Problem sheet 14

Tutorials by Ikhwan Khalid ikhwankhalid92@gmail.com and Mahsa Sayyarymahsa.sayyary@mis.mpg.de. Solutions will be collected during the lecture on Wednesday July 10.

Points for solved exercises have to be included as bonus points for the homework

1. [2 points] Solve the following systems of linear equations:

$$
\begin{cases}2 x_{1}+7 x_{2}+3 x_{3}+x_{4} & =6, \\ 3 x_{1}+5 x_{2}+2 x_{3}+2 x_{4} & =4, \\ 9 x_{1}+4 x_{2}+x_{3}+7 x_{4} & =2\end{cases}
$$

2. [$\mathbf{2}$ points] Find the fundamental system of solutions of the following system of homogeneous linear equations:

$$
\left\{\begin{array}{l}
3 x_{1}+2 x_{2}+5 x_{3}+2 x_{4}+7 x_{5}=0 \\
6 x_{1}+4 x_{2}+7 x_{3}+4 x_{4}+5 x_{5}=0 \\
3 x_{1}+2 x_{2}-x_{3}+2 x_{4}-11 x_{5}=0 \\
6 x_{1}+4 x_{2}+x_{3}+4 x_{4}-13 x_{5}=0
\end{array}\right.
$$

3. $[\mathbf{2}+\mathbf{3}$ points $]$ Compute the following determinants:

$$
\left|\begin{array}{rrrr}
-3 & 9 & 3 & 6 \\
-5 & 8 & 2 & 7 \\
4 & -5 & -3 & -2 \\
7 & -8 & -4 & -5
\end{array}\right|, \quad\left|\begin{array}{rrrcccc}
1 & 2 & 3 & \ldots & n-2 & n-1 & n \\
2 & 3 & 4 & \ldots & n-1 & n & n \\
3 & 4 & 5 & \ldots & n & n & n \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
n & n & n & n & n & n & n
\end{array}\right| .
$$

4. [3 points] Compute the rank of matrix

$$
\left(\begin{array}{rrrr}
1 & \lambda & -1 & 2 \\
2 & -1 & \lambda & 5 \\
1 & 10 & -6 & 1
\end{array}\right)
$$

depending on λ.
5. [3 points] Show that the following systems of vectors form bases in \mathbb{R}^{3}, find the change of basis matrix and find the coordinates of vector $x=(1,0,1)$ in both bases. The first system: $e_{1}=(1,1,0), e_{2}=(0,0,1), e_{3}=(-1,1,0)$ and the second system: $e_{1}^{\prime}=(1,2,1), e_{2}^{\prime}=(2,3,3)$, $e_{3}^{\prime}=(3,7,1)$.
6. [2 points] Find the dimension and a basis of the linear subspace $\operatorname{span}\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$ of \mathbb{R}^{4}, where $v_{1}=(1,0,0,-1), v_{2}=(2,1,1,0), v_{3}=(1,1,1,1), v_{4}=(1,2,3,4), v_{5}=(0,1,2,3)$.
7. [2 points] Determine whether the matrix

$$
\left(\begin{array}{lll}
5 & 2 & -3 \\
4 & 5 & -4 \\
6 & 4 & -4
\end{array}\right)
$$

can be reduced to a diagonal form by going over to a new basis. Find that basis and the corresponding matrix.
8. [3 points] Let a linear map $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be defined by $T(x, y, z)=(x, x+y, x+y+z)$. Find its matrix in the standard basis and also in the basis $v_{1}=(1,0,0), v_{2}=(2,0,1), v_{3}=(0,1,1)$. Check if T is invertible and if yes, find the inverse map T^{-1}. Is T self-adjoint?
9. [3 points] Find the orthogonal projection of the vector $u=(4,-1,-3,4)$ onto $\operatorname{span}\left\{v_{1}, v_{2}, v_{3}\right\}$ in \mathbb{R}^{4} with the standard inner product, where $v_{1}=(1,1,1,1), v_{2}=(1,2,2,-1), v_{3}=(1,0,0,3)$.
10. [4 points] Consider the vector space $\mathbb{R}_{n}[x]$ of all polynomials with real coefficients of degree at most n with the inner product

$$
\langle p, q\rangle=\int_{-1}^{1} p(x) q(x) d x
$$

Show the following polynomials

$$
p_{0}(x)=1, \quad p_{k}(x)=\frac{1}{2^{k} k!} \frac{d^{k}}{d x^{k}}\left(\left(x^{2}-1\right)^{k}\right), \quad k=1, \ldots, n
$$

form a basis in $\mathbb{R}_{n}[x]$.
11. [3 points] Show that A is self-adjoint and compute e^{A}, if

$$
A=\left(\begin{array}{rr}
3 & -i \\
i & 3
\end{array}\right)
$$

12. [2 points] Reduce to a canonical form the following quadratic form on \mathbb{R}^{3}

$$
Q(x)=x_{1}^{2}-2 x_{2}^{2}+x_{3}^{2}+2 x_{1} x_{2}+4 x_{1} x_{3}+2 x_{2} x_{3}
$$

13. [2 points] Show that $\overline{A \cup B}=\bar{A} \cup \bar{B}$, where \bar{A} denotes the closure of a set A.
14. [3 points] Compute the partial derivatives $\frac{\partial f}{\partial x}(0,0)$ and $\frac{\partial f}{\partial y}(0,0)$, if $f(x, y)=\sqrt[3]{x y}$. Is the function f differentiable at $(0,0)$?
15. [3 points] Does $\frac{\partial^{2} f}{\partial x \partial y}(0,0)$ exist, if

$$
f(x, y)= \begin{cases}\frac{2 x y}{x^{2}+y^{2}}, & \text { if } x^{2}+y^{2}>0 \\ 0, & \text { if } x=y=0\end{cases}
$$

16. [3 points] Show that the function $z=z(x, y)$ defined by the equation

$$
F(x-a z, y-b z)=0
$$

where F is a differentiable function of two variables and a, b are some constants, solves the equation

$$
a \frac{\partial z}{\partial x}+b \frac{\partial z}{\partial y}=1
$$

17. $[\mathbf{2}+\mathbf{2}+\mathbf{2}$ points $]$ Find the general solutions to the following equations:
a) $y^{\prime} \ln |y|+x^{2} y=0$;
b) $x y^{\prime}+\left(1+2 x^{2}\right) y=x^{3} e^{-x^{2}}$
c) $y^{\prime}=\frac{y^{2}+2 x y}{x^{2}}$.
18. $[\mathbf{3}+\mathbf{3}$ points $]$ Solve the initial value problems:
a) $\left.y^{\prime}-x y=x y^{\frac{3}{2}}, y(1)=4 ; ~ b\right) ~ y^{(4)}-16 y=0, y(0)=y^{\prime}(0)=2, y^{\prime \prime}(0)=-2, y^{\prime \prime \prime}(0)=0$.
