0) is a local maximum.

3. If det f ′′(x0, y0) < 0, then (x0, y0) is not a local extremum.

Example Consider f(x, y, z) = x2 + y2 + z2 + 2x+ 4y − 6z + xy.

1. Find critical points at which ∇f(x) = 0:

∂f

∂x
= 2x+ 2 + y = 0

∂f

∂y
= 2y + 4 + x = 0

∂f

∂z
= 2z − 6 = 0

2x+ y = −2

x+ 2y = −4

2z = 6

⇒ x = 0, y = −2, z = 3

We find x0 = (0, 2,−3) is a critical point.

2. Check if x0 is a local extremum:

f ′′(x, y, z) =

2 1 0

1 2 0

0 0 2

⇒M1 = 2 > 0, M2 = 3 > 0, M3 = 6 > 0

f ′′(x, y, z) is positive-definite, therefore x0 is a local minimum.
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22 Conditional Local Extrema (Lecture Notes)

22.1 Some Exercises

1. Find the point in the plane 3x+ 4y+ z = 1 closest to (−1, 1, 1). For this we minimize the

squared distance function

f(x, y, z) = (x+ 1)2 + (y − 1)2 + (z − 1)2

with the constraint 3x+ 4y + z = 1 given by the equation of the plane.

�4�2 0 2 4 �4 �2 0 2 4

�20

0

20

x y

1

Figure 2: 3x+ 4y + z = 1

2. Find the minimum distance between two curves in R2 given by x2 + 2y2 = 1 (ellipse) and

x+ y = 4 (line). For this we minimize the function

f(x1, y1, x2, y2) = (x1 − x2)2 + (y1 − y2)2

with the constraints x2
1 +2y2

1 = 1 and x2 +y2 = 4 given by the equations of the two curves,

then take the square root of the result.

1 4

4

x

y

x + y = 4

x2 + 2y2 = 1

1

Figure 3

3. Find the size of an open rectangular bath of volume V for which its surface area is a

minimum. For this we minimize the function

f(x, y, z) = 2xy + 2yz + xz

with the constraint xyz = V .
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22.2 Method of Lagrange Multipliers

Consider functions f : D 7→ R, gi : D 7→ R, i = 1, . . . ,m, where D ⊆ Rd is an open set. We

want to find conditional local extrema of f subject to constraints g1 = 0, . . . , gm = 0.

Definition 22.1 Let M = {x ∈ D : g1(x) = 0, . . . , gm(x) = 0}. A point x0 ∈ D is called a

conditional local maximum (minimum) of f subject to the constraints g1 = 0, . . . , gm = 0 if

∃ r > 0 : ∀x ∈ Br(x0) ∩M f(x0) ≥ f(x)
(
f(x0) ≤ f(x)

)
If x0 is a conditional local maximum or minimum, then x0 is called a conditional local extremum.

Theorem 22.1 We assume that m < d, f ∈ C1(D), gi ∈ C1(D), i = 1, . . . ,m and the matrix(
∂gi
∂xj

(x0)

)m,d
i,j=1

has rank m at x0, where x0 is a conditional local extremum of f subject to the constraints

g1 = 0, . . . , gm = 0. Then there exist real numbers λ1, . . . , λm for which x0 is a critical point of

the function

F (x) = f(x)− λ1g1(x)− · · · − λmgm(x)

that is
∂F

∂xj
(x0) = 0 ∀ j = 1, . . . , d

Method of Lagrange Multipliers:

(i) Find all solutions x1, . . . , xd, λ1, . . . , λm of the system
∂F

∂xj
(x) = 0 j = 1, . . . , d

gi(x) = 0 i = 1, . . . ,m

(ii) Determine which of the critical points are conditional local extrema of f . This can usually

be done using intuitive or physical arguments.
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Example (Solving Ex. 1, 2 from 22.1 using the Method of Lagrange Multipliers)

