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The lecture notes are based on the following literature:

e AY. Dorogovtsev, Mathematical analysis, Kyiv, Fact, 2004, (Russian).

o K.A. Ross, Elementary analysis: The theory of calculus, Undergraduate Texts in Mathematics,
Springer New York, 2013.

e [. Lankham, B. Nachtergaele, and A. Schilling, Linear algebra as an introduction to abstract
mathematics, WSPC, 2016.

e B. P. Demidovic, Problems and exercises in mathematical analysis, Moscow, 1997, (Russian).

1 Lecture 1 — Elements of Set Theory and Mathematical Induction

1.1 Elements of Set Theory

The notion of a set is one of the most important initial and nondefinable notions of the modern
mathematics. By a “set” we will understand any collection into a whole M of definite and separate
objects m of our intuition or our thought (Georg Cantor). These objects are called the “elements” of
M. Shortly we will use the notation m € M or M > m. The fact that m does not belong to M is
denoted by m & M.

A set M can be defined by listing of its elements. For instance,

e N={1,2,3,...,n,...} — the set of natural numbers;
e Z={..,—n,...,—1,0,1,2,3,...,n,...} — the set of integer numbers.

A set also can be defined by specifying of properties of its elements. In any mathematical problem
usually consider elements of some quite defined set X. The needed set can be chosen by some property
P satisfying the following property: for each x from X either x satisfies P (in this case one writes
P(z)) or x does satisfy it. This set is denoted by {x € X : P(x)} or {z : P(x)}. The set which does
not contain any elements is called empty and is denoted (.

Example 1.1. 1. N={n€Z: n>0}. Here P means “to be positive”, which is satisfied by any
integer number.

2. Let P denote “to be even”. Then {2,4,...,2k,...} ={n e N: P(n)}.

3. Q= {% :neN me Z}. This is the set of rational numbers.
Exercise 1.1. List elements of the following sets:

a) {neN: (n-3)?2 <7}

b) {neN: MGN};

n

c) {nEN: Z—ﬁeN};

d) {neZ: n®>10n?}.
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1.1.1 Operations on Sets
Let A and B be sets.

Definition 1.1. A set A is a a subset of a set B, if each element x of A is an element of B (or
shortly, Vo € A = =z € B). Notation: A C B.

Definition 1.2 (Operations on sets). e AUB={z: x € Aorx € B} — the union of A and B,

e ANB={z: x € Aand z € B} — the intersection of A and B;

e A\B={z: z € Aand z ¢ B} — the difference of A and B;

e AAB={z: € AUB and z ¢ AN B} — the symmetric difference of A and B;

e A={r e X: ¢ A} — the complement of A, where X is some given set containing A.
Exercise 1.2. Show that

a) AUl=A, AUA=A, AUB=BUA, AU(BUC)=(AUB)UC = AUBUC;

b) ANO=0,ANA=A, AUB=BNA AnN(BNnC)=(AnNnB)NC = ANBNC;

c) AAB=(AUB)\(ANnB)=(A\B)U(B\A), A\ B= AN B¢

d) AN(BUC)=(ANB)U(ANC),AU(BNC)=(AUB)N(AUCQC).

e) (AUB)*= AN B¢ (AN B)¢ = A°U B-.

Let T be a set of indexes and for each t € T a set A; is given.

Definition 1.3. e JUA={z: JtyeT A4 >z} — the union of the family A;, t € T}
teT

e N A ={z: VteT A;>x}— the intersection of the family A;, t € T}
teT

Example 1.2. Let A, = {1,...,n} for each n € N. Then

U An = GAn:N, ﬂAn:ﬁAn:{l}.
n=1 n=1

neN neN

1.2 Numbers
1.2.1 Mathematical induction

For more details see [1, Section 1.1].
Let M be a subset of natural numbers which satisfies the following properties

1) 1e M;
2) ifne M, thenn+1e M.

Then M = N! This is one of the axioms of natural numbers and it is the basis of mathematical
induction. Let P, P», P5,... be a list of statements or propositions that may or may not be true.
The principle of mathematical induction asserts all the statements Py, P, P3, ... are true provided
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(I1) P, is true;
(I2) P,41 is true whenever P, is true.

We will refer to (I1) as the basis for induction and we will refer to (I2) as the induction step.

Example 1.3. Prove 1 +2+---+n = %n(n + 1) for positive integers n.
Solution. Our n-th proposition is

1
P,: 14+2+---+n= §n(n—|—1).
Base case: Show that the statement P, holds for n = 1. So,

1
1==--1-(14+1).
TRRCRRY

Induction step: We assume that P, holds, i.e.

1
L2+ 4n=cn(n+1)

is true, and must prove F,,;1. So,

424t (0 1) = Dnln b 1)+ (0 1) = (0t D(n+2) = L (nt D((n+ 1) + 1)

By the principle of mathematical induction, we conclude that P, is true for all n.

Exercise 1.3.  a) Prove that all numbers of the form 5 —4n — 1, n € N are divisible by 16.

b) Show that 13 4+23 + ...+ n3 = (1+2+... +n)? for each n € N.

c) Prove the inequality 1+ 55 +...4+ -5 <2— 1 for all n € N.
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2 Lecture 2 — Completeness of the Set of Real Numbers and some
Inequalities

2.1 Real Numbers
2.1.1 Definition of Real Numbers

Very often the set of rational numbers needs an extension. For example, the length of a diagonal of a
square with side 1 can not be given as a rational number.

Exercise 2.1. Prove that there does not exist a rational number  solving the equation z? = 2.

Definition 2.1. A real number is an infinite sequence of numerical digits with the comma between
them, that is,
a = 0p, 102 ...0n ...,

where o € Z and o, € {0,1,...,9} for all n € N.
The set of all real numbers is denoted by R.

Definition 2.2. Numbers from R\ Q is called irrational.

Remark 2.1. We will identify of two real numbers of the form
a=ap,ar...0,99999. ..

and
a=ag,aq ... (a, +1)00000...,

where o, < 9. Further, we will avoid numbers, where 9 is in the period.

The order relations “<, <,>,>" between real numbers can be introduced by the natural way as
well as the notions of positive and negative real numbers.

Definition 2.3. The absolute value of a real number a is defined as follows

a, if a >0,
la| = .
—a, ifa<0.

2.1.2 Supremum and Infimum of Subsets of Real Numbers

Let A be a non-empty subset of R.

Definition 2.4. e If A contains a larger element ag, then we call ag the maximum of A and
write ap = max A.

e If A contains a smallest element, then we call the smallest element the minimum of A and write
it as min S.

Example 2.1. a) max{1,2,3,4,5} =5, min{1,2,3,4,5} = 1;

b) Let A = {% : n € N}. Then max A =1 but min A does not exist.
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Definition 2.5. e If a real number M satisfies a < M for all a € A, then M is called an upper
bound of A and the set A is said to be bounded above.

e If a real number m satisfies m < a for all a € A, then m is called a lower bound of A and the
set A is said to be bounded below.

e The set A is said to be bounded if it is bounded above and bounded below.
Example 2.2. 1. The set A = {% n € N} is bounded.

2. The set N is bounded below but not above.

3. The set R is neither bounded below nor above.

Exercise 2.2. Prove that the following sets are bounded:
a) {ni—&-l :neN };

b) {L22 s nen}.

Definition 2.6. e If A is bounded above and A has a least upper bound, then we will call it the
supremum of A and denote it by sup A.

e If A is bounded below and A has a greatest lower bound, then we will call it the infimum of A
and denote it by inf A.

Exercise 2.3. If min A exists, then min A = inf A. Similarly, if max A exists, then max A = sup A.
Check these statements.

Theorem 2.1. (i) The number a* is the supremum of a subset A of R iff

e a* is an upper bound of A;

e Va<a® dre A x>a.
(i) The number a, is the supremum of a subset A of R iff

e a, is an lower bound of A;

e Va>a* dJx €A z<a.
Exercise 2.4. For each a < b prove that inf|a, b] = inf(a, b] = a and sup[a, b] = sup|a,b) = b.

Theorem 2.2. (i) For every non-empty subset A of R that is bounded above sup A exists and is a
real number.

(ii) For every non-empty subset A of R that is bounded below inf A exists and is a real number.

The latter theorem states the completeness of the set of real numbers, which is not true e.g. for
rational numbers. Indeed, theset A ={r € Q: 0 < r and r2 < 2} is a set of rational numbers and it is
bounded above by some rational numbers but A has no least upper bound that is a rational number.
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Theorem 2.3. For each positive real number a = ag, a1 ... 0, ..., we have
a = sup{a, : n € N},

where a, = ag, @10 ... 0.

Exercise 2.5. Prove Theorem 2.3.

Now, we are ready to introduce operation or real numbers. Let a, b be a positive real numbers and
an and b,, n € N, be defined as in Theorem 2.3.

