Problem sheet 7

Tutorials by Ikhwan Khalid ikhwankhalid92@gmail.com and Mahsa Sayyarymahsa.sayyary@mis.mpg.de. Solutions will be collected during the lecture on Friday May 31.

1. [3 points] Consider the vector space $\mathrm{C}([-\pi, \pi])$ of continuous function from $[-\pi, \pi]$ to \mathbb{R} with the inner product

$$
\langle f, g\rangle=\int_{-\pi}^{\pi} f(x) g(x) d x, \quad f, g \in \mathrm{C}([-\pi, \pi])
$$

Check that for any positive $n \in \mathbb{N}$ the vectors

$$
\frac{1}{\sqrt{2 \pi}}, \frac{\sin x}{\sqrt{\pi}}, \frac{\sin 2 x}{\sqrt{\pi}}, \ldots, \frac{\sin n x}{\sqrt{\pi}}, \frac{\cos x}{\sqrt{\pi}}, \frac{\sin 2 x}{\sqrt{\pi}}, \ldots, \frac{\cos n x}{\sqrt{\pi}}
$$

are orthonormal.
2. [4 points] Let $\mathbb{R}_{2}[x]$ be the space of polynomials over \mathbb{R} of degree at most two with the inner product

$$
\langle p, q\rangle=\int_{0}^{1} p(x) q(x) d x, \quad p, q \in \mathbb{R}_{2}[x] .
$$

Apply the Gram-Schmidt procedure to the standard basis $1, x, x^{2}$ in $\mathbb{R}_{2}[x]$ in order to produce an orthonormal basis in $\mathbb{R}_{2}[x]$. Find the projection of x^{2} onto the subspace $\mathbb{R}_{1}[x]$ of polynomials of degree at most one.
3. [3 points] Prove that

$$
\left\langle\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right\rangle=x_{1} y_{1}-x_{1} y_{2}-x_{2} y_{1}+2 x_{2} y_{2}
$$

is an inner product in \mathbb{R}^{2}. Notice that $(1,0)$ and $(0,1)$ are not orthogonal with respect to this inner product. Find an orthonormal basis using Gram-Schmidt orthogonalisation procedure.
4. [3 points] Let $U=\left\{v=\left(x_{1}, x_{2}, x_{3}, x_{4}\right): x_{1}+2 x_{2}+x_{3}+x_{4}=0, x_{2}-x_{4}=0\right\}$ be a subspace of \mathbb{R}^{4}. Find U^{\perp}.
5. [2 points] Let P_{U} be a projection in a vector space V onto a subspace U of V. Find ker P_{U} and range P_{U}.
6. [4 points] Let V be a finite-dimensional inner product space over \mathbb{F}. Show that $P \in \mathcal{L}(V)$ is an orthonormal projection if and only if it satisfies the following properties
a) for every $v \in V, P(P v)=P v$, i.e. $P^{2}=P$;
b) for all $u \in \operatorname{ker} P$ and $v \in \operatorname{range} P,\langle u, v\rangle=0$.
7. [4 points] Let $U=\{u=(x, y, z): x+y+z=0\}$ be a plane in \mathbb{R}^{3}. Find an orthonormal basis e_{1}, e_{2} in U and compute the projection of any vector $v=(x, y, z)$ onto U as

$$
P_{U}(v)=\left\langle v, e_{1}\right\rangle e_{1}+\left\langle v, e_{2}\right\rangle e_{2} .
$$

Compute the distance of the point (x, y, z) to the plane U.

