## Problem sheet 1

Tutorials by Ikhwan Khalid[ikhwankhalid92@gmail.com](mailto:ikhwankhalid92@gmail.com). Solutions will be collected during the lecture on Wednesday April 17.

1. [2 points] Check whether the following two systems are equivalent. If so, express each equation in each system as a linear combination of the equations in the other system.

$$
\left\{\begin{array} { l } 
{ x _ { 1 } - x _ { 2 } = 0 , } \\
{ 2 x _ { 1 } + x _ { 2 } = 0 }
\end{array} \quad \text { and } \quad \left\{\begin{array}{l}
3 x_{1}+x_{2}=0 \\
x_{1}+x_{2}=0
\end{array}\right.\right.
$$

2. [2 points] Suppose that $A, B, C, D$ and $E$ are matrices over $\mathbb{F}$ having the following sizes:
$A$ is $4 \times 5, \quad B$ is $4 \times 5, \quad C$ is $5 \times 2, \quad D$ is $4 \times 2, \quad E$ is $5 \times 4$.
Determine whether the following matrix expressions are defined and for those that are defined, determine the size of the resulting matrix:
a) $B A$;
b) $A C+D$;
c) $A E+B$;
d) $A B+B$;
e) $E(A+B)$; f) $E(A C)$.
3. [2 points] Let

$$
A=\left(\begin{array}{ccc}
2 & -1 & 1 \\
1 & 2 & 1
\end{array}\right), \quad B=\left(\begin{array}{c}
3 \\
1 \\
-1
\end{array}\right), \quad C=\left(\begin{array}{ll}
1 & -1
\end{array}\right) .
$$

Compute $A B C$ and $C A B$.
4. [1 point] Find a $2 \times 2$ matrix $A$ such that $A^{2}=0$ and $A \neq 0$.
5. [2 points] Find a row-reduced echelon matrix which is row-equivalent to

$$
A=\left(\begin{array}{cc}
1 & -i \\
2 & 2 \\
i & 1+i
\end{array}\right)
$$

What are the solutions of $A x=0$ ?
6. [1 point] Describe explicitly all $2 \times 2$ row-reduced echalon matrices.
7. $[3+3+3$ points] Find all solutions of the following systems of linear equations:

$$
\begin{gathered}
\begin{cases}x_{1}-x_{2}+2 x_{3} & =1, \\
2 x_{1}+x_{3} & =1, \\
x_{1}-3 x_{2}+4 x_{3} & =2,\end{cases} \\
\begin{cases}x_{1}-2 x_{2}+x_{3}+2 x_{4} & =1, \\
x_{1}+x_{2}-x_{3}+x_{4} & =2, \\
x_{1}+7 x_{2}-5 x_{3}-x_{4} & =3,\end{cases}
\end{gathered}
$$

$$
\begin{cases}2 x_{1}-3 x_{2}-7 x_{3}+5 x_{4}+2 x_{5} & =-2 \\ x_{1}-2 x_{2}-4 x_{3}+3 x_{4}+x_{5} & =-2 \\ 2 x_{1}-4 x_{3}+2 x_{4}+x_{5} & =3 \\ x_{1}-5 x_{2}-7 x_{3}+6 x_{4}+2 x_{5} & =-7\end{cases}
$$

8. [3 points] Let

$$
A=\left(\begin{array}{ccc}
3 & -1 & 2 \\
2 & 1 & 1 \\
1 & -3 & 0
\end{array}\right)
$$

For which triples $\left(b_{1}, b_{2}, b_{3}\right)$ does the system $A x=b$ have a solution?