Definition 2.7. We set by the definition a + b := sup{a, + b, : n € N}; a-b:=sup{a,-b,: n € N};
%::sup{‘g—:: nEN};fora>b,a—b::sup{an—bn: n € N}.

We note that all numbers a,, and b,, n € N, in the definition are rational and for them all arithmetic
operations are defined. All known properties of arithmetic operations on integer numbers are also valid
for real numbers but now they have to be proved.

Exercise 2.6. Show that
a) a-b=b-aand a+b=>b+a;
b) a+(b+c)=(a+b)+c=ta+b+c
c)a-(b-c)=(a-b)-c=a-b-c.

2.1.3 n-th Root of a Positive Real Number

Theorem 2.4. Let a be a positive real number and n € N. Then there exist a unique positive real
number x satisfying ™ = a, where z" :=x - ...  x.
——

n times

Remark 2.2. The number = can be constructed as the supremum of the set {y > 0: 3" < a}, which
is a non-empty bounded above set.

Definition 2.8. Let @ > 0 and n € N. The unique positive solution of the equation " = a, which
exists according tlo Theorem 2.4, is called the n-th root of the positive real number a. We use the
notation for z: a» = {/a.

Definition 2.9. Let a > 0 and r € Q, r > 0. We define

where 7 = % m,n € N,
Definition 2.10. Let a > 1 and b > 0. We define
ab ;= sup{a® : n e N},

where b := Bo,B162 .. ﬂn ... and bn = ,80,61,82 .o Bn

Exercise 2.7. Give a definition of a® in the case 0 < a < 1 and b > 0.
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2.2 Some important inequalities

We recall that the absolute value of a real number a is given by

a, if a >0,
la| = .
—a, ifa<0.

We note that —|a| < a < |a| and also |a] < ¢ & —c < a < ¢. Moreover, |a| = | — al.
Theorem 2.5. For all a,b € R the inequalities
1) la+b] <la| + b 2) [la| —[b]] < [a—b|
holds. For every ai,...a, € R one has
lar + ...+ an| <la1] + ...+ |an].

Proof. Since —|a| < a < |a|] and —|b] < b < |b|, we obtain —(|a| + |b]) < a+b < |a| + |b|. This implies
inequality 1). Now, applying 1), we obtain |a| = |a — b+ b| < |a — b| + |b|. Hence, |a| — |b] < |a — b].
Since |a — b| = |b — a| > |b| — |a|, we obtain 2). The latter inequality trivially follows from 1). O

Inequality 1) from Theorem 2.5 is called the triangular inequality.
Theorem 2.6 (Bernoulli’s inequality). For each real number x > —1 and n € N the inequality
I+2)">14+nz
holds. Moreover, (1+x)* =1+nx iff t =0 or n = 1.

Proof. If n = 1 or x = 0, then the equality holds. We assume that z # 0 and use mathematical
induction to prove (1 + )" > 1+ nz for all n > 2. So, for n = 2 one has

(1+z)?> =142z +2%>1+ 2z
Next, we assume that the strict inequality holds for some n > 2. Then

A4+z)" P =10+2)1+2)">1+2)1+nz)=1+n+Dz+nz?>1+ (n+ 1)z

Exercise 2.8. Show that
a)2">n+1,neN; b)3">2n+1,neN; c) 2" > (vV2—-1)2n%, ncN.

Exercise 2.9. Let x1,...,x, be a positive real numbers. Prove that

(I+ax) .- (I+ay)>14+21+ ...+ 2.
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3 Lecture 3 — Convergence of Sequences

3.1 Limits of Sequences

For more details see [1, Section 2.7].

In this section, we will study some properties of sequences of real numbers which do not depend on
finite numbers of their elements. So, we will call a sequence any enumerated collection of objects (in
our case, real numbers) in which repetitions are allowed. It is often convenient to write the sequence
as (m, m41, Am2, - - ), (n)n>m or (an)32,,, where m is some integer number. Usually, m equals 1.

Definition 3.1. A sequence (ap)p>1 = (a1,a2,...,an,...) is called bounded if there exists C' > 0
such that |a,| < C for all n > 1. In another words, if all elements of the sequence belong to some
interval [—C, C].

Example 3.1. 1. The sequence ((—1)")p>1 = (—1,1,—1,1,...) is bounded and its elements belong
o [_17 1];

2. The sequence (sinn),>1 is bounded and its elements also belong to [—1, 1];

3. The sequence (n),>1 = (1,2,3,...,n,...) is unbounded, since for each C' > 0 one can find a
number n € N larger than C.

Exercise 3.1. Prove the boundedness of the following sequences:

a) (2n)n>1, an—\/2+\/2—|- 2—1—\[ :

n square roots

n>1
c) (CLn =1+ % + 2% +...+ 2,?7,1)”>1 (Hint: Use the equality $an = an — 3an)

Exercise 3.2. Prove that a sequence (a,),>1 is bounded iff (a3 — a,)n>1 is bounded.

Definition 3.2. Let x € R and € > 0 be given. A neighbourhood or e-neighbourhood of the
point z is the interval (z —e,z+¢)={y e R: |y — x| <€}

Exercise 3.3. Check that: a) intersection of a finite number of neighbourhoods of z is again a
neighbourhood of z; b) intersection of two neighbourhoods is either () or a neighbourhood.

Definition 3.3. A sequence (a,)n>1 of real numbers is said to converge to a real number a provided
that
for each € > 0 there exists a number N such that n > N implies |a,, — a| < ¢,

or, shortly,
Ve>03INeRVYn>N: la,—al<e.

If (ap)n>1 converges to a, we will write lim a, = a or a, — a, n — o0o. The number a is called
- n—00

the limit of the sequence (an)n>1. A sequence that does not converge to some real number is said to
diverge.

Remark 3.1. We note that a, — a, n — oo, provided that any e-neighbourhood of point a contains
elements a,, for all n > N, where N is some number depending on ¢.
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Exercise 3.4. For which sequences (ay),>1 the number N from Definition 3.3 could be taken inde-
pendent of €.
Answer: If 3Im e NVn > m: a, = a.

Exercise 3.5. Prove the following statements:

a) ap —>a, n—>00 & ap—a—0, n—00 & |a, —al =0, n— oo;
b) a, -0, n 00 & |ay| =0, n — oo

c) ap —a, n—o00 < VYe>03INeN: {an,ani1,...} C(z—¢e,z+¢);
d) ap, =0, n - 00 < sup{lag|: k>n} —0, n— oo;

e) ap = a, n— 00 = |ay| = |a|, n — oco.

Theorem 3.1. A sequence can have only a unique limit.

Proof. Let a, — a, n — oo, and a, — b, n — co. Then by the definition, Ve > 0 IN; € R Vn > Ny :
lap, —al <eand Ve > 03Ny, e RVn > Ny : |a, — b <e. Thus, using the triangular inequality (see
Theorem 2.5 1)), we obtain Ve > 0 Vn > max{Ny, No} : |a—b| = |a—an+a,—b| < |a—ap|+|a,—0] <
2e. So, [a—0b| < 2ec foralle > 0. If a # b, we set ¢ = @ > 0. Then |a —b| < 2la—b| = }|a—b| <0,
that is impossible. O

3.2 Some Examples

For more examples see [1, Section 2.8].

Theorem 3.2. The equality lim % =0 holds.
n—oo

Proof. We note that for each € > 0 we have ’l — 0| < giff n > % Thus, Ve > 0 3N := (% + 1) €
RVn>N: |1-0|<e. O

Corollary 3.1. The equality ILm n% = 0 holds for each o > 0.

Theorem 3.3. Let a € R, |a| > 1, b€ R. Then lim Z—,i:O.

n—o0

Proof. We choose k € N such that k& > b+ 1. By Bernoulli’s inequality (see Theorem 2.6), |a|™ =

2\ Kk n\ k k
(|a|z) = (<1+ <|a|% —1)) ) > nk (|a]% —1) . Hence, Z— 0‘ \aI” < |;nl < (| ‘%1 )k <e.
So, n > % Consequently, one can claim
5(\a|E—1)
1 nb
Ve>03dN:=————F+1Vn>N: | - —-0|<e
an

50@%_1)

Theorem 3.4. The equality lim Yn =1 holds.
n—oo
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Proof. By Exercise 3.5 a), it is enough to show that a, := {/n —1 — 0, n — oco. Since (1 + a,)" =
(/n)™ = n, one has

1 1
n=14a,)" >1+na,+ in(n —1a? > in(n —1)a?,

by the binomial formula. Thus, a, < \/% for n > 2. Next using the standard argument, one has
an, — 0. ]

Exercise 3.6. Check the following equalities:
a) lim a" =0forall0<a<1; b) lim {fa=1foralla>0; ¢) lim 1Eff:Oforalloz>0,Where

n—o0 n—oo n—o0

lg :=logg-
Definition 3.4. 1. lim a, =+c0 & VCeRIANeRYVR>N: a, > C.

n—oo

2. lima,=-o00 & VOCeRIANERVYVR>N: a, <C.

n—oo

Exercise 3.7. Prove that for a sequence (ay,),>1 with a,, # 0 the equality lim |a,| = 400 is equivalent
- n—o0

to lim - =0.
n—oo 4n

Exercise 3.8. Let (an)n>1 be a sequence such that 4= — 0, n — oo. Prove that max{a,dz,...an}

n — Q.