1. Solving Ex. 1

We must minimize the function

f(x, y, z) = (x+ 1)2 + (y − 1)2 + (z − 1)2

with the constraint

g(x, y, z) = 3x+ 4y + z − 1 = 0

We then have

F (x, y, z) = (x+ 1)2 + (y − 1)2 + (z − 1)2 − λ(3x+ 4y + z − 1)

∂F

∂x
= 2(x+ 1)− 3λ = 0

∂F

∂y
= 2(y − 1)− 4λ = 0

∂F

∂z
= 2(z − 1)− λ = 0

Solving the system of equations for λ in terms of x, y, z yields λ = − 1

13
. Thus

x = −29

26
y =

11

13
z =

25

26

2. Solving Ex. 2

We must minimize the function

f(x1, y1, x2, y2) = (x1 − x2)2 + (y1 − y2)2

with the constraints

g1(x1, y1, x2, y2) = x2
1 + 2y2

1 − 1 = 0 g2(x1, y1, x2, y2) = x2 + y2 − 4 = 0

We then have

F (x1, y1, x2, y2) = (x1 − x2)2 + (y1 − y2)2 − λ1(x2
1 + 2y2

1 − 1)− λ2(x2 + y2 − 4)

∂F

∂x1
= 2(x1 − x2)− 2λ1x1 = 0

∂F

∂y1
= 2(y1 − y2)− 4λ1y1 = 0

∂F

∂x2
= −2(x1 − x2)− λ2 = 0

∂F

∂y2
= −2(y1 − y2)− λ2 = 0

Solving the system of equations and ignoring unphysical solutions, we obtain

(x1, y1) =

(
2√
6
,

1√
6

)
(x2, y2) =

(
2 +

1

2
√

6
, 2− 1

2
√

6

)

Thus the minimum distance between the two curves is
√

2

(
2− 3√

6

)
= 2
√

2−
√

3.

53



23 Basic Concepts of Differential Equations (Lecture Notes/Slides)

23.1 Models Leading to Differential Equations

1. Population Growth and Decay

Let P (t) be the number of members of a population, which, in order to simplify the

mathematical model, we will assume can take any positive value, and let a be the rate of

change of that population. This results in the differential equation

P ′(t) = aP (t)

2. Spread of Epidemics

Let the rate of change of the infected population be proportional to the product of the

number of people already infected and the number of people susceptible to infection but

not already infected. This leads to the differential equation

I ′(t) = r I(t)
(
S − I(t)

)
where S is the total number of members of the population, I(t) is the number of infected

members at time t, and r is some positive constant. If at time t = 0 there were I0 infected

people, then we can add to the equation the condition

I(0) = I0

3. Simple Pendulum

Consider a pendulum with length l = 1. Its motion as a function of time can be described

by the differential equation

θ′′ + g sin θ = 0

where g is the gravitational constant. If the amplitude is small, we can approximate

sin θ ≈ θ, resulting in the differential equation

θ′′ + g θ = 0

23.2 Basic Definitions

Definition 23.1

• A differential equation is an equation that contains one or more derivatives of an unknown

function.

• The order of a differential equation is the order of the highest derivative that it contains.

• If a differential equation involves an unknown function of only one variable, it is called

an ordinary differential equation.
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We will consider differential equations of the form

y(n) = f
(
x, y, y′, . . . , y(n−1)

)
(23.1)

Example (Some Examples of Differential Equations)

1. y′ = x2

2. y′ = (y2 + 1)x2

3. y′′ = 2x− 2y′ − y

4. y(n) = y′ − sin y + x

Definition 23.2 A solution to a differential equation of the form (23.1) is a function y = y(x)

that is defined on some open interval (a, b) and can be differentiated n times such that

y(n)(x) = f
(
x, y(x), y′(x), . . . , y(n−1)(x)

)
∀x ∈ (a, b)

Definition 23.3

• The graph of a solution of a differential equation is called a solution curve.

• A curve C is said to be an integral curve of a differential equation if every function

y = y(x) whose graph is a segment of C is a solution to the differential equation.

