Problem sheet 10

Tutorials by Ikhwan Khalid ikhwankhalid92@gmail.com and Mahsa Sayyarymahsa.sayyary@mis.mpg.de. Solutions will be collected during the lecture on Wednesday June 19.

1. [3 points] Let K_{1}, K_{2} be compact sets in \mathbb{R}. Show that the cartesian product $K=K_{1} \times K_{2}=$ $\left\{(x, y): x \in K_{1}, y \in K_{2}\right\}$ is compact in \mathbb{R}^{2}.
2. [2 points] Using the definition of limit, show that $\lim _{(x, y) \rightarrow(0,0)} x \sin \frac{1}{y}=0$.
3. [3 x 3 points] Do the following limits exist? Justify your answer.
(a) $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}-y^{2}}{x^{2}+y^{2}}$;
(b) $\lim _{(x, y) \rightarrow(0,0)} \frac{e^{x}-y}{x y}$;
(c) $\lim _{(x, y, z) \rightarrow(0,0,0)} \frac{\sin \left(x^{2}+y^{2}+z^{2}\right)}{x^{2}+y^{2}+z^{2}}$.
4. [3 points] Show that a function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{m}$ is continuous on \mathbb{R}^{d} if and only if $f^{-1}(F)$ is close for each close set F in \mathbb{R}^{m}.
5. [3+2 points] Let $D \subset \mathbb{R}^{d}$.
(a) Show that a subset A of D is open in D if and only if there exists an open (in $\left.\mathbb{R}^{d}\right)$ subset \tilde{A} such that $A=\tilde{A} \cap D$.
(b) Let additionally D be open. Conclude from (a) that A is open in D if and only if A is open (in \mathbb{R}^{d}).
6. [2 points] Construct a continuous function $f: D \rightarrow \mathbb{R}$ which is bounded and does not attain its maximum, if $D=B_{1}(0) \subset \mathbb{R}^{2}$. Can one construct such a function in the case of the close ball $D=\bar{B}_{1}(0)$?