— 0,

Exercise 3.9. Assume that a, — a, n — oo, and b, — b, n — oo. Show that max{a,,b,} —
max{a, b}, n — oco.

3.3 Limit Theorems for Sequences

See also [1, Section 2.9].

In this section, we will prove some properties of convergent sequences and their limits. We recall
that a sequence (ay)n>1 of real numbers is said to be bounded if there exists a constant C' such that
lan,| < C for all n.

Theorem 3.5. Any convergent sequence is bounded.

Proof. Let an, — a,n — co. We have to show that (ay,),>1 is bounded. By the definition of convergence
(see Definition 3.3), for each € > 0, in particular for £ = 1, there exists a number N, which can be taken
from N, such that |a, —a|] < e =1 for all n > N. Thus, setting C' := max{|a1],...,|an—-1],|a| + 1},
one trivially obtains for n € {1,2,...,N — 1}

lan| < C.
Next, using the triangular inequality (inequality 1) of Theorem 2.5), we have
|an| = lan —a+a| < |an —af +|a] <1+a| <C,
for all n > N. O

Exercise 3.10. Give an example of a bounded divergent sequence.

10



University of Leipzig — WS18/19
10-PHY-BIPMA1 — Mathematics 1 / Vitalii Konarovskyi

UNIVERSITAT LEIPZIG

Theorem 3.6. Let ap, — a, n — o0, b, = b, n — o0, and let a, < by, for alln > 1. Then a <b.
Exercise 3.11. Prove Theorem 3.6.

Remark 3.2. We note that replacing the inequality a, < b, by the strong one, i.e. a, < by, it does
not imply a < b. Indeed, for a,, := 0 and b,, := %, n > 1, one has a, < b, but a,, — 0, b, — 0, n — oo.

Remark 3.3. Theorem 3.6 remains valid, if the inequality a, < b, holds only for all n > M, where
M is some number N.

Theorem 3.7 (Squeeze theorem). Let sequences (ap)n>1, (bp)n>1 and (cn)n>1 satisfy the following
conditions:

a) an < b, <cp foralln>1;
b) an — a, n — oo, and ¢, — a, n — 00.
Then b, — a, n — oco.

Proof. We prove the theorem only for the case a € R. According to Remark 3.1, for each € > 0 there
exists N1 and N from R such that a, belongs to the e-neighbourhood (a —€,a + ¢) of the point a for
all n > Nj and ¢, belongs to (a —e,a+¢) for all n > Ny. Thus, for all n > max{Ni, N2} elements b,

also belong to (a — ¢,a + €) due to property a). O
Example 3.2. Show that lim {/1+ % + % +...+ % =1
n—oo
Solution. We take a, := ¥/1=1and ¢, := V1+1+1+...4+1= Yn. Then

n times

n 1 1 1
an < 1+§+§++*§0n

3

for all n > 1. Moreover, a, — 1, n = 0o, and ¢, — 1, n — oo, by Theorem 3.4. Hence, Theorem 3.7

impliesnli_{go"1+%+%+...+%:1.

Theorem 3.8. Leta, >a € R, n— o0, and b, - b€ R, n — co. Then
a) lim (¢-a,) =c- lim ay for all c € R;
n—oo n—oo

b) lim (an + by) = lim a, + lim by;

¢) lim (ay - by) = lim a, - lim by;
n—oo n—oo

n—oo
: a nh~>m On .
@) fim g =g, F0#0.
Proof. For proof of the theorem see Section 2.9 [1]. O

11
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.. . 21241
Example 3.3. Compute the limit nh_}rgo Wm.
Solution. We cannot apply Theorem 3.8 directly, since the numerator and denominator of ﬁ%

tend to infinity. So, first we rewrite them as follows:

1
2n? +lgn n2-<2—|—%) 2+ &2

n2

3n2+ncosn+5_n2-(3+%+n%) 3+M+%‘

n

Now, we can use Theorem 3.8 d) to the right hand side of the latter equality. Indeed, we first compute

1 1
lim <2+g;’> — 924 lim 22 =9,
n

n—o0 n—oo N2

by, Theorem 3.8 b) and Exercise 3.6 ¢). Next, due to the inequality

cosn

<

<—-, n=>1,

S|
S|

n

theorems 3.7 and 3.2, one has le €% = (. Thus, by Theorem 3.8 a), b)

5 1
lim <3+COS”+> =3+ lim % 45 lim = =3#£0.

n—00 n n2 n—oo 1 n—oo n?

So, we can apply Theorem 3.7 d) and obtain

) 2n? +1gn ) 24_1%0 2
m =s =lm o en 5 — 3
n—oc 3n? 4 ncosn+5 nooco3 4 B804 53

Exercise 3.12. Compute the following limits:
s g u .
a) lim Sl\n/ﬁn; b) lim fEsimn_ . nhjﬂlo /n22m 1+ 37 d) nlgﬂlo 23714:113; e) "/n.

n—00 n—oo M*+ncosn’

Exercise 3.13. Let (an)n>1 be a bounded sequence and b, — 0, n > oco. Prove that a,b, — 0,
n — 00.

Exercise 3.14. Let (ay)n>1 be a bounded sequence and b, — +00, n > co. Prove that a,,+b, — +o0,
n — 00.

Exercise 3.15. Let a, > 0 for all n > 1 and a, — a, n — oco. Show that for all £ € N one has
a, = a, n = oo.

Exercise 3.16. Let a,, — a € R, n — oco. Prove that w — a, n — oo.

12
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4 Lecture 4 — Subsequences and Monotone Sequences

4.1 Monotone Sequences

The main goal of this section is to prove that any bounded monotone sequence must converge. So, we
start from the definition.

Definition 4.1. A sequence (ay)p>1 of real numbers is called an increasing sequence if a,, < a,41
for all n > 1, and (ay)n>1 is called a decreasing sequence if a,, > a,41 for all n > 1. A sequence
that is increasing or decreasing is said to be a monotone sequence.

Example 4.1. The sequence (1,1,2,2,3,3,4,4,...) is increasing, but (—1,1,—1,1,...) is not mono-
tone.

Exercise 4.1. a) Show that any bounded above increasing sequence is bounded. b) Show that any
bounded below decreasing sequence is bounded.

Exercise 4.2.  a) Prove that (n27"),>2 is a decreasing sequence.

b) Let (an)n>1 be an increasing sequence of positive numbers and define o, = % Prove that
(0n)n>1 is also an increasing sequence.

Theorem 4.1. Every bounded monotone sequence converges.

Proof. We will prove the theorem for increasing sequences. The case of decreasing sequences is left
to Exercise 4.3. So, let a sequence (ay)n>1 increase. By the assumption of the theorem, (ay)n>1 is
bounded, that is, there exists C' € R such that |a,| < C for all n > 1. This implies that the set
A:={ay: n > 1} is also bounded. Thus, by Theorem 2.2 (i) there exists sup A =: sup a,, denoted by
n>1
a. Let us prove that a, — a, n — co. We first note that a, < a for all n > 1, since the supremum of A
is also its upper bound (see Definition 2.6). Next, we take an arbitrary ¢ > 0 and use Theorem 2.1 (i).
So, there exists a number m such that a,, > a — . By the monotonicity, a — ¢ < a,, < a, for all

n > m. Thus, setting N := m, one has a — ¢ < a, < a for all n > N which implies |a,, — a| < €. O
Exercise 4.3. Prove Theorem 4.1 for decreasing sequences.

Remark 4.1. Theorem 4.1 remains valid if one requires the monotonicity of (a,),>1 starting from
some number m, that is, the monotonicity of (an)n>m = (am, Gm+1,--.)-

Example 4.2. Prove that lim 12—? =0, wheren!:=1-2-3-...-n.
n—oo ° 41 10
10n 3

10™
i) < “ar

ﬁ)nZlO

Solution. First we note that < 10<n+1<n>9. Hence, the sequence (

is decreasing. Moreover, it is bounded below by zero. Thus, (%)nxo is bounded, by Exercise 4.1 b).
Using Theorem 4.1, one gets that there exists a € R such that lim %ﬂ = a. But we can write
n—oo :
on+tt _10m 10
(n+1)! — ! " ntl- So,
. 1ot . 1m0 10
a= lim ——— = lim — - lim =a-

This implies a = 0.

