

Problem sheet 8

Tutorials by Ikhwan Khalid <ikhwankhalid92@gmail.com> and Mahsa Sayyary <mahsa.sayyary@mis.mpg.de>. Solutions will be collected during the lecture on Wednesday June 5.

1. [2+3 points] Let $\mathbb{R}_2[x]$ denote the space of polynomials over \mathbb{R} of degree at most two with the inner product

$$\langle p,q\rangle = \int_0^1 p(x)q(x)dx.$$

Show that the map $f : \mathbb{R}_2[x] \to \mathbb{R}$ is a linear functional on $\mathbb{R}_2[x]$ and find a polynomial $q \in \mathbb{R}_2[x]$ such that $f(p) = \langle p, q \rangle$, if a) f(p) = p(0), b) $f(p) = \int_0^2 p(x) dx$

(*Hint:* Use the proof of the Riesz representation theorem and the orthonormal basis from Ex. 2, Problem sheet 7)

- 2. [2 points] Let V be the space \mathbb{C}^2 with the standard inner product. Let T be the linear operator defined by $Te_1 = (1, -2)$, $Te_2 = (i, -1)$, where $e_1 = (1, 0)$, $e_2 = (0, 1)$. If $v = (z_1, z_2)$, find T^*v .
- 3. [3 points] Let V be an inner product space and u, w be fixed vectors in V. Show that $Tv = \langle v, u \rangle w$ defines a linear operator in V. Show that T has an adjoint, and describe T^* explicitly.
- 4. [3 points] Let V be a finite-dimensional inner product space over \mathbb{F} . Prove that $T \in \mathcal{L}(V)$ is an orthogonal projection if and only if $T^2 = T$ and T is self-adjoint.
- 5. [4 points] Show that the matrix

$$A = \left(\begin{array}{cc} 4 & 1-i \\ 1+i & 5 \end{array}\right)$$

is self-adjoint and find a unitary matrix U such that $U^{-1}AU$ is diagonal. Compute e^A .

- 6. [4 points] Let T be a normal operator on an inner product space V over \mathbb{F} .
 - a) Prove the identity $\langle Tv av, Tv av \rangle = \langle T^*v \bar{a}v, T^*v \bar{a}v \rangle$ for all $v \in V$ and $a \in \mathbb{F}$.
 - b) Infer that if λ is an eigenvalue of T with corresponding eigenvector u, then $\overline{\lambda}$ is an eigenvalue of T^* with the same corresponding eigenvector u.
- 7. [3 points] Prove that a real symmetric matrix A has a real symmetric cube root, i.e. there exists a real symmetric matrix B such that $B^3 = A$.