

Problem sheet 10

Tutorials by Ikhwan Khalid <ikhwankhalid92@gmail.com> and Mahsa Sayyary <mahsa.sayyary@mis.mpg.de>. Solutions will be collected during the lecture on Wednesday June 19.

- 1. [3 points] Let K_1, K_2 be compact sets in \mathbb{R} . Show that the cartesian product $K = K_1 \times K_2 = \{(x, y) : x \in K_1, y \in K_2\}$ is compact in \mathbb{R}^2 .
- 2. [2 points] Using the definition of limit, show that $\lim_{(x,y)\to(0,0)} x \sin \frac{1}{y} = 0$.
- 3. [3x3 points] Do the following limits exist? Justify your answer.
 - (a) $\lim_{(x,y)\to(0,0)} \frac{x^2 y^2}{x^2 + y^2};$
 - (b) $\lim_{(x,y)\to(0,0)} \frac{e^x y}{xy};$
 - (c) $\lim_{(x,y,z)\to(0,0,0)} \frac{\sin(x^2+y^2+z^2)}{x^2+y^2+z^2}$.
- 4. [3 points] Show that a function $f : \mathbb{R}^d \to \mathbb{R}^m$ is continuous on \mathbb{R}^d if and only if $f^{-1}(F)$ is close for each close set F in \mathbb{R}^m .
- 5. [3+2 points] Let $D \subset \mathbb{R}^d$.
 - (a) Show that a subset A of D is open in D if and only if there exists an open (in \mathbb{R}^d) subset \tilde{A} such that $A = \tilde{A} \cap D$.
 - (b) Let additionally D be open. Conclude from (a) that A is open in D if and only if A is open (in \mathbb{R}^d).
- 6. [2 points] Construct a continuous function $f : D \to \mathbb{R}$ which is bounded and does not attain its maximum, if $D = B_1(0) \subset \mathbb{R}^2$. Can one construct such a function in the case of the close ball $D = \overline{B}_1(0)$?