

Problem sheet 2

Tutorials by Ikhwan Khalid <ikhwankhalid92@gmail.com> and Mahsa Sayyary <mahsa.sayyary@mis.mpg.de>. Solutions will be collected during the lecture on Wednesday April 24.

- 1. [1 point] Which vectors in \mathbb{C}^3 are linear combinations of (0, 1, 1) and (1, 1, 1)?
- 2. [3 points] Show that the vectors

$$v_1 = (1, 0, -1), \quad v_2 = (1, 2, 1), \quad v_3 = (0, -3, 2)$$

form a basis for \mathbb{R}^3 . Express each of the standard basis vector e_i , i = 1, 2, 3, as linear combinations of v_1, v_2, v_3 .

- 3. [2 points] Find three vectors in \mathbb{R}^3 which are linearly dependent and are such that any two of them are linearly independent.
- 4. [2 points] Is the vector (3, -1, 0, -1) in \mathbb{R}^4 spanned by the vectors (2, -1, 3, 2), (-1, 1, 1, -3) and (1, 1, 9, -5)?
- 5. [3 points] Let $t \in \mathbb{R}$ be fixed. We consider a basis

$$q_0(z) = 1, \quad q_1(z) = z - t, \quad q_2(z) = (z - t)^2, \dots, \quad q_n(z) = (z - t)^n$$

in $\mathbb{R}_n[z]$. What are the coordinates of $p \in \mathbb{R}_n[z]$ in the basis q_0, q_1, \ldots, q_n . In particular, compute the coordinates of the polynomial $p(z) = z^n$.

(*Hint:* Use the Taylor's formula for polynomials)

- 6. [3 points] Let V and W be a vector spaces over \mathbb{F} and $T \in \mathcal{L}(V, W)$ be invertible. Prove that T^{-1} is also linear map from W to V.
- 7. [2+2 points] a) Prove that the set of matrices

$$\mathcal{M} = \left\{ \left(\begin{array}{cc} x & y \\ -y & x \end{array} \right) : \ x, y \in \mathbb{R} \right\}$$

is a vector subspace of $\mathbb{R}^{2\times 2}$ which is additionally closed under the matrix multiplication, that is, if $A, B \in \mathcal{M}$ then $A \cdot B \in \mathcal{M}$.

b) Prove that \mathcal{M} is isomorphic to the vector space of complex numbers over \mathbb{R} and the isomorphism $T: \mathcal{M} \to \mathbb{C}$ additionally satisfies

$$T(A \cdot B) = T(A) \cdot T(B)$$

for any $A, B \in \mathcal{M}$, with matrix multiplication on the left-hand side and the usual complex multiplication on the right-hand side.

8. [2+2 points] For each of the two matrices

$$\left(\begin{array}{rrrr} 2 & 5 & -1 \\ 4 & -1 & 2 \\ 6 & 4 & 1 \end{array}\right), \quad \left(\begin{array}{rrrr} 1 & -1 & 2 \\ 3 & 2 & 4 \\ 0 & 1 & -2 \end{array}\right)$$

use elementary row operations to discover whether it is invertible, and to find the inverse in case it is.

9. [2 points] Let T be a linear operator on \mathbb{R}^3 defined by

$$T(x_1, x_2, x_3) = (3x_1, x_1 - x_2, 2x_1 + x_2 + x_3).$$

Is T invertible? If so, find the rule for T^{-1} like the one which defines T.

10. [2 points] Let V and W be vector spaces over \mathbb{F} and let S be an isomorphism of V onto W (i.e. $S \in \mathcal{L}(V, W)$ and S is invertible). Prove that the map

 $T \mapsto STS^{-1}$

is an isomorphism of $\mathcal{L}(V, V)$ onto $\mathcal{L}(W, W)$.