

Problem sheet 14

Tutorials by Ikhwan Khalid <ikhwankhalid92@gmail.com> and Mahsa Sayyary <mahsa.sayyary@mis.mpg.de>. Solutions will be collected during the lecture on Wednesday July 10.

Points for solved exercises have to be included as bonus points for the homework

1. [2 points] Solve the following systems of linear equations:

$$\begin{cases} 2x_1 + 7x_2 + 3x_3 + x_4 &= 6, \\ 3x_1 + 5x_2 + 2x_3 + 2x_4 &= 4, \\ 9x_1 + 4x_2 + x_3 + 7x_4 &= 2. \end{cases}$$

2. [2 points] Find the fundamental system of solutions of the following system of homogeneous linear equations:

$$\begin{cases} 3x_1 + 2x_2 + 5x_3 + 2x_4 + 7x_5 &= 0, \\ 6x_1 + 4x_2 + 7x_3 + 4x_4 + 5x_5 &= 0, \\ 3x_1 + 2x_2 - x_3 + 2x_4 - 11x_5 &= 0, \\ 6x_1 + 4x_2 + x_3 + 4x_4 - 13x_5 &= 0. \end{cases}$$

3. [2+3 points] Compute the following determinants:

2	0	2	6	1	1	2	3		n-2	n-1	n	
-3	9	0	0		2	3	4		n-1	n	n	Ĺ
-5	8	2	7		3	4	5		n	n	n	
4	-5	-3	-2	,		1	0		10	10	10	
7	-8	-4	-5			•••	• • •	•••	•••	•••	• • •	ĺ
-	-		-	I	n	n	n	n	n	n	n	Ĺ

4. [3 points] Compute the rank of matrix

$$\left(\begin{array}{rrrr} 1 & \lambda & -1 & 2 \\ 2 & -1 & \lambda & 5 \\ 1 & 10 & -6 & 1 \end{array}\right)$$

depending on λ .

- 5. [3 points] Show that the following systems of vectors form bases in \mathbb{R}^3 , find the change of basis matrix and find the coordinates of vector x = (1,0,1) in both bases. The first system: $e_1 = (1,1,0), e_2 = (0,0,1), e_3 = (-1,1,0)$ and the second system: $e'_1 = (1,2,1), e'_2 = (2,3,3), e'_3 = (3,7,1).$
- 6. [2 points] Find the dimension and a basis of the linear subspace span{ v_1, v_2, v_3, v_4, v_5 } of \mathbb{R}^4 , where $v_1 = (1, 0, 0, -1), v_2 = (2, 1, 1, 0), v_3 = (1, 1, 1, 1), v_4 = (1, 2, 3, 4), v_5 = (0, 1, 2, 3).$
- 7. [2 points] Determine whether the matrix

$$\left(\begin{array}{rrrr}
5 & 2 & -3 \\
4 & 5 & -4 \\
6 & 4 & -4
\end{array}\right)$$

can be reduced to a diagonal form by going over to a new basis. Find that basis and the corresponding matrix.

8. [3 points] Let a linear map $T : \mathbb{R}^3 \to \mathbb{R}^3$ be defined by T(x, y, z) = (x, x + y, x + y + z). Find its matrix in the standard basis and also in the basis $v_1 = (1, 0, 0), v_2 = (2, 0, 1), v_3 = (0, 1, 1)$. Check if T is invertible and if yes, find the inverse map T^{-1} . Is T self-adjoint?

UNIVERSITÄT LEIPZIG

- 9. [3 points] Find the orthogonal projection of the vector u = (4, -1, -3, 4) onto span $\{v_1, v_2, v_3\}$ in \mathbb{R}^4 with the standard inner product, where $v_1 = (1, 1, 1, 1), v_2 = (1, 2, 2, -1), v_3 = (1, 0, 0, 3)$.
- 10. [4 points] Consider the vector space $\mathbb{R}_n[x]$ of all polynomials with real coefficients of degree at most n with the inner product

$$\langle p,q \rangle = \int_{-1}^{1} p(x)q(x)dx.$$

Show the following polynomials

$$p_0(x) = 1, \quad p_k(x) = \frac{1}{2^k k!} \frac{d^k}{dx^k} \left((x^2 - 1)^k \right), \quad k = 1, \dots, n,$$

form a basis in $\mathbb{R}_n[x]$.

11. [3 points] Show that A is self-adjoint and compute e^A , if

$$A = \left(\begin{array}{cc} 3 & -i \\ i & 3 \end{array}\right).$$

12. [2 points] Reduce to a canonical form the following quadratic form on \mathbb{R}^3

$$Q(x) = x_1^2 - 2x_2^2 + x_3^2 + 2x_1x_2 + 4x_1x_3 + 2x_2x_3.$$

- 13. [2 points] Show that $\overline{A \cup B} = \overline{A} \cup \overline{B}$, where \overline{A} denotes the closure of a set A.
- 14. [3 points] Compute the partial derivatives $\frac{\partial f}{\partial x}(0,0)$ and $\frac{\partial f}{\partial y}(0,0)$, if $f(x,y) = \sqrt[3]{xy}$. Is the function f differentiable at (0,0)?
- 15. **[3 points]** Does $\frac{\partial^2 f}{\partial x \partial y}(0,0)$ exist, if

$$f(x,y) = \begin{cases} \frac{2xy}{x^2 + y^2}, & \text{if } x^2 + y^2 > 0, \\ 0, & \text{if } x = y = 0? \end{cases}$$

16. [3 points] Show that the function z = z(x, y) defined by the equation

$$F(x - az, y - bz) = 0,$$

where F is a differentiable function of two variables and a, b are some constants, solves the equation

$$a\frac{\partial z}{\partial x} + b\frac{\partial z}{\partial y} = 1$$

- 17. **[2+2+2 points]** Find the general solutions to the following equations: a) $y' \ln |y| + x^2 y = 0$; b) $xy' + (1 + 2x^2)y = x^3 e^{-x^2}$; c) $y' = \frac{y^2 + 2xy}{x^2}$.
- 18. **[3+3 points]** Solve the initial value problems: a) $y' - xy = xy^{\frac{3}{2}}$, y(1) = 4; b) $y^{(4)} - 16y = 0$, y(0) = y'(0) = 2, y''(0) = -2, y'''(0) = 0.