13
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Exercise 4.4. Show that a) lim 2”7'2 =0; b) lim "= =0.

n—00 n—soo 2V7"

Exercise 4.5. Find a limit of the sequence <\/§, V24+V2,0/2+V2+V2,.. )

Exercise 4.6. Let a; =1 and a,11 = %(an +1) for all n > 1.
a) Find as, as, a4.
b) Use induction to show that a, > % for all n > 1.

)
)

c¢) Show that (a,)n>1 is a decreasing sequence.
)

d) Show that 1i_)m a, exists and find it.

Exercise 4.7. Let ¢ > 0, a; > 0 and let ap 1 = % (an + i) for all n > 1.

a) Show that a, > /c for all n > 2.
b) Show that (an)n>2 is a decreasing sequence.

c¢) Show that lim a, exists and find it.
n—oo

Theorem 4.2. (i) If (an)n>1 is an unbounded increasing sequence, then li_)rn ap = +00.
- n—oo
(i) If (an)n>1 s an unbounded decreasing sequence, then lim a, = —oc.
- n—oo

Proof. We will prove only Part (i) of the theorem. The proof of Part (ii) is similar. If (ap)p>1 is
an unbounded increasing sequence, then it must be unbounded above, since it is bounded below by
ay. Taking any C' and using the unboundedness of (ay),>1, one can find a number m € N such that
am > C. Next, by the monotonicity of (ay)n>1, the inequality a,, > a,, > C trivially holds for all
n > N :=m. This proves TLIL)II;O an = +00 (see Definition 3.4). O

Corollary 4.1. If (ap)n>1 is a monotone sequence, then the sequence either converges, diverges to

400, or diverges to —oco. Thus lim a, is always meaningful for monotone sequences.
n—oo

Proof. The proof immediately follows from theorems 4.1 and 4.2. O

Exercise 4.8. Let A be a bounded nonempty subset of R such that sup A is not in A. Prove that

there is an increasing sequence (a,)p>1 of points from A such that lim a, = sup A.
- n—oo

4.2 The number ¢

In this section, we will consider two sequences of positive numbers

(o (142)) 0 (= (142)) 0

n>1

and study their properties.

14
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Theorem 4.3. The sequences defined in (1) satisfy the following properties:
1) ap < by, for allm > 1;
2) the sequence (an)p>1 increases;
3) the sequence (by)n>1 decreases.

Proof. Since b, = a, (1 + %) =a, + %" > ay, for all n > 1, Property 1) is proved.
To prove 2), we are going to use Bernoulli’s inequality (see Theorem 2.6). So, one has

an_ _ (n+1\"(n=1\"T_ m L O_ﬁ):L
Gp—1 n n n—1 n2 n—1 n2

for all n > 2. Thus, a,, > a,_1 for all n > 2.
For the prove of 3) we use the same argument. We consider

bn-1 n " n ntl ~n—1 n? et
b, \n—1 n+1 n n? —1
n—1 N | n+1
n < +n2—1) n ( +n2—1> ’

for all n > 2. Hence, b,_1 > b, for all n > 2. ]

Theorem 4.3 yields the following inequalities
g <ap <. .. <ay,<...<b,<...<by<b. (2)
Consequently, the sequences (ap)n>1 and (by)n>1 are monotone and bounded. By Theorem 4.1, they

converge. We set

n—oo n—o0

1 n
e:= lim a, = lim <1 + ) = 2,718281828459045...
n

It is known that e is an irrational number. The number e is one of the most important constants in
mathematics.
Since b,, = a, (1 + %) for all n > 1, one has b, — ¢, n — co. We also note that

<1+Tll>"<e< <1+i>n+l, (3)

Definition 4.2. The logarithm to base e is called the natural logarithm and is denoted by In := log,,

that is, for each a > 0 Ina is a (unique!) real number such that e = q.

by inequalities (2).

The inequality (3) immediately implies

1 ( 1> 1
<Inll4+—-)<—
n—+1 n n

for all n > 1.

Exercise 4.9. Show that lim (nln (1 + %)) =1.

n—oo

Exercise 4.10. Prove that for each z > 0 the sequence ((1 + %)n)n>1 is increasing and bounded.

15
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4.3 Subsequences
4.3.1 Subsequences and Subsequential Limits

Let (ap)p>1 be a sequence. We consider any subsequence (nj)g>1 of natural numbers such that
1<n <ng <...<ng<ngy <.... We note that ny > k and ny — +o00, k — oo.

Example 4.3. 1) np =k, k > 1; then (ng)e>1 = (1,2,3,...,k,...);
2) ng =2k, k> 1;then»(nk)k21 =(2,4,6,...,2k,...);
3) ng = k2 k> 1; then (ng)i>1 = (1,2,9,...,k%,...);

4) ny =2 k> 1; then (ng)r>1 = (2,4,8,...,2%..)).
Definition 4.3. A sequence (an,)k>1 = (@n,, Gnys Ang, - - - Any,, - - ) is said to be a subsequence of
(an)n21-

Thus, (an, )k>1 is just a selection of some (possibly all) of the a,’s taken in order.
Remark 4.2. The following properties follows from the definition of subsequence.
1. If a sequence is bounded, then every its subsequence is bounded.

2. If a sequence converges to a (that could be +00 or —c0), then every its subsequence also converges
to a.

Exercise 4.11. Prove that a monotone sequences which contains a bounded subsequence is bounded.

Exercise 4.12. Prove that a sequence (ay)n>1 converges iff (aox)r>1, (a2x—1)k>1 and (asg)r>1 con-
verge.

Definition 4.4. A subsequential limit of a sequence (a,),>1 is any real number or the symbol +o00
or —oo that is the limit of some subsequence of (ay,)n>1. Let A denotes the set of all subsequential
limit of (an)n>1.

Example 4.4. a) For the sequence (1,2,3,...,n,...) the set of all subsequential limit A = {+o00}.
b) For the sequence (—1,1,—1,...,(—=1)",...) the set of all subsequential limit A = {—1,1}.
c) If a,, — a, then A = {a}, by Remark 4.2.

Exercise 4.13. Prove the following statements.
a) —o0 € A < (ap)p>1 is unbounded below. b) 400 € A < (ap)p>1 is unbounded above.
Exercise 4.14. Find the set A of all subsequential limits of the following sequences.
n+1
(—1)% +n, if nis odd,

a) (sin3mn)p>1; b) (sinamn),>1 for a € Q; ¢) (an)n>1, where a,, = - o
> 2 = (—1)2 + - if n is even.
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4.3.2 Existence of Monotone Subsequence

Theorem 4.4. A number a € R is a subsequential limit of a sequence (an)n>1 iff
Ve>0VNeN3IneN: n>N, |as —a| <e. (4)

Proof. We first prove the necessity. Let a € A. Then there exists a subsequence (ay, )r>1 such that
apn, — a, k — oco. We fix an arbitrary e > 0 and N € N. By the definition of the limit, 3K; € N Vk >
K : |ap, — a| < e. Similarly, 3Ky € N VE > Ky : nj, > N. Thus, taking k= max{K1, Ka}, n := ng,
one has n > N and |a; —a| < e.

To prove the sufficiency, we are going to construct a subsequence of (ay,)n>1 converging to a. Let (4)
holds. Then, by (4), for ¢ = 1 and N = 1 there exists n; > 1 such that |a,, — a| < 1. Similarly, for
e = % and N = nj + 1 there exists ng > n; + 1 such that |a,, — a| < % and so on. Consequently,
we obtain a subsequence (an,)r>1 satisfying |an, — a| < 7 for all k > 1. Using Theorem 3.7 and

Exercise 3.5 a), one can see that a,, — a, k — oco. O

Exercise 4.15. Show that +oo € A (—oco € A) provided VC € RVN e Ndn e N: 7 > N and

Theorem 4.5. Every sequence of real numbers contains a monotone subsequence.

Proof. We consider the set M := {n € N: Vm >n a, > a,}. If M is infinite, then M can be
written as M = {ny,ng,...,nk,...}, where ny <ng <...<ng <.... By the definition of M, we have
Ay < Gpy < ... < ap, <.... S0, the subsequence (ay, )r>1 increases.

If M is finite, then let n; be the smallest natural number such that Vm > ny : m & M. Since
ny ¢ M, one can find ny > ny such that a,, > ap,. Similarly, since no ¢ M, one can find ng > na
such that a,, > an, and so on. Thus, the constructed subsequence (ay,, )i>1 decreases. O

Corollary 4.2. For every sequence the set of its subsequential limits is not empty.
Proof. The corollary immediately follows from Theorem 4.5 and Corollary 4.1. O
Theorem 4.6 (Bolzano-Weierstrass theorem). Every bounded sequence has a convergent subsequence.

