Problem sheet 12

Tutorials by Ikhwan Khalidikhwankhalid92@gmail.com and Mahsa Sayyarymahsa.sayyary@mis.mpg.de. Solutions will be collected during the lecture on Wednesday July 3.

1. [2 points] Let $f(x, y)=\left(2 x y, e^{x}+y\right),(x, y) \in \mathbb{R}^{2}$. Show that the function f is invertible in a neighborhood of the point $(1,1)$.
2. [3 points] Compute the partial derivatives of the function $z=z(x, y)$ defined by the equation $x+y+z=e^{z}$.
3. $[\mathbf{2}+\mathbf{3}$ points $]$ Compute the second order derivatives of the following functions:
a) $f(x, y)=\ln \sqrt{x^{2}+y^{2}} ;$ b) $f(x, y, z)=x y+y z+z x$.
4. [$\mathbf{3}$ points] Let $a \neq 0$ and b be constants. Show that the function

$$
u=\frac{1}{2 a \sqrt{\pi t}} e^{-\frac{(x-b)^{2}}{4 a^{2} t}}
$$

solves the equation

$$
\frac{\partial u}{\partial t}=a^{2} \frac{\partial^{2} u}{\partial x^{2}}
$$

5. [4 points] Write the Taylor series of the function $f(x, y)=2 x^{2}-x y-y^{2}-6 x-3 y+5$ at the point $x_{0}=(1,-2)$.
6. $[\mathbf{3}+\mathbf{3}+\mathbf{3}$ points] Find a local extrema of the following functions:
a) $f(x, y)=(x+y) e^{-x^{2}-y^{2}}$;
b) $f(x, y)=x^{3}+y^{3}-3 x y$;
c) $f(x, y, z)=x^{2}+y^{2}+z^{2}+12 x y+2 z$.
