

Problem sheet 3

Tutorials by Ikhwan Khalid <ikhwankhalid92@gmail.com> and Mahsa Sayyary <mahsa.sayyary@mis.mpg.de>. Solutions will be collected during the lecture on Monday April 29.

1. [2 points] Compute the rank of the following matrix:

2. [2 points] Are the vectors

$$\alpha_1 = (1, 1, 2, 4), \quad \alpha_2 = (2, -1, -5, 2),
\alpha_3 = (1, -1, -4, 0), \quad \alpha_4 = (2, 1, 1, 6)$$

linearly independent in \mathbb{R}^4 ?

3. [3 points] Let

$$\alpha_1 = (1, 1, -2, 1), \quad \alpha_2 = (3, 0, 4, -1), \quad \alpha_3 = (-1, 2, 5, 2)$$

and let also

$$\alpha = (4, -5, 9, -7), \quad \beta = (3, 1, -4, 4), \quad \gamma = (-1, 1, 0, 1).$$

Which of the vectors α , β , γ belong to the subspace of \mathbb{R}^4 spanned by the vectors α_i , i = 1, 2, 3.

4. [2+2+2 points] Let V be the real vector space spanned by the rows of the matrix

$$A = \begin{pmatrix} 3 & 21 & 0 & 9 & 0 \\ 1 & 7 & -1 & -2 & -1 \\ 2 & 14 & 0 & 6 & 1 \\ 6 & 42 & -1 & 13 & 0 \end{pmatrix}$$

- a) Find a basis for V.
- b) Which vectors $(x_1, x_2, x_3, x_4, x_5)$ are elements of V.
- c) If $(x_1, x_2, x_3, x_4, x_5)$ is in V what are its coordinates in the basis chosen in part a)?
- 5. [1+2+1 points] Let T be the linear transformation from \mathbb{R}^3 into \mathbb{R}^2 defined by

$$T(x_1, x_2, x_3) = (x_1 + x_2, 2x_3 - x_1)$$

a) If e_1, e_2, e_3 is the standard basis for \mathbb{R}^3 and e'_1, e'_2 is the standard basis for \mathbb{R}^2 , what is the matrix of T relative to the bases e_1, e_2, e_3 and e'_1, e'_2 ? b) If $\alpha_1 = (1, 0, -1), \alpha_2 = (1, 1, 1), \alpha_3 = (1, 0, 0), \beta_1 = (1, 1), \beta_2 = (1, 0)$, what is the matrix of T relative to the bases $\alpha_1, \alpha_2, \alpha_3$ and β_1, β_2 ?

- c) Compute the rank of T.
- 6. [2 points] Let T be the linear operator on \mathbb{R}^3 , the matrix of which in the standard basis is

$$A = \left(\begin{array}{rrr} 1 & 2 & 1 \\ 0 & 1 & 1 \\ -1 & 3 & 4 \end{array} \right).$$

Find a basis for range T and a basis for ker T.

7. [2 points] Find the fundamental system of solutions to the system

$$\begin{cases} 2x_1 - x_2 + 3x_3 + 2x_4 + x_5 &= 0\\ x_1 + 4x_2 - x_4 + 3x_5 &= 0\\ 2x_1 + 6x_2 - x_3 + 5x_4 &= 0\\ 5x_1 + 9x_2 + 2x_3 + 6x_4 + 4x_5 &= 0. \end{cases}$$

8. [3 points] Find solutions to the system of linear equations

$$\begin{cases} x_1 - x_2 + 2x_3 - x_4 + 2x_5 &= 1\\ -x_2 + x_3 - 3x_5 + x_6 &= 2\\ 3x_1 + x_2 + 2x_3 + x_4 - x_5 + 2x_6 &= -1\\ 2x_1 + 3x_2 - x_3 + 2x_4 + x_6 &= -4 \end{cases}$$