Proof. The theorem is a direct consequence of theorems 4.5 and 4.1. O
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5 Lecture 5 — Cauchy Sequences. Base Notion of Functions

5.1 Subsequences (continuation)
5.1.1 Upper and Lower Limits

Definition 5.1. o Let (an)n>1 be a sequence of real numbers and A be the set of its subsequential
limits. The value

—o0, if A is unbounded below;
lim a, = < inf A, if A is bounded below and A # {+o00};
e +oo, if A= {+o0}

is called the lower limit of (a,)n>1.

e The value
400, if A is unbounded above;

lim a, =< sup A, if A is bounded above and A # {—oc};

n—oo
—o00, if A={-o0}
is called the upper limit of (a,)p>1.

Remark 5.1. If (a,),>1 is a bounded sequence, then lim a, = inf A and lim a, = sup A.
N n—o0 n—00

Example 5.1. If a,, — a, n — oo, then lim a, = lim a, = a, since A = {a} in this case.
n—o00 n—00

Exercise 5.1. Prove that a, = a, n — o0 < lim a, = lim a, = a.
n—oo n—,oo
Theorem 5.1. Let&n)nzl be a sequence of real numbers and A be the set of its subsequential limits.
Then lim a, and lim a, belong to A.
n—o00 n—oo
Remark 5.2. If a sequence (ay),>1 is bounded, then inf A = min A and sup A = max A, by Theo-

rem 5.1, Remark 5.1 and Exercise 2.3. It means that lim a, and lim a, are the minimal and the
n—00 n—0o0

maximal subsequential limits of the bounded sequence (ay,)n>1, respectively.

Theorem 5.2. The following equalities hold: a) lim a, = lim inf{ay: k> n}=: lim inf ay;
n—00 n—00 n—oo k>n
b) lim a, = lim sup{ax: k>n} =: lim supa.

Exercise 5.2. Prove Theorem 5.2.

Exercise 5.3. For a sequence (a,),>1 compute lim a, and lim a,, if for all n > 1
- n—o00 n—00

a)a,=1-—1; b)a,= (_i)n + 1+(;1)n; ¢) ap = 2t cos 2255 d) a, = 1+ nsin %
e) ap = (1+2)" (=1)" +sin 2.
Exercise 5.4. Let (ay)n>1 be a sequence of real numbers and o, := W, n > 1. Prove that

lim a, < lim o, < lim o, < lim a,.
n—oo n—oo n—oo n—oo

Compare with the statement from Exercise 3.16.
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Exercise 5.5. Check that

lim a, + lim b, < lim (a5, +b,) < lim (a, +b,) < lim a, + lim by,.
n—00 n—00 n—00 n—oo n—00 n—0o0

5.2 Cauchy Sequences

Definition 5.2. A sequence (ay)n>1 of real numbers is called a Cauchy sequence if

Ve>03dN eNVn>NVm>N: |a, —an| <e.

Example 5.2. 1. The sequence (i

2")n>1 is a Cauchy sequence. Indeed, since 2% — 0, n — 00, (see
Theorem 3.3), one has that for every given € > 0 there exists N € N such that for each n > N
2% < e. Consequently, for every n > N and m > N we can estimate }2% — 2% < 2% < g, where

k := min{n,m} > N.

2. The sequence (a, = (—1)"),>; is not a Cauchy sequence. To check this, we take € := 1. Then
VN € N3dn:= N and 3m := N + 1 such that |a, — apy| =2 > €.

Exercise 5.6. Prove that a monotone sequence which contains a Cauchy subsequence is also a Cauchy
sequence.

Exercise 5.7. Show that (a,),>1 is a Cauchy sequence iff  sup  |ap, —ap| — 0, N — oc.
- m>Nn>N

Lemma 5.1. Every convergent sequence is a Cauchy sequence.
Proof. Let a, — a, n — oo, and let € > 0 be given. By the definition of convergence (see Defini-

tion 3.3), for the number § there exists N1 € N such that Vn > Ni |a, — a| < §. Thus we have that
Vn>N:=N;yand Vm > N

lan, — am| = lan —a+a —ap| <la, —a| + |a — an| <%—|—§:5,
by the triangular inequality. O
Lemma 5.2. Every Cauchy sequence is bounded.
Proof. The proof is similar to the proof of Theorem 3.5. O

Exercise 5.8. Prove Lemma 5.2.
Theorem 5.3. A sequence converges iff it is a Cauchy sequence.

Proof. The necessity was stated in Lemma 5.1. We will prove the sufficiency. Let (an)n>1 be a
Cauchy sequence. By Lemma 5.2, it is bounded. Thus, using the Bolzano-Weierstrass theorem (see
Theorem 4.6), there exists a subsequence (ayp, )r>1 which converges to some a € R.

Next, we are going to show that a,, — a, n — co. Let € > 0 be given. Since (ay,)n,>1 is a Cauchy
sequence, for the number § > 0 3N; € NVm > N Vn > N such that |a,, —a,| < §. By the definition
of convergence, we have that 3K € N Vk > K such that |a — ay,| < §. Thus, ¥n > N := N

€ €
lan, — a| = |an — an, + an, — a| < |an — an,| + |an, —al < §+§=6,
where k is any number satisfying k£ > K and ng > N. O
Exercise 5.9. Show that the sequence (an = Sg‘ll + Siznf 4+ ...+ 51221”)”21 is a Cauchy sequence.

Exercise 5.10. Let (ay),>1 be a sequence which satisfies the following property: there exists A € [0, 1)
such that |apy2 — ant1| < Alap+1 — ay| for all n > 1. Prove that (ay)n>1 converges.
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5.3 Base Notion of Functions
Let X and Y be two sets.

Definition 5.3. e A function f is a process or a relation that associates each element x of X to
a single element y of Y. The set X is called the domain of the function f and is denoted by
D(f). The set Y is said to be the codomain of f. We will use the notation f: X — Y.

e The element y € Y which is associated to x € Y by a function f is called the value of f applied
to the argument z or the image of x under f and is denoted by f(x). We will also write

x— f(x).

e The set
R(f)={yeY: JreXy=f(2)}

is called the range or the image of the function f.
o If Y C R, then f is called a real valued function.
In further sections, we will usually consider real valued functions with D(f) C R.

Exercise 5.11. Determine domains X C R for which the following functions f : X — R are well-
defined:

a) f(z) = 7 b) f(z) = VB —a%; o) f(z) = In(a® - 4); d) \/eos(22); e) f(z) = 3.
Exercise 5.12. Compute f(—1), f(—0,001) and f(100), if f(z) = lg(2?).

Exercise 5.13. Compute f(—2), f(—1), f(0), f(1) and f(2), if

142z, ifz <0,
€Tr) =
/(@) {2x, if x> 0.

Exercise 5.14. Define the range R(f) of the following functions:

a) X=2Z,Y=Zand f(z)=|z| -1, z € Z;
b) X =R, Y =Rand f(z) =22 +z, 2 € R;
c) X=(0,0),Y =Rand f(z) = (z—1)Inz, z > 0.
Exercise 5.15. Let f(z) = ax? 4+ bx + ¢, x € R, where a, b, c are some numbers. Show that
flx+3)=3f(x+2)+3f(x+1)— f(z) =0.

Exercise 5.16. Find a function of the form f(x) = az? + bz + ¢, x € R, which satisfies the following
properties: f(—2) =0, f(0) =1, f(1) =5.

Definition 5.4. We will say that a function f; : X1 — Y7 equals a function fo : Xo — Y5, if X; = X
and fi(z) = fa(z) for all x € X;. We will use the notation f; = fo.

Definition 5.5. Let f: X — Y be a function and A be a subset of X. The function f|4 : A =Y
defined by fla(z) = f(x) for all z € A is called the restriction of f to A.
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Definition 5.6. For sets A and B, we will denote the new set A x B that consists of all ordered pairs
(a,b), where a € A and b € B, that is,

Ax B:={(a,b): a€ A, be B}.
The set A x B is called the Cartesian product of A and B.

Definition 5.7. The set G(f) = {(z, f(z)) : * € X} is said to be the graph of a function f : X — Y.
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6 Lecture 6 — Limits of Functions

6.1 Base Notion of Functions (continuation)

Definition 6.1. Let f : X — Y and g : Y — Z be functions. The function h : X — Z defined by
h(z) = f(g(x)) for all x € X is called the composition of f and g and it is denoted by h = f o g.

Definition 6.2. Let f: X - Y, AC X and B C Y. The set

f(A):={f(z): =€ X}
is said to be the image of A by f. The set

f7H(B) ={z: f(z) € B}
is called the preimage of B by f.
Be note that f(A) is a subset of Y and f~!(B) is a subset of X.

