Problem sheet 13

Tutorials by Ikhwan Khalid ikhwankhalid92@gmail.com and Mahsa Sayyarymahsa.sayyary@mis.mpg.de. Solutions will be collected during the lecture on Monday July 8.

1. [4 points] Find local extrema of $f(x, y, z)=2 x+3 y+z$ subject to $x^{2}+2 y^{2}+3 z^{2}=1$.
2. [$\mathbf{3}$ points] A rectangle has perimeter p. Find its largest possible area.
3. [5 points] Find the minimum value of

$$
f(x, y, z, w)=x^{2}+2 y^{2}+z^{2}+w^{2}
$$

subject to

$$
\begin{aligned}
& x+y+z+3 w=1, \\
& x+y+2 z+w=2 .
\end{aligned}
$$

4. [3 points] Verify that the function $y=\tan \left(\frac{x^{3}}{3}+C\right)$ is a solution to the differential equation $y^{\prime}=x^{2}\left(1+y^{2}\right)$ for any choice of a constant C.
5. [$\mathbf{3}+\mathbf{3}$ points] Solve the initial value problems:
a) $y^{\prime}=x \ln x, \quad y(1)=-\frac{1}{4}$;
b) $y^{\prime \prime}=-x \sin x, \quad y(0)=1, y^{\prime}(0)=-3$.
6. [4 points] Verify that the function $y=x^{2}(1+\ln x)$ is a solution to the initial value problem

$$
y^{\prime \prime}=\frac{3 x y^{\prime}-4 y}{x^{2}}, \quad y(e)=2 e^{2}, \quad y^{\prime}(e)=5 e .
$$

