

Problem sheet 5

Tutorials by Ikhwan Khalid <ikhwankhalid92@gmail.com> and Mahsa Sayyary <mahsa.sayyary@mis.mpg.de>. Solutions will be collected during the lecture on Monday May 13.

1. [4 points] Using Cramer's rule, solve the following system of linear equations:

$$\begin{cases} 2x_1 + 2x_2 - x_3 + x_4 &= 4, \\ 4x_1 + 3x_2 - x_3 + 2x_4 &= 6, \\ 8x_1 + 5x_2 - 3x_3 + 4x_4 &= 12, \\ 3x_1 + 3x_2 - 2x_3 + 2x_4 &= 6. \end{cases}$$

2. [2+3 points] Find the inverse matrices for

a)
$$\begin{pmatrix} 3 & 4 \\ 5 & 7 \end{pmatrix}$$
; b) $\begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{pmatrix}$.

via the computation of i - j cofactors.

3. [2 points] Let e_1, e_2, e_3 be a standard basis of \mathbb{R}^3 and $x = (6, 2, -7)_e$. Show that

 $e'_1 = (2, 1, -3), e'_2 = (3, 2, -5), e'_3 = (1, -1, 1)$

if a basis and find the coordinates of x in this basis.

4. [3 points] Find the change-of-basis matrix from the basis

$$e_1 = (1, 2, 1), e_2 = (2, 3, 3), e_3 = (3, 7, 1)$$

 to

$$e_1' = (3, 1, 4), \quad e_2' = (5, 2, 1), \quad e_3' = (1, 1, -6).$$

5. [3 points] Let T be a linear map from V to W such that its matrix in the bases e_1, e_2, e_3 of V and $\varepsilon_1, \varepsilon_2$ of W is

$$\left(\begin{array}{rrr} 0 & -1 & 2 \\ 3 & -4 & 5 \end{array}\right).$$

Find the matrix of T in the bases $e'_1 = e_1$, $e'_2 = e_1 + e_2$, $e'_3 = e_1 + e_2 - e_3$ of V and $\varepsilon'_1 = \varepsilon_1$, $\varepsilon'_2 = \varepsilon_1 - \varepsilon_2$ of W.

6. [4 points] Let T be a linear map from $\mathbb{R}_3[z]$ to $\mathbb{R}_2[z]$ defined as (Tp)(z) = p'(z). Find the matrix of T in the basis:

a) $p_0(z) = 1$, $p_1(z) = z$, $p_2(z) = z^2$, $p_3(z) = z^3$ in $\mathbb{R}_3[z]$ and $r_0(z) = 1$, $r_1(z) = z$, $r_2(z) = z^2$ in $\mathbb{R}_2[z]$; b) $q_0(z) = 1$, $q_1(z) = z - t$, $q_2(z) = (z - t)^2$, $q_3(z) = (z - t)^3$ in $\mathbb{R}_3[z]$ and $l_0(z) = 1$, $l_1(z) = z - s$, $l_2(z) = (z - s)^2$ in $\mathbb{R}_2[z]$, where t and s are real numbers.

Find coordinates of Tp in the basis l_0, l_1, l_2 (if p is written in the basis q_0, \ldots, q_3).

7. [3 points] Let T be a linear transformation in \mathbb{R}^2 with the matrix $\begin{pmatrix} 2 & -1 \\ 5 & -3 \end{pmatrix}$ in the basis $e_1 = (1,2), e_2 = (2,3)$ and let S be a linear transformation in \mathbb{R}^2 with the matrix $\begin{pmatrix} 4 & 6 \\ 6 & 9 \end{pmatrix}$ in the basis $e'_1 = (3,1), e'_2 = (4,2)$. Find the matrix of T + S in the basis e'_1, e'_2 .