Example 6.1. Let X = R, Y = R and f(z) = 2%, x € R. Then f([0,1)) = f((-1,1)) = [0,1);
FH=4,4) = £71([0,4]) = [=2,2) f1((L,9]) = [-3, =1 U (L,3]; f((~00,0)) = 0.
Exercise 6.1. Let f: X — Y and A; C X, Ay C X. Check that

a) f(A1UAz) = f(A1) U f(A2); D) f(A1NA2) C(f(A1) N f(A2); ¢ (f(A1)\ f(A2)) C f(A1\ Az);
d) A1 C Ay = f(A1) C f(A2); e) Ay C fH(f(A1); f) (F(X)\ f(A1) C X\ Ay).

Exercise 6.2. Let f: X — Y and By CY, By C Y. Show that

a) fTH(B1UBy) = fH(B1) U f~H(Ba); b) f~H(B1NB) = f1(B1)N f1(Ba);

) f7H(B1\By) = f1(B)\f'(B2); d) B1 C By = f~H(B1) C f1(Ba); e) f(f~'(B1)) = Binf(X);
f) f~HBf) = (f~1(B1))"

Definition 6.3. e A function f : X — Y is surjective or a surjection, if f(X) =Y, ie. for
every element y in Y there is at least one element z in X such that f(z) = y.

e A function f : X — Y is injective or an injection, if for each x1,z0 € X 1 # xo implies

f(x1) # f(x2).

e A function f: X — Y is bijective or a bijection or an one-to-one function, if it is surjective
and injective, that is, for each y € Y there exists a unique element € X such that f(x) = y.
We set f~1(y) := x. The function f~!:Y — X is called the inverse function to f.

Exercise 6.3. Prove that the composition of two bijective functions is a bijection.

Exercise 6.4. Check the following statements:

a) f: X =Y is a surjection iff for all y € Y f~1({y}) # 0.

b) f: X — Y is an injection iff for all y € Y the set f~'({y}) is either empty or contains only one
element.

c) f: X — Y is a bijection iff for all y € Y the set f~'({y}) contains only one element.

Exercise 6.5. a) Let functions f : X — Y and g : Y — X satisfy the following property g(f(x)) =«
for all x € X. Prove that f is an injection and g is a surjection.
b) Let additionally f(g(y)) =y for all y € Y. Show that f, g are bijections and g = f~1.

Remark 6.1. Every sequence (ay),>1 of real numbers can be considered as a function f : N — R,
namely, f(n) := a, for all n € N.
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6.2 Limit Points of a Set

Definition 6.4. Let a be a real number or the symbol +0o or —co. Then a is called a limit point
of a subset A of R, if there exists a sequence (an)p>1 satisfying the following properties: 1) a, € A
and a,, # a for all n > 1; 2) a, — a, n — oc.

Example 6.2. e For the set A = [0, 1], the set of its limit points is A.
e For the set A = (0, 1] U {2}, the set of its limit points is [0, 1].
e The set A = {% :ne N} has only one limit point 0.
e The limit points of A = Z are +00 and —co.
e The set A ={1,2,3,...,10} has no limit points.
For convenience, we will denote the e-neighbourhood of a point a by
B(a,e) == (a—¢c,a+¢e)={yeR:|a—y| <e}.
Theorem 6.1. (i) A real number a € R is a limit point of a subset A of R iff
Ve>03JyeA y#a: |ly—al<e, (5)
that is, each e-neighbourhood B(a,¢€) of the point a contains at least one point different from a.
(i) The symbol a = +00 (a = —o0) is a limit point of a subset A of R iff
VCeRIyeA: y>C (y<O).

Proof. We will prove only Part (i). If a is a limit point of A, then (5) immediately follows from the

definition of the limit of a sequence and the definition of a limit point (see definitions 3.3 and 6.4).
Next, let (5) hold. Then for each € := 1 there exists a,, € A and a,, # a such that |a, —a| <e = 1.

By theorems 3.7 and 3.2 and Exercise 3.5 a), a,, = a, n — co. So, a is a limit point of A. ]

Exercise 6.6. Prove that the set of all limit points of Q equals R U {—o0, +00}.

Exercise 6.7. Let a be a limit point of A. Show that every neighbourhood of the point a contains
infinitely many points from A.

Definition 6.5. A point a € A is an isolated point of a set A, if it is not a limit point of A.
Remark 6.2. A point a € A is an isolated point of A iff 3¢ > 0 such that B(a,e) N A = {a}.
Example 6.3. e The set A = [0, 1] has no isolated points.

e The set A = (0,1] U {2} has only one isolated point 2.

e For the set A = {% tnE N}, the set of its isolated points is A.
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6.3 Limits of Functions

In this section, we will assume that A is any subset of R and f: A — R.

Definition 6.6. Let a be a limit point of A. The value p (maybe p = —c0 or p = +00) is called a
limit of the function f at the point q, if for every sequence (x,),>1 satisfying the properties: 1)
Tn € A,y #aforaln>1;2) z, - a n— oo, implies f(z,) — p, n = oo. In this case, we will
write }gr}lf(a:) =por f(x) = p, z— a.

Example 6.4. Let A =R, f(z) = 2%, € R. Then liin f(x) = lim 22 = a? for each a € R. Indeed,

r—a
let {z}n>1 be a sequence of real numbers such that x,, # a for all n > 1 and z,, = a, n — co. Then

lim f(z,)= lim 22 = lim x,- lim 2, = a-a = a?, by Theorem 3.8 c).

Example 6.5. Let A =R\ {0}, a =0, and f(z) = Sig‘”, x € A. Then lim % = 1. To show this, we

z—0
will compare areas of triangles and a sector of a circle with radius 1. So, we obtain for each x € (O, %)

1. < 1 - 1 ;
=8 - — tan .
5 SinT < 52 < S tany
This yields )
sin
cosz < ot < 1, (6)
x
for all = satisfying 0 < z < 7, and, consequently, for all 0 < |z| < T because each function in the
latter inequalities is even. Thus, if {z, },>0 is any sequence such that z,, # 0 for all n > 1 and x,, — 0,
then inequality (6) and the Squeeze theorem (see Theorem 3.7) implies that lim *2fn =1.
n—o0 n

Remark 6.3. Inequality (6) implies that |sinz| < |z| for all z € R. Moreover, |sinz| = |z| iff x = 0.

Exercise 6.8. Prove that ﬁ — 0,z — a, if f(z) — 400, z — a.

Example 6.6. Show that for every ¢ € R lim sinz = sina and lim cosx = cosa.
r—a T—a

Solution. We prove only the first equality. The proof of the second one is similar. So, using
properties of sin and cos and Remark 6.3, we can estimate

r—a

2

z+a |z — al

2

<2-1-

- [sin

COS

|sinz — sinal = 2 = |z —al,

for all x € R. Thus, if (z,)n>1 is any sequence which convergences to a, one has sinx,, — sina, by
the Squeeze theorem (see Theorem 3.7).

Exercise 6.9. Prove that the limit of the function f(z) =sinl, 2 € R\ {0}, does not exists at the
point a = 0.
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7 Lecture 7 — Limits of Functions. Left- and Right-Sided Limits

7.1 Limit of Functions via ¢ — § Approach
Let A be a subset of R. We recall that B(a,e) = (a — &,a + ¢) denotes the e-neighbourhood of a.

Theorem 7.1. (i) Let p be a real number and a € R be a limit point of A. Then liin f(x) =p s

equivalent to
Ve>030>0Ve e AN B(a,d), z#a: |f(x)—p|l <e.

it) If p=+o00 and a € R, then ;13; f(z) = 400 is equivalent to
VC eR 3 >0Ve e AN B(a,d), z#a: f(x)>C.
ii1) If p € R and a = 400, then xll}r_iI_loo f(x) = p is equivalent to
Ve>03DeRVe>D: |f(x)—p| <e.
i) If p=+o0 and a = +oo, then xEToo f(x) = +o0 is equivalent to

VCeR3IDeRVr>D: f(x)>D.

Example 7.1. A =R\ {1}, a =1 and f(z) = ”;2:11, x € A. Then lim1 ”;2:11 = 2. Indeed, let us fix
z—
an arbitrary ¢ > 0. Then we can take 6 := ¢ because for all z € AN B(1,d) we have gf__ll - 2‘ =

lt+1-2|=|z—-1<d=c¢.
Example 7.2. We show that lim (1 + l)z =e.