Example Consider the differential equation

y′ = −x
y

(23.2)

The functions

y1,2(x) = ±
√
a2 − x2, x ∈ (−a, a)

where a is a constant, are solutions to (23.2). The graphs of these functions are then solution

curves of the differential equation. The integral curve of the differential equation is given by the

equation of a circle

x2 + y2 = a2

Note that this equation is not a solution curve because it is not a graph of some function y = y(x).

a�a

a

x

y

1

(a) Solution curve y1(x) =
√
a2 − x2

a�a

a

�a

x

y

1

(b) Integral curve x2 + y2 = a2
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Example Solving the differential equation

y′′ = ex (23.3)

can be done by integration:

y′(x) =

∫
y′′(x) dx =

∫
ex dx = ex + c1

y(x) =

∫
y′(x) dx =

∫
(ex + c1) dx = ex + c1x+ c2

with constants c1 and c2.

23.3 Initial Value Problem

As seen with (23.3), there can be infinitely many solutions to a differential equation, depending

on the constants involved. The problem of finding solutions to (23.1) which satisfy the initial

conditions

y(x0) = p0, y
′(x0) = p1, . . . , y

(n−1)(x0) = pn−1 (23.4)

for some x0 from the domain of y is called the initial value problem.

Example To solve (23.3) with initial conditions y(0) = 1, y′(0) = 0, we first take the general

solution and ensure it satisfies the initial condition y(0) = 1:

y(0) = e0 + c2 = 1⇒ c2 = 0

Now we differentiate the general solution and ensure it satisfies the initial condition y′(0) = 0:

y′(0) = e0 + c1 = 0⇒ c1 = −1

We thus obtain the particular solution to this initial value problem:

y(x) = ex − x

which, under the right conditions, is the unique solution.

Example Consider the differential equation

y′ = 2
√
y (23.5)

with the initial condition y(0) = 0. Then y(x) = 0 and y(x) = x2, x ≥ 0 are two different

solutions to this problem. This shows that solutions to the initial value problem are not unique.

Remark If f is continuous, then the differential equation y′ = f(x) with the initial condition

y(x0) = y0 has the following solution:

y(x) = y0 +

x∫
x0

f(t) dt
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23.4 Directional Fields of First Order Differential Equations

Consider the equation

y′ = f(x, y) (23.6)

We will discuss the graphical method of solving (23.6). Recall that y = y(x) is a solution to

(23.6) if y′(x) = f(x, y(x)) for all x from some interval. So, the slope of the integral curve of

(23.6) through a point (x0, y0) is given by the number f(x0, y0). If f is defined on a set R,

we can construct a directional field for (23.6) in R by drawing a short line segment or vector

with slope f(x, y) through each point (x, y) in R. Then integral curves of (23.6) are continuous

curves tangent to the vectors in the directional field.

�2 �1 0 1 2
�2

�1

0

1

2

y0 = x2

�2 �1 0 1 2
�2

�1

0

1

2

y0 = ex

1
Figure 5: Examples of directional fields
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24 First Order Differential Equations (Lecture Notes)

24.1 Separable Differential Equations

Definition 24.1 A differential equation of the form

y′ = f(y)g(x) (24.1)

is called a separable differential equation.

In this section, we will describe the method of solving equations of the form (24.1). First, we

rewrite (24.1) in the form

h(y)y′ = g(x)

where h(y) := 1
f(y) . Assume that h(y) and g(x) have antiderivatives H(y) and G(x) respectively.

By the chain rule we have

d

dx
H
(
y(x)

)
= H ′

(
y(x)

)
· y′(x) = h

(
y(x)

)
· y′(x)

Thus
d

dx
H
(
y(x)

)
=

d

dx
G(x)

Integrating both sides of this equation will yield

H
(
y(x)

)
= G(x) + c (24.2)

Consequently, any differentiable function y = y(x) that satisfies (24.2) is a solution to (24.1).

