Problem sheet 3

Tutorials by Ikhwan Khalid ikhwankhalid92@gmail.com and Mahsa Sayyarymahsa.sayyary@mis.mpg.de. Solutions will be collected during the lecture on Monday April 29.

1. [$\mathbf{2}$ points] Compute the rank of the following matrix:

$$
\left(\begin{array}{ccccc}
8 & 2 & 2 & -1 & 1 \\
1 & 7 & 4 & -2 & 5 \\
-2 & 4 & 2 & -1 & 3
\end{array}\right)
$$

2. [2 points] Are the vectors

$$
\begin{aligned}
& \alpha_{1}=(1,1,2,4), \quad \alpha_{2}=(2,-1,-5,2), \\
& \alpha_{3}=(1,-1,-4,0), \quad \alpha_{4}=(2,1,1,6)
\end{aligned}
$$

linearly independent in \mathbb{R}^{4} ?
3. [3 points] Let

$$
\alpha_{1}=(1,1,-2,1), \quad \alpha_{2}=(3,0,4,-1), \quad \alpha_{3}=(-1,2,5,2)
$$

and let also

$$
\alpha=(4,-5,9,-7), \quad \beta=(3,1,-4,4), \quad \gamma=(-1,1,0,1) .
$$

Which of the vectors α, β, γ belong to the subspace of \mathbb{R}^{4} spanned by the vectors $\alpha_{i}, i=1,2,3$.
4. $[\mathbf{2}+\mathbf{2}+\mathbf{2}$ points $]$ Let V be the real vector space spanned by the rows of the matrix

$$
A=\left(\begin{array}{ccccc}
3 & 21 & 0 & 9 & 0 \\
1 & 7 & -1 & -2 & -1 \\
2 & 14 & 0 & 6 & 1 \\
6 & 42 & -1 & 13 & 0
\end{array}\right)
$$

a) Find a basis for V.
b) Which vectors $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)$ are elements of V.
c) If ($\left.x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)$ is in V what are its coordinates in the basis chosen in part a)?
5. $[\mathbf{1}+\mathbf{2}+\mathbf{1}$ points $]$ Let T be the linear transformation from \mathbb{R}^{3} into \mathbb{R}^{2} defined by

$$
T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}+x_{2}, 2 x_{3}-x_{1}\right) .
$$

a) If e_{1}, e_{2}, e_{3} is the standard basis for \mathbb{R}^{3} and $e_{1}^{\prime}, e_{2}^{\prime}$ is the standard basis for \mathbb{R}^{2}, what is the matrix of T relative to the bases e_{1}, e_{2}, e_{3} and $e_{1}^{\prime}, e_{2}^{\prime}$?
b) If $\alpha_{1}=(1,0,-1), \alpha_{2}=(1,1,1), \alpha_{3}=(1,0,0), \beta_{1}=(1,1), \beta_{2}=(1,0)$, what is the matrix of T relative to the bases $\alpha_{1}, \alpha_{2}, \alpha_{3}$ and β_{1}, β_{2} ?
c) Compute the rank of T.
6. [$\mathbf{2}$ points] Let T be the linear operator on \mathbb{R}^{3}, the matrix of which in the standard basis is

$$
A=\left(\begin{array}{ccc}
1 & 2 & 1 \\
0 & 1 & 1 \\
-1 & 3 & 4
\end{array}\right)
$$

Find a basis for range T and a basis for $\operatorname{ker} T$.
7. [2 points] Find the fundamental system of solutions to the system

$$
\begin{cases}2 x_{1}-x_{2}+3 x_{3}+2 x_{4}+x_{5} & =0 \\ x_{1}+4 x_{2}-x_{4}+3 x_{5} & =0 \\ 2 x_{1}+6 x_{2}-x_{3}+5 x_{4} & =0 \\ 5 x_{1}+9 x_{2}+2 x_{3}+6 x_{4}+4 x_{5} & =0\end{cases}
$$

8. [$\mathbf{3}$ points] Find solutions to the system of linear equations

$$
\begin{cases}x_{1}-x_{2}+2 x_{3}-x_{4}+2 x_{5} & =1 \\ -x_{2}+x_{3}-3 x_{5}+x_{6} & =2 \\ 3 x_{1}+x_{2}+2 x_{3}+x_{4}-x_{5}+2 x_{6} & =-1 \\ 2 x_{1}+3 x_{2}-x_{3}+2 x_{4}+x_{6} & =-4 .\end{cases}
$$