T—+00 x
By the definition of the number e (see Section 4.2), we have

1 n 1 n+1n+1 1 n+1
1+ =1+ — e and 1+ — —e, N — 0.
n+1 n+1 n-+2 n

Hence, using the definition of the limit (see Definition 3.3), we obtain that for each € > 0 there exists
N € N such that for each n > N

1 n 1 n+1
e—6<(1+ ) , (l—i—) <e+e.
n+1 n

So, taking D := N, we can estimate for each x > D

1 [z] 1\ 7% 1 [z]+1
e—£<<1+ > <<1+) <(1—|—> <e+e,
lz] +1 z lz]

where |z ] is the greatest integer number less than or equal to z, e.g. [1,7] =1, L—%J =-1, |r] =3.
Consequently, |(1 + %)x — e‘ < g for all z > D. This implies 1i141_1 (1 + %)x = e, by Theorem 7.1 (iii).
T—+00

Exercise 7.1. Compute the following limits
a) ili)l}) (zsinl); b) lim (2 [1]).

z—0
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Example 7.3. Let b> 1, A=R, m e Nand f(z) =2™b"", z € R.
We show that lim f(z) = lim £ =0.
T—r+400 T—-+00

Solution. Let ¢ > 0 be given. According to Theorem 3.3, we have ("Jgi)m = (Tgti)lmb — 0,

n — oo. By the definition of the limit (see Definition 3.3), there exists N € N such that for all n > N

Oﬁ% < e. Thus, taking D := N, we obtain that for each x > D ”2—;” — 0! = ”Z—T; < (L%L;ﬂl)m < €.

This implies lim %> = 0, by Theorem 7.1 (iii).
Tr——+00

Exercise 7.2. Prove that lim 2% —.
T——+00

7.2 Properties of Limits

Let a be a limit point of a set A.

Theorem 7.2. If lim f(z) = p1 and lim f(z) = po, then p1 = pa.
r—a r—a

Proof. The theorem immediately follows from the uniqueness of limit for sequences (see Theorem 3.1).
Indeed, let {zy }n>1 be an arbitrary sequence from A such that z,, # a, for all n > 1 and z,, — a, then
by the definition of the limit (see Definition 6.6), f(x,) — p1, n = oo, and f(z,) — p2, n — co. By
the uniqueness of limit for sequences (see Theorem 3.1), one has p; = ps. O

Theorem 7.3. Let functions f,g : A — R satisfy the following properties: a) f(x) < g(x) for all
x€A; 2)lim f(x) =p and lim g(z) = q. Then p < gq, that is, lim f(z) < lim g(z).
T—a T—a Tr—a T—a

Proof. The theorem immediately follows from Theorem 3.6. O
Exercise 7.3. Prove Theorem 7.3.
Theorem 7.4 (Squeeze theorem for functions). Let f,g,h: A — R satisfy the following conditions:
a) f(x) < h(z) < g(a) for all z € A;
b) lim f(z) = lim g(z) = p.

Then lim h(z) = p.

Tr—a

Proof. The theorem follows from the Squeeze theorem for sequences (see Theorem 3.7). O
Exercise 7.4. Prove Theorem 7.4.

Theorem 7.5. We assume that for functions f,g: A — R there exists limits liLn flx)=p€eR and
xr a

lim g(z) = ¢ € R. Then

T—ra

a) lim(c- f(z)) =c- lim f(x) for all c € R;

) lim (f(x) + g(x)) = lim f(x) + lim g(z);
¢) I (f(x) - g(x)) = limn f(z) - lim g(z);
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lim
d) hm ) _ z~>a qu#o

z—a 9(x) — lim g(w) ’

Proof. The theorem follows from Theorem 3.8. 0
Exercise 7.5. Prove Theorem 7.5.

Exercise 7.6. Let a ¢ {mn: n € Z}. Prove that lim cotz = cota. (Hint: Use Example 6.6)
Tr—a

Example 7.4. Let o € R, and b > 1. Show that lim ‘g—: =0.

r—r-+00

Exercise 7.7. Show that for every a > 0 lim v/ = y/a.
r—a

Exercise 7.8. Compute the following limits:

. tanzx x?4cosz+1 . : ( \/27_ . ) 1— cosx _ 1.
a) glﬁlg% =< b) xllH—oo W=t c) xgrfm r(Vz?+2z+2—-—xz—-1)); d) hn%] = 5
e) ;13% (ﬁ - ﬁ), f) 11;1% %/% - 8) hmoo(\/cw: + 1 — /x), for some a > 0.

7.3 Left- and Right-Sided Limits

Let A be a subset of R and a is a limit point of A satisfying the following property

there exists a sequence (x,)n>1 such that

(7)

T, €A, x,<a forall n>1 and z, — a, n— oco.

Definition 7.1. A number p € R is the left-sided limit of a function f : A — R at the point a if
for each sequence (z,,)n>1 such that 1) x, € A, x, < a for all n > 1; 2) z,, — a, n — oo, it follows
that f(z,) — p, n — oo. We will use the notation p = f(a—) or p= lim f(z).

r—a—

Theorem 7.6. We assume that a € R and (a —v,a) C A for some v > 0. Then p = hm f(z) iff

Ve>030>0Ver e (a—4d,a): |f(z)—p|<e.
Next, if a is a limit point of A satisfying the following property

there exists a sequence (x,),>1 such that

Tn €A, xp>a forall n>1 and z, —a, n— oo,

then we can introduce the right-sided limit of a function.

Definition 7.2. A number p € R is the right-sided limit of a function f: A — R at the point a if
for each sequence (x,,),>1 such that 1) x,, € A, x, > a for all n > 1; 2) x,, = a, n — oo, it follows
that f(z,) — p, n — oo. We will use the notation p = f(a+) or p = lim+ f(x).
r—a
Theorem 7.7. We assume that a € R and (a,a + ) C A for some v > 0. Then p = lim+f(x) iff
r—ra

Ve>030>0Vx € (a,a+9): |f(x)—p|l <e.
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Example 7.5. For the function

1, ifx >0,
sgn(z) =<0, ifz=0,
-1, ifz <0,

one has sgn(0—) = —1, sgn(0) = 0 and sgn(0+) = 1.

Theorem 7.8. Let f : A — R and a be a limit point of A which satisfies properties (7) and (8).
Then the limit ligl f(z) exists iff f(a—) and f(a+) exist and are equal to each other. In this case,

lim f(z) = f(a") = f(at).

Proof. The necessity of the theorem immediately follows from the definition of the limit of f at a.
Next we prove the sufficiency. Setting p := f(a—) = f(a+), we are going to show that lim f(z) = p.
r—ra

Let (z5,)n>1 be as in Definition 6.6, i.e. it satisfies the properties: 1) z, € A, x, # a for all n > 1;
2) &, — a, n — oo. If all elements of the sequence are from one hand side of a starting from some
number N, that is, z,, < a for allm > N or x,, > a for all n > N, then f(z,) — f(a—) = p, n — oo, or
f(zn) = f(a+) = p, n — oo, respectively. Next, we assume that infinitely many elements of (xy,)n>1
are from both hand sides of a. We construct two subsequences (yy)n>1 and (2n)n>1 of (25 )n>1, where
(Yn)n>1 consists of all elements of (z,,)n>1 which are less than a and (z,)n>1 consists of all elements
of (zp)n>1 which are grater than a. Then f(y,) — f(a—) = p, n — oo, and f(z,) = f(a—) = p,
n — oo. This implies f(z,) — p, n = . O

Exercise 7.9. Compute the following limits:
1
e x

. z—Z . z—I . _1 .
a) lim —2—=; b) lim ——2=:; ¢) lim e =; d) lim .
) P V1—sinz’ ) oI+ V1-—sinz’ ) 2—0+ ’ ) z—0+ <~

7.4 Existence of Limit of Function

Let A be a subset of R.

Definition 7.3. A function f : A — R is said to be increasing (decreasing) on A if for all x1, 29 € A
the inequality 1 < z2 implies f(z1) < f(22) (f(z1) = f(22)).

Example 7.6. The function f(x) = 22, x € R, decreases on (—o0,0] and increases on [0, +00).

Definition 7.4. A function f: A — R is called a monotone function on A if it is either increasing
or decreasing on A.

Definition 7.5. A function f: A — R is said to be bounded on A if the set f(A) is bounded, that
is, there exists C' > 0 such that |f(z)| < C for all z € A.

Theorem 7.9. (i) If f : A — R be a monotone and bounded function, then for each limit point a
of A which satisfies (7) the left-sided limit limﬁ f(x) exists and belongs to R.

(i) If f + A — R be a monotone and bounded function, then for each limit point a of A which
satisfies (8) the right-sided limit 1_1>m+f(9:) exists and belongs to R.
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Proof. We will prove only Part (i). Let f : A — R increase and be bounded. We consider the set
B :={zx € A:x < a}. By (7), it is non-empty. Consequently, the set f(B) is also non-empty.
Moreover, it is bounded, by the boundedness of the function f. We set

p = sup f(B) = sup f(z),
rx<a
which exists according to Theorem 2.2.

