Problem sheet 2

Tutorials by Ikhwan Khalid ikhwankhalid92@gmail.com and Mahsa Sayyarymahsa.sayyary@mis.mpg.de. Solutions will be collected during the lecture on Wednesday April 24.

1. [1 point] Which vectors in \mathbb{C}^{3} are linear combinations of $(0,1,1)$ and $(1,1,1)$?
2. [3 points] Show that the vectors

$$
v_{1}=(1,0,-1), \quad v_{2}=(1,2,1), \quad v_{3}=(0,-3,2)
$$

form a basis for \mathbb{R}^{3}. Express each of the standard basis vector $e_{i}, i=1,2,3$, as linear combinations of v_{1}, v_{2}, v_{3}.
3. [2 points] Find three vectors in \mathbb{R}^{3} which are linearly dependent and are such that any two of them are linearly independent.
4. [2 points] Is the vector $(3,-1,0,-1)$ in \mathbb{R}^{4} spanned by the vectors $(2,-1,3,2),(-1,1,1,-3)$ and $(1,1,9,-5)$?
5. [3 points] Let $t \in \mathbb{R}$ be fixed. We consider a basis

$$
q_{0}(z)=1, \quad q_{1}(z)=z-t, \quad q_{2}(z)=(z-t)^{2}, \ldots, \quad q_{n}(z)=(z-t)^{n}
$$

in $\mathbb{R}_{n}[z]$. What are the coordinates of $p \in \mathbb{R}_{n}[z]$ in the basis $q_{0}, q_{1}, \ldots, q_{n}$. In particular, compute the coordinates of the polynomial $p(z)=z^{n}$.
(Hint: Use the Taylor's formula for polynomials)
6. [3 points] Let V and W be a vector spaces over \mathbb{F} and $T \in \mathcal{L}(V, W)$ be invertible. Prove that T^{-1} is also linear map from W to V.
7. $[2+2$ points $]$ a) Prove that the set of matrices

$$
\mathcal{M}=\left\{\left(\begin{array}{cc}
x & y \\
-y & x
\end{array}\right): x, y \in \mathbb{R}\right\}
$$

is a vector subspace of $\mathbb{R}^{2 \times 2}$ which is additionally closed under the matrix multiplication, that is, if $A, B \in \mathcal{M}$ then $A \cdot B \in \mathcal{M}$.
b) Prove that \mathcal{M} is isomorphic to the vector space of complex numbers over \mathbb{R} and the isomorphism $T: \mathcal{M} \rightarrow \mathbb{C}$ additionally satisfies

$$
T(A \cdot B)=T(A) \cdot T(B)
$$

for any $A, B \in \mathcal{M}$, with matrix multiplication on the left-hand side and the usual complex multiplication on the right-hand side.
8. $[2+2$ points $]$ For each of the two matrices

$$
\left(\begin{array}{ccc}
2 & 5 & -1 \\
4 & -1 & 2 \\
6 & 4 & 1
\end{array}\right), \quad\left(\begin{array}{ccc}
1 & -1 & 2 \\
3 & 2 & 4 \\
0 & 1 & -2
\end{array}\right)
$$

use elementary row operations to discover whether it is invertible, and to find the inverse in case it is.
9. [2 points] Let T be a linear operator on \mathbb{R}^{3} defined by

$$
T\left(x_{1}, x_{2}, x_{3}\right)=\left(3 x_{1}, x_{1}-x_{2}, 2 x_{1}+x_{2}+x_{3}\right) .
$$

Is T invertible? If so, find the rule for T^{-1} like the one which defines T.
10. [2 points] Let V and W be vector spaces over \mathbb{F} and let S be an isomorphism of V onto W (i.e. $S \in \mathcal{L}(V, W)$ and S is invertible). Prove that the map

$$
T \mapsto S T S^{-1}
$$

is an isomorphism of $\mathcal{L}(V, V)$ onto $\mathcal{L}(W, W)$.

