

Problem sheet 6

Tutorials by Ikhwan Khalid <ikhwankhalid92@gmail.com> and Mahsa Sayyary <mahsa.sayyary@mis.mpg.de>. Solutions will be collected during the lecture on Monday May 27.

1. [2+3 points] Find the eigenvalues and the eigenvectors of linear maps specified in some basis on a real vector space by the following matrices:

$$a) \quad \left(\begin{array}{rrrrr} 2 & -1 & 2 \\ 5 & -3 & 3 \\ -1 & 0 & -2 \end{array}\right); \quad b) \quad \left(\begin{array}{rrrrr} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right).$$

2. [2+4+2 points] Determine which of the following matrices of linear maps on a real vector space can be reduced to diagonal form by going over to a new basis. Find that basis and the corresponding matrix:

a)
$$\begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$$
; b) $\begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$.

c) Find a matrix Q such that the matrix $Q^{-1}AQ$ has a diagonal form, where A is the matrix from b).

- 3. [2 points] Let i, j, k be an orthonormal basis with right-hand orientation. Let u and v are vectors with coordinates (1, 2, 1) and (1, 0, 1) in this basis, respectively. Compute $u \cdot v$ and $u \times v$.
- 4. [2 points] Show that the function $\langle \cdot, \cdot \rangle : C([0,1]) \times C([0,1]) \to C([0,1])$ defined as

$$\langle f,g \rangle = \int_0^1 f(x)g(x)dx, \quad f,g \in \mathcal{C}\left([0,1]\right),$$

is an inner product on C([0, 1]).

5. [3 points] Let the functions $\|\cdot\|_1 : \mathbb{R}^2 \to \mathbb{R}$ and $\|\cdot\|_\infty : \mathbb{R}^2 \to \mathbb{R}$ be defined for any vector $(x, y) \in \mathbb{R}^2$ as

$$||(x, y)||_1 = |x| + |y|,$$

$$||(x, y)||_{\infty} = \max\{|x|, |y|\}.$$

Prove that $\|\cdot\|_1$ and $\|\cdot\|_\infty$ are norms.

6. [2 points] Prove that for any real numbers x_1, x_2, \ldots, x_n ,

$$(x_1 + \dots + x_n)^2 \le n (x_1^2 + \dots + x_n^2).$$

(*Hint:* Use the Cauchy-Schwarz Inequality)

7. [2+3 points] a) Let $u, v \in V$ be orthogonal, i.e. $\langle u, v \rangle = 0$, and let $||u|| = \sqrt{\langle u, u \rangle}$ as usual. Prove that

 $||u + v||^2 = ||u||^2 + ||v||^2$. Pythagoras Theorem

b) Prove that for any $u, v \in V$

$$||u+v||^2 + ||u-v||^2 = 2(||u||^2 + ||v||^2)$$
. Parallelogram law