To find this solution, we must find the antiderivatives of h and g.

Example (Separation of Variables)

y′ =
dy

dx
= x(1 + y2)⇒ dy

1 + y2
= x dx⇒ arctan y =

x2

2
+ c

y = tan

(
x2

2
+ c

)
Example (Differential Equation with Implicit Solution)

y′ =
dy

dx
=

2x+ 1

5y4 + 1
⇒ (5y4 + 1) dy = (2x+ 1) dx

y5 + y = x2 + x+ c

Remark In dividing (24.1) by f(y) we may lose some solutions, namely the constant solution

y(x) = y0, where f(y0) = 0.
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Example We will solve the initial value problem:

y′ = 2xy2 y(0) = 1

First, we find the general solution of the differential equation by separation of variables:

y′ =
dy

dx
= 2xy2

dy

y2
= 2x dx, y 6= 0

−1

y
= x2 + c

y = − 1

x2 + c
(24.3)

Note that y = 0 is also a solution. Moreover, it cannot be written in the form (24.3). However,

this means that it cannot satisfy the initial condition. We therefore take the former solution

(24.3) to find c:

y(0) = − 1

02 + c
= 1⇒ c = −1

We then have the solution

y(x) =
1

1− x2
, x ∈ (−1, 1)

24.2 Linear First Order Differential Equations

Definition 24.2 A first order differential equation is said to be linear if it can be written in

the form

y′ + p(x) y = f(x) (24.4)

If f = 0, (24.4) is called homogeneous, otherwise, it is called nonhomogeneous.

To solve equations of the form (24.4), we first consider the corresponding homogeneous equation,

when f = 0:

y′ + p(x) y = 0 (24.5)

We can solve (24.5) using the method of separation of variables:

ln |y| = −P (x) + k

where P (x) :=
∫
p(x) dx and k is a constant. We then have

y = ek e−P (x) and y = −ek e−P (x)

Consequently, we can write solutions to (24.5) as

y = Ce−P (x) (24.6)

where C ∈ R. Note that for C = 0, y = 0 is also a solution to (24.5).
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Definition 24.3 (24.6) is called the general solution to the homogeneous equation (24.5).

In order to solve (24.4), we assume that C in (24.6) depends on x, that is,

y = C(x) e−P (x) (24.7)

We then substitute (24.7) into (24.4) and obtain

C(x) =

∫
f(x) eP (x) dx+ C1

where C1 is some constant of integration. We then have

y(x) =

(∫
f(x) eP (x) dx

)
e−P (x) + C1e

−P (x)

Remark The general solution to (24.4) can be written as the sum of a partial solution to (24.4)

and the general solution to the homogeneous equation (24.5).

Example Take the differential equation

y′ − 2xy = ex
2

First solve

y′ − 2xy = 0

y = Ce−
∫

(−2x) dx = Cex
2

Now substitute y = C(x)ex
2

into the differential equation to obtain

C(x) =

∫
dx = x+ C1

We then have

y(x) = (x+ c1)ex
2

= xex
2

+ C1e
x2
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24.3 Transformation of Nonlinear Functions

Here we consider the Bernoulli Equation, which is of the form

y′ + p(x) y = f(x) yr (24.8)

where r ∈ R \ {0,−1}. Let y1 be a nontrivial solution to

y′1 + p(x) y1 = 0

Then we find a solution to (24.8) in the form

y = u y1

where u is some function. So, substituting y = u y1 into (24.8), we obtain

u′ y1 + u
(
y′1 + p(x) y1

)
= u′ y1 = f(x)(u y1)r

which is a separable differential equation and can be solved.

