Problem sheet 6

Tutorials by Ikhwan Khalid ikhwankhalid92@gmail.com and Mahsa Sayyarymahsa.sayyary@mis.mpg.de. Solutions will be collected during the lecture on Monday May 27.

1. $[\mathbf{2}+\mathbf{3}$ points] Find the eigenvalues and the eigenvectors of linear maps specified in some basis on a real vector space by the following matrices:

$$
\text { a) } \left.\left(\begin{array}{rrr}
2 & -1 & 2 \\
5 & -3 & 3 \\
-1 & 0 & -2
\end{array}\right) ; \quad b\right)\left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) .
$$

2. $[\mathbf{2}+\mathbf{4}+\mathbf{2}$ points] Determine which of the following matrices of linear maps on a real vector space can be reduced to diagonal form by going over to a new basis. Find that basis and the corresponding matrix:

$$
\text { a) } \left.\left(\begin{array}{rr}
1 & 1 \\
-1 & 1
\end{array}\right) ; \quad b\right)\left(\begin{array}{rrrr}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right) \text {. }
$$

c) Find a matrix Q such that the matrix $Q^{-1} A Q$ has a diagonal form, where A is the matrix from b).
3. [2 points] Let i, j, k be an orthonormal basis with right-hand orientation. Let u and v are vectors with coordinates $(1,2,1)$ and $(1,0,1)$ in this basis, respectively. Compute $u \cdot v$ and $u \times v$.
4. [2 points] Show that the function $\langle\cdot, \cdot\rangle: \mathrm{C}([0,1]) \times \mathrm{C}([0,1]) \rightarrow \mathrm{C}([0,1])$ defined as

$$
\langle f, g\rangle=\int_{0}^{1} f(x) g(x) d x, \quad f, g \in \mathrm{C}([0,1]),
$$

is an inner product on $\mathrm{C}([0,1])$.
5. [3 points] Let the functions $\|\cdot\|_{1}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and $\|\cdot\|_{\infty}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined for any vector $(x, y) \in \mathbb{R}^{2}$ as

$$
\begin{aligned}
\|(x, y)\|_{1} & =|x|+|y|, \\
\|(x, y)\|_{\infty} & =\max \{|x|,|y|\} .
\end{aligned}
$$

Prove that $\|\cdot\|_{1}$ and $\|\cdot\|_{\infty}$ are norms.
6. [2 points] Prove that for any real numbers $x_{1}, x_{2}, \ldots, x_{n}$,

$$
\left(x_{1}+\cdots+x_{n}\right)^{2} \leq n\left(x_{1}^{2}+\cdots+x_{n}^{2}\right) .
$$

(Hint: Use the Cauchy-Schwarz Inequality)
7. $[2+3$ points] a) Let $u, v \in V$ be orthogonal, i.e. $\langle u, v\rangle=0$, and let $\|u\|=\sqrt{\langle u, u\rangle}$ as usual. Prove that

$$
\|u+v\|^{2}=\|u\|^{2}+\|v\|^{2} . \quad \text { Pythagoras Theorem }
$$

b) Prove that for any $u, v \in V$

$$
\|u+v\|^{2}+\|u-v\|^{2}=2\left(\|u\|^{2}+\|v\|^{2}\right) . \quad \text { Parallelogram law }
$$

