Problem sheet 5

Tutorials by Ikhwan Khalid ikhwankhalid92@gmail.com and Mahsa Sayyarymahsa.sayyary@mis.mpg.de. Solutions will be collected during the lecture on Monday May 13.

1. [4 points] Using Cramer's rule, solve the following system of linear equations:

$$
\begin{cases}2 x_{1}+2 x_{2}-x_{3}+x_{4} & =4 \\ 4 x_{1}+3 x_{2}-x_{3}+2 x_{4} & =6 \\ 8 x_{1}+5 x_{2}-3 x_{3}+4 x_{4} & =12 \\ 3 x_{1}+3 x_{2}-2 x_{3}+2 x_{4} & =6\end{cases}
$$

2. $[\mathbf{2}+\mathbf{3}$ points $]$ Find the inverse matrices for

$$
\text { a) } \left.\left(\begin{array}{rr}
3 & 4 \\
5 & 7
\end{array}\right) ; \quad b\right)\left(\begin{array}{rrr}
1 & 2 & 2 \\
2 & 1 & -2 \\
2 & -2 & 1
\end{array}\right) .
$$

via the computation of $i-j$ cofactors.
3. [2 points] Let e_{1}, e_{2}, e_{3} be a standard basis of \mathbb{R}^{3} and $x=(6,2,-7)_{e}$. Show that

$$
e_{1}^{\prime}=(2,1,-3), \quad e_{2}^{\prime}=(3,2,-5), \quad e_{3}^{\prime}=(1,-1,1)
$$

if a basis and find the coordinates of x in this basis.
4. [3 points] Find the change-of-basis matrix from the basis

$$
e_{1}=(1,2,1), \quad e_{2}=(2,3,3), \quad e_{3}=(3,7,1)
$$

to

$$
e_{1}^{\prime}=(3,1,4), \quad e_{2}^{\prime}=(5,2,1), \quad e_{3}^{\prime}=(1,1,-6) .
$$

5. [3 points] Let T be a linear map from V to W such that its matrix in the bases e_{1}, e_{2}, e_{3} of V and $\varepsilon_{1}, \varepsilon_{2}$ of W is

$$
\left(\begin{array}{ccc}
0 & -1 & 2 \\
3 & -4 & 5
\end{array}\right) .
$$

Find the matrix of T in the bases $e_{1}^{\prime}=e_{1}, \quad e_{2}^{\prime}=e_{1}+e_{2}, \quad e_{3}^{\prime}=e_{1}+e_{2}-e_{3}$ of V and $\varepsilon_{1}^{\prime}=\varepsilon_{1}, \quad \varepsilon_{2}^{\prime}=\varepsilon_{1}-\varepsilon_{2}$ of W.
6. [4 points] Let T be a linear map from $\mathbb{R}_{3}[z]$ to $\mathbb{R}_{2}[z]$ defined as $(T p)(z)=p^{\prime}(z)$. Find the matrix of T in the basis:
a) $p_{0}(z)=1, \quad p_{1}(z)=z, p_{2}(z)=z^{2}, \quad p_{3}(z)=z^{3}$ in $\mathbb{R}_{3}[z]$ and $r_{0}(z)=1, \quad r_{1}(z)=z, r_{2}(z)=z^{2}$ in $\mathbb{R}_{2}[z]$;
b) $q_{0}(z)=1, \quad q_{1}(z)=z-t, \quad q_{2}(z)=(z-t)^{2}, \quad q_{3}(z)=(z-t)^{3}$ in $\mathbb{R}_{3}[z]$ and $l_{0}(z)=1, \quad l_{1}(z)=$ $z-s, \quad l_{2}(z)=(z-s)^{2}$ in $\mathbb{R}_{2}[z]$, where t and s are real numbers.
Find coordinates of $T p$ in the basis l_{0}, l_{1}, l_{2} (if p is written in the basis q_{0}, \ldots, q_{3}).
7. [3 points] Let T be a linear transformation in \mathbb{R}^{2} with the matrix $\left(\begin{array}{cc}2 & -1 \\ 5 & -3\end{array}\right)$ in the basis $e_{1}=(1,2), \quad e_{2}=(2,3)$ and let S be a linear transformation in \mathbb{R}^{2} with the matrix $\left(\begin{array}{ll}4 & 6 \\ 6 & 9\end{array}\right)$ in the basis $e_{1}^{\prime}=(3,1), \quad e_{2}^{\prime}=(4,2)$. Find the matrix of $T+S$ in the basis $e_{1}^{\prime}, e_{2}^{\prime}$.