Example Take the differential equation

y′ − y = xy2

First solve

y′ − y = 0

y = Cex

Then take y1(x) = ex. We substitute y(x) = u(x) y1(x) = u(x)ex into the differential equation:

u′ex = u2xe2x

u′ = u2xex

and we find a separable differential equation which we can solve:

u = − 1

(x− 1)ex + c

Thus we find

y = − ex

(x− 1)ex + c
= − 1

x− 1 + ce−x
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25 Existence and Uniqueness of Solutions, Higher Order Linear
Differential Equations (Lecture Notes)

25.1 Homogeneous Nonlinear Differential Equations

An equation which can be written as

y′ = q
(y
x

)
(25.1)

is called a homogeneous nonlinear differential equation. To solve (25.1), we find a solution in

the form y(x) = xu(x).

Example Consider the homogeneous nonlinear differential equation

y′ =
y + xe−

y
x

x
(25.2)

We substitute y(x) = xu(x) into (25.2) and obtain

u′x+ u =
ux+ xe−u

x
⇒ u′x = e−u ⇒ u = ln(ln |x|+ c)

y = x ln(ln |x|+ c)

25.2 Existence and Uniqueness of Solutions

Theorem 25.1 (Peano) If f is continuous on (a, b) × (c, d) and x0 ∈ (a, b), y0 ∈ (c, d), then

there exists ε > 0 such that the initial value problem

y′ = f(x, y), y(x0) = y0 (25.3)

has a solution on [x0 − ε, x0 + ε].

Theorem 25.2 (Picard-Lindelöf) If f = f(x, y) is

1. uniformly Lipschitz continuous in y, that is

∃L > 0 : |f(x, y1)− f(x, y2)| ≤ L|y1 − y2|

2. continuous in x

then there exists ε > 0 such that (25.3) has a unique solution on [x0 − ε, x0 + ε].

Remark If ∣∣∣∣∂f∂y
∣∣∣∣ ≤ C ∀ (x, y) ∈ (a, b)× (c, d)

then the first condition from Th. 25.2 is satisfied.
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25.3 Higher Order Linear Differential Equations with Constant Coefficients

Definition 25.1 An equation of the form

any
(n) + an−1y

(n−1) + · · ·+ a2y
′′ + a1y

′ + a0y = F (x) an 6= 0 (25.4)

is called a higher order linear differential equation with constant coefficients. If F = 0, then

(25.4) is called homogeneous.

We substitute

y = Ceλx (25.5)

into the corresponding homogeneous equation of (25.4)

any
(n) + an−1y

(n−1) + · · ·+ a2y
′′ + a1y

′ + a0y = 0 an 6= 0

If λ is a solution to the resulting polynomial equation

anλ
n + an−1λ

n−1 + · · ·+ a1λ+ a0 = 0 (25.6)

then (25.5) is a solution to the homogeneous equation of (25.4).

Definition 25.2 (25.6) is called the characteristic polynomial of

Ly := any
(n) + an−1y

(n−1) + · · ·+ a2y
′′ + a1y

′ + a0y = 0

Example Consider the differential equation

y′′′ − 6y′′ + 11y′ − 6y = 0

We obtain the characteristic polynomial

λ3 − 6λ2 + 11λ− 6 = 0⇒ λ1 = 1, λ2 = 2, λ3 = 3

and we find the general solution

y = C1e
x + C2e

2x + C3e
3x

Definition 25.3 The set {y1, . . . , yn} is a fundamental system of solutions to Ly = 0 if every

solution y can be written as a linear combination of {y1, . . . , yn}:

y = C1y1 + · · ·+ Cnyn

for some constants C1, . . . , Cn.

Definition 25.4 The functions y1, . . . , yn are linearly independent if

C1y1(x) + · · ·+ Cnyn(x) = 0 ∀x⇒ C1 = C2 = · · · = Cn = 0
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Theorem 25.3 A set of n solutions {y1, . . . , yn} to Ly = 0 is a fundamental system of solutions

if and only if y1, . . . , yn are linearly independent.

