Problem sheet 8

Tutorials by Ikhwan Khalid ikhwankhalid92@gmail.com and Mahsa Sayyarymahsa.sayyary@mis.mpg.de. Solutions will be collected during the lecture on Wednesday June 5.

1. $[\mathbf{2}+\mathbf{3}$ points $]$ Let $\mathbb{R}_{2}[x]$ denote the space of polynomials over \mathbb{R} of degree at most two with the inner product

$$
\langle p, q\rangle=\int_{0}^{1} p(x) q(x) d x .
$$

Show that the map $f: \mathbb{R}_{2}[x] \rightarrow \mathbb{R}$ is a linear functional on $\mathbb{R}_{2}[x]$ and find a polynomial $q \in \mathbb{R}_{2}[x]$ such that $f(p)=\langle p, q\rangle$, if a) $f(p)=p(0)$, b) $f(p)=\int_{0}^{2} p(x) d x$
(Hint: Use the proof of the Riesz representation theorem and the orthonormal basis from Ex. 2, Problem sheet 7)
2. [2 points] Let V be the space \mathbb{C}^{2} with the standard inner product. Let T be the linear operator defined by $T e_{1}=(1,-2), T e_{2}=(i,-1)$, where $e_{1}=(1,0), e_{2}=(0,1)$. If $v=\left(z_{1}, z_{2}\right)$, find $T^{*} v$.
3. [$\mathbf{3}$ points] Let V be an inner product space and u, w be fixed vectors in V. Show that $T v=$ $\langle v, u\rangle w$ defines a linear operator in V. Show that T has an adjoint, and describe T^{*} explicitly.
4. [3 points] Let V be a finite-dimensional inner product space over \mathbb{F}. Prove that $T \in \mathcal{L}(V)$ is an orthogonal projection if and only if $T^{2}=T$ and T is self-adjoint.
5. [4 points] Show that the matrix

$$
A=\left(\begin{array}{cc}
4 & 1-i \\
1+i & 5
\end{array}\right)
$$

is self-adjoint and find a unitary matrix U such that $U^{-1} A U$ is diagonal. Compute e^{A}.
6. [4 points] Let T be a normal operator on an inner product space V over \mathbb{F}.
a) Prove the identity $\langle T v-a v, T v-a v\rangle=\left\langle T^{*} v-\bar{a} v, T^{*} v-\bar{a} v\right\rangle$ for all $v \in V$ and $a \in \mathbb{F}$.
b) Infer that if λ is an eigenvalue of T with corresponding eigenvector u, then $\bar{\lambda}$ is an eigenvalue of T^{*} with the same corresponding eigenvector u.
7. [3 points] Prove that a real symmetric matrix A has a real symmetric cube root, i.e. there exists a real symmetric matrix B such that $B^{3}=A$.

