Problem sheet 9

Tutorials by Ikhwan Khalid ikhwankhalid92@gmail.com and Mahsa Sayyarymahsa.sayyary@mis.mpg.de. Solutions will be collected during the lecture on Wednesday June 12.

1. [3+3 points] Reduce to canonical form the following quadratic forms on \mathbb{R}^{3} :
a) $Q(x)=x_{1}^{2}+x_{2}^{2}+3 x_{3}^{2}+4 x_{1} x_{2}+2 x_{1} x_{3}+2 x_{2} x_{3}$;
b) $Q(x)=2 x_{1} x_{2}-6 x_{2} x_{3}+2 x_{1} x_{3}$.

The form $Q=a_{1} y_{1}^{2}+a_{2} y_{2}^{2}+\cdots+a_{n} y_{n}^{2}$, where $y_{1}, y_{2}, \ldots, y_{n}$ are new unknowns, are called canonical
2. [3 points] Find a basis in which the quadratic form on \mathbb{R}^{2}

$$
Q(x)=x_{1}^{2}-3 x_{2}^{2}-2 x_{1} x_{2}
$$

has a normal form.
The form from Th. 14.5 is called normal
3. [$\mathbf{3}$ points] For which value of λ is the following quadratic form on \mathbb{R}^{3} positive definite?

$$
Q(x)=4 x_{1}^{2}+2 x_{2}^{2}+\lambda x_{3}^{2}+4 x_{1} x_{2}+2 x_{1} x_{3} .
$$

4. $[\mathbf{2}+\mathbf{2}+\mathbf{2}$ points $]$ Consider the following set D. What are the limit points of D ? Is D open? Is it closed? Is it bounded?
a) $D=\left\{\frac{1}{n}: n \in \mathbb{N}\right\} \cup\{0\}$ as a subset of \mathbb{R};
b) $D=[0,1)^{2}=\left\{(x, y) \in \mathbb{R}^{2}: x, y \in[0,1)\right\}$ as a subset of \mathbb{R}^{2};
c) $D=\left\{(x, y) \in \mathbb{R}^{2}: x<y\right\}$ as a subset of \mathbb{R}^{2}.
5. [3 points] Let A_{1}, A_{2} be closed sets in \mathbb{R}^{d}. Using the definition of close set show that $A_{1} \cap A_{2}$ and $A_{1} \cup A_{2}$ are close.
6. [4 points] Show that $\overline{\bar{A}}=\bar{A}$.
(Here \bar{A} denotes the closure of A.)