If the characteristic polynomial of Ly = 0 can be written as

P (λ) = (λ− λ1)k1 . . . (λ− λm)km

we have the following cases:

1. λ ∈ R, k = 1

Solution: y = eλx

2. λ ∈ R, k > 1

Solutions: y1 = eλx, y2 = xeλx, . . . , yk = xk−1eλx

3. λ = a± bi, k = 1

Solutions: y1 = eax cos bx, y2 = eax sin bx

4. λ = a± bi, k > 1

Solutions:

y1 = eax cos bx, y2 = eax sin bx, y3 = xeax cos bx, y4 = xeax sin bx . . .

y2k−1 = xk−1eax cos bx, y2k = xk−1eax sin bx

Example Consider the differential equation

y′′ + 4y = 0

The characteristic polynomial yields

λ2 + 4 = 0⇒ λ1 = 2i, λ2 = −2i

P (λ) = (λ− λ1)(λ− λ2) = (λ− 2i)(λ+ 2i)

and we obtain the solution

y = C1 cos 2x+ C2 sin 2x
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26 Systems of Linear Differential Equations (Lecture Notes)

26.1 Rewriting Scalar Differential Equations as Systems

Example Consider the differential equation describing the motion of a pendulum of length l = 1

as a function of time:

θ′′ + g sin θ = 0 (26.1)

We define the velocity v(t) = θ(t), from which θ′′(t) = v′(t) follows. We can then rewrite (26.1)

as a system of differential equations: v′ = −g sin θ

v = θ′

Example Consider the differential equation

a0y
(n) + a1y

(n−1) + · · ·+ an−1y
′ + any = F (t) a0 6= 0

We define

y1 := y

y2 := y′ = y′1

y3 := y′′ = y′2

...

yn := y(n−1) = y′n−1

We can then write

y′1 = y2

y′2 = y3

...

y′n−1 = yn

y′n = −a1

a0
yn −

a2

a0
yn−1 − · · · −

an−1

a0
y2 −

an
a0
y1 + F (t)

Definition 26.1 A system of the form
y′1 = g1(t, y1, . . . , yn)

...

y′n = gn(t, y1, . . . , yn)

is called a first order system of differential equations.
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26.2 Linear Systems of Differential Equations

Definition 26.2 A first order system of differential equations of the form
y′1 = a11(t)y1(t) + · · ·+ a1n(t)yn(t) + f1(t)

...

y′n = an1(t)y1(t) + · · ·+ ann(t)yn(t) + fn(t)

(26.2)

is called a linear system of differential equations. Defining

y =


y1

...

yn

 A(t) =


a11(t) . . . a1n(t)

...
...

an1(t) . . . ann(t)

 f(t) =


f1(t)

...

fn(t)


where A is called the coefficient matrix of (26.2), we can rewrite (26.2) as

y′ = A(t)y + f(t)

If f = 0, then (26.2) is called homogeneous.

Theorem 26.1 If A and f are continuous functions on (a, b) and t0 ∈ (a, b), y0 ∈ Rn, then

y′ = A(t)y + f(t), y(t0) = y0

has a unique solution on (a, b).

26.3 Homogeneous Systems of Linear Equations

Here, we will consider

y′ = A(t)y (26.3)

We have the trivial solution y = (0, . . . , 0). Let y1, . . . , yn be vector-valued functions which are

solutions to (26.3). Then

y = c1y
1 + · · ·+ cny

n (26.4)

is also a solution to (26.3) for any constants c1, . . . , cn.

Definition 26.3 If any solution to (26.3) can be written in the form (26.4) for some constants

c1, . . . , cn, then y1, . . . , yn is called the fundamental system of solutions to (26.3).

Definition 26.4 y1, . . . , yn are called linearly independent on (a, b) if the equality

c1y
1(t) + · · ·+ cny

n(t) = 0 ∀ t ∈ (a, b)

implies c1 = · · · = cn = 0

Theorem 26.2 Let the n×n matrix A = A(t) be continuous on (a, b). Then a set of solutions

y1, . . . , yn to (26.3) on (a, b) is a fundamental system of solutions if and only if it is linearly

independent on (a, b).
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26.4 Solving Homogeneous Systems of Linear Differential Equations with

Constant Coefficients

We will find solutions to (26.3), assuming the matrix A is constant, as solutions to higher order

linear differential equations.

Example Consider the system(
y′1
y′2

)
=

(
−4 −3

6 5

)(
y1

y2

)
⇔

y′1 = −4y1 − 3y2

y′2 = 6y1 + 5y2

(26.5)

We will find solutions in the form

y1 = x1e
λt y2 = x2e

λt (26.6)

where x1, x2 are some constants. We then have

y′1 = λx1e
λt y′2 = λx2e

λt (26.7)

Substituting (26.6) and (26.7) into (26.5), we obtain−4x1 − 3x2 = λx1

6x1 + 5x2 = λx2

⇔

(−4− λ)x1 − 3x2 = 0

6x1 + (5− λ)x2 = 0
(26.8)

To find nontrivial solutions, we find λ such that det(A − λI) = 0. We obtain λ1 = 2 and

λ2 = −1. For λ1 = 2 we have−6x1 − 3x2 = 0

6x1 + 3x2 = 0
⇒

y1 = −e2t

y2 = 2e2t

For λ2 = −1 we have −3x1 − 3x2 = 0

6x1 + 6x2 = 0
⇒

y1 = −e−t

y2 = e−t

The general solution to (26.5) is then given by

y1 = −c1e
2t − c2e

−t

y2 = 2c1e
2t + c2e

−t
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In order to solve

y′ = Ay (26.9)

we first find eigenvalues of the matrix A from the equation det(A− λI) = 0. Let

det(A− λI) = (λ− λ1)k1 . . . (λ− λm)km

1. If λ = λj ∈ R and the fundamental system of solutions to

(A− λI)x = 0 (26.10)

consists of k = kj solutions x1, . . . , xk, then

y1 = x1eλt, . . . , yk = xkeλt

are linearly independent solutions to (26.9).

2. If λ ∈ R and the fundamental system of solutions consists of m < k solutions, then we

find solutions to (26.9) in the form

y =
(
x(1) + x(2)t+ · · ·+ x(k−m)tk−m

)
eλt

3. If λ ∈ C \ R, then we find solutions to (26.9) as before. We obtain

y = y1 + iy2

Then take y1 and y2 as linearly independent solutions to (26.9).

Example Consider 
y′1 = 2y1 + y2 + y3

y′2 = −2y1 − y3

y′3 = 2y1 + y2 + 2y3

(26.11)

Solving the characteristic equation ∣∣∣∣∣∣∣
2− λ 1 1

−2 −λ −1

2 1 2− λ

∣∣∣∣∣∣∣ = 0

we obtain λ1 = 2 and λ2 = λ3 = 1. For λ1 = 2 we find the fundamental system of solutions to
x2 + x3 = 0

−2x1 − 2x2 − x3 = 0

2x1 + x2 = 0

and obtain

y1 = e2t y2 = −2e2t y3 = 2e2t
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Now for λ2 = λ3 = 1, we first find the number of vectors in the fundamental system of solutions

to 
x1 + x2 + x3 = 0

−2x1 − x2 − x3 = 0

2x1 + x2 + x3 = 0

The rank of the corresponding matrix is 2, so the fundamental system of solutions contains only

1 vector. We substitute solutions in the form

y1 = (x1 + z1t)e
t y2 = (x2 + z2t)e

t (x3 + z3t)e
t

into (26.11), find the fundamental system of solutions, then obtain

y = c1


 0

−1

1

+

0

0

0

 t

 et + c2


 1

−1

0

+

 0

−1

1

 t

 et
Combining with the solutions obtained from λ1 = 2, we obtain the general solution to (26.11)

y1 = c2e
t + c3e

2t

y2 = −(c1 + c2)et − c2te
t − 2c3e

2t

y3 = c1e
t + c2te

t + 2c3e
2t
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