We are going to show that f(a—) = p. Let (z5,)n>1 be an arbitrary sequence such that 1) z,, € A,
xn < afor all n > 1; 2) x,, — a, n — oco. Since for each n > 1 z,, < a, we have f(z,) < p for each
n > 1, by the definition of supremum (see Definition 2.6).

Next, we fix € > 0 and show that there exists N € N such that |p — f(z,)| =p — f(x,) < € for all
n > N. By Theorem 2.1 (i), there exists b < a such that p —e < f(b). Since z,, = a, n — oo, for
e1 := a—>b > 0 there exists N such that for alln > N |a—z,| = a—x, < &1 = a—b. Hence, z,, > b for
all n > N. Consequently, using the increasing of f, we obtain |p — f(z,)| =p— f(zn) <p— f(b) < e.
This proves that f(z,) — p, n — oo, and, thus, f(a—) = p.

If the function f decreases and is bounded, then f(a—) := ;22 f(x). The proof is similar. O

Exercise 7.10. Prove Part (ii) of Theorem 7.9.

Exercise 7.11. Let f be an increasing function on an interval [a, b].
a) For each ¢ € (a,b) show that the one-sided limits f(a+), f(c—), f(c+), f(b—) exist.
b) Check the inequalities

fla) < flat) < flem) < fle) < flet) < f(b=) < f(D),
for all ¢ € (a,b).

c¢) Prove that $li>1£1+ f(z—) = f(c+) and lim f(z+) = f(c—) for all ¢ € (a,b).

r—Cc—

Theorem 7.10 (Cauchy Criterion). Let a € R be a limit point of A and f : A — R. A (finite) limit
of f at the point a exists iff

Ve >030>0Ve,y e ANB(a,d), x#a, y#a: |f(x)— fly)] <e.
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8 Lecture 8 — Continuous Functions

8.1 Definitions and Examples

Let A CR, a € A be a limit point of A and f: A — R.

Definition 8.1. A function f is said to be continuous at a, if Cll_I)I(ll f(x) = f(a), ie. :llg(ll fz) =
1 (tmy ).

By the definition of limit of function (see Definition 6.6) and Theorem 7.1, the following two
definitions are equivalent to Definition 8.1.

Definition 8.2. A function f is said to be continuous at a, if for each sequence (x,),>1 such that
1) z, € A for all n > 1; 2) z, — a, n — oo, it follows that f(z,) — f(a), n — oo.

Definition 8.3. A function f is said to be continuous at q, if
Ve>030>0Vx e AN B(a,d): |f(z)— f(a)| <e.

Now we want to introduce the left and right continuity. For this we assume that a € A satisfies (7)
(vesp., (8))-

Definition 8.4. A function f is said to be left continuous (resp. right continuous), if f(a—) =

7(a) (xesp. f(a+) = f(a)).
Remark 8.1. 1. If (a —v,a] C A for some v > 0, then f is left continuous iff
Ve>030 >0Ve € (a—d,a]: |f(z)— fla)|] <e.
This immediately follows from Theorem 7.6.
2. If [a,a + ) C A for some v > 0, then f is right continuous iff
Ve>030>0Vx €[a,a+9): |f(z)— fla)] <e.
This follows from Theorem 7.7.

Remark 8.2. Let a satisfy properties (7) and (8). Then, by Theorem 7.8, a function f is continuous
at the point a iff f is left and right continuous at a.

For convenience we will suppose that every function is continuous at each isolated point, points
from A which are not its limit points.

Definition 8.5. A function f : A — R is called continuous on the set A, if it is continuous at each
point of A. We will often use the notation f € C(A).

Theorem 8.1. Let functions f : A — R and g : A — R be continuous at a € A. Then
a) for each real number c the function c- f is continuous at the point a;
b) the function f + g is continuous at the point a;

¢) the function f - g is continuous at the point a;
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d) the function g is continuous at the point a, if additionally g(a) # 0.

In the theorem, the functions ¢- f, f+g9, - g, 5 are defined in the usual way. For instance,
f-g:A—Risdefined as (f - g)(x) = f(x) - g(z) for all z € A.

Example 8.1. For an arbitrary real number ¢ we define the function f(z) = ¢, x € R. Then f € C(R).

Example 8.2. Let f(x) = z, x € R. Then f € C(R). Indeed, to show this, let us use e.g. Defini-
tion 8.3. We fix any a € R. Then we obtain that for every € > 0 there exists § := ¢ > 0 such that for
each z € B(a,0) |f(z) — f(a)| = |xr —a|] < d = €. So, f is continuous at a. Since a was an arbitrary
point of R, f is continuous on R.

Example 8.3. Let P(z) = apz™ + a12™ ' + ... + @m_12 + am, © € R, where m € NU {0} and
ap, ai, ..., a;y are some real numbers. The function P is called a polynomial function. Theorem 8.1
and examples 8.1, 8.2 imply that P € C(R).

Example 8.4. Let P and @ be two polynomial functions. We define the function R(z) = Qo)
z € {z€R: Q(z) # 0}, which is called a rational function. By Theorem 8.1 and Example 8.3, the
rational function R is continuous at any point where it is well-defined.

Example 8.5. The functions sin and cos are continuous on R. The functions tan and cot are con-
tinuous on the set where they are well-defined. The continuity of functions sin and cos follows from
Example 6.6. For the functions tan and cot the continuity follows from Theorem 8.1 and the equalities

__ sinx __ COosST
tanz = 2= and cotx = e

Example 8.6. Let a > 0 and f(z) = a”, x € R. Then f € C(R).

Exercise 8.1. Prove that the function from Example 8.6 is continuous on R.
Exercise 8.2. Compute thleollowing limits:
: _ . : x*—3"+1. : rcosx+1
a‘) glglg%(tanx ex)’ b) iL}HlZ r—sinmx ’ C) ili% 341
Exercise 8.3. Let a, b be a real numbers, f(z) =x+1, x <0 and f(z) = ax+b, z > 0. a) For which
a,b the function f is monotone on R? b) For which a, b the function f is continuous on R?

Exercise 8.4. Let f(z) = |z|sinmz, z € R. Prove that f € C(R) and sketch its graph.
(Hint: If « € |k, k + 1) for some k € Z, then |z| = k and f(z) = ksinmz. Find f(k—) and f(k+) at the points k)

Exercise 8.5. Let f : R — R be a continuous function on R and f(r) = 73 +7+1 for all » € Q. Find
the function f.

Exercise 8.6. Show that |f| € C(A), if f € C(A), where |f|(z) :=|f(z)|, z € A.

Exercise 8.7. For functions f,g € C(A) we set h(z) := min{f(x),g9(z)}, = € A, and l(x) :=
max{ f(z),g(x)}, x € A. Prove that h,l € C(A).
(Hint: Use the equalities min{a,b} = % (a + b — |a — b|) and max{a,b} = L(a+b+|a—b|).)

Definition 8.6. If a function f : A — R is not continuous at a point a € A, then f is said to be
discontinuous at the point a.

Example 8.7. The function sgn, defined in Example 7.5, is continuous on R\ {0} and discontinuous
at 0.

Exercise 8.8. Prove that the function f(z) =sini, z # 0, and f(0) = 0, is discontinuous at 0.

Exercise 8.9. Show that the Dirichlet function f(z) = 1, z € Q, and f(z) =0, x € R\ Q is
discontinuous at any point of R.
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8.2 Some Properties of Continuous Functions

Theorem 8.2. Let a function f : A — R be continuous at a € A and f(a) < q. Then
36 >0Ve € AN B(a,d): f(x)<gq.

Proof. Using Definition 8.3, we obtain that for ¢ := ¢ — f(a) > 0 there exists § > 0 such that for all
x € AN B(a,0) |f(z) — f(a)] < e =q— f(a). In particular, f(x) — f(a) < ¢ — f(a), which implies
f(z) < q for all z € AN B(a,?). O

Theorem 8.3 (Limit of composition). Let a be a limit point of A (which could be +o00 or —oo)
and let for a function f : A — R there exists a limit lim f(z) = p € R. We also assume that
T—a

f(A)N{p} C B and a function g : B — R is continuous at the point p. Then lii\n g(f(x)) = g(p), that
is, lim g(f(2)) = g (lim f(z)).

Proof. For any sequence (xy),>1 satisfying properties 1) and 2) from the definition of limit (see
Definition 6.6), one has f(x,) — p, n — oo. Since g is continuous, g(f(x,)) — g(p), n — oo, by
Definition 8.2. O

Theorem 8.4 (Continuity of composition). We assume that f : A — R is continuous at a € A,
f(A) C B and a function g : B — R is continuous at the point f(a). Then the function go f is
continuous at the point a.

Proof. The statement immediately follows from Theorem 8.3, setting p := f(a). O

Let (a,b) C R, where —0o < a < b < +o0. Let f : (a,b) — R be an increasing function. By
Theorem 7.9 (ii), there exists 1im+ f(z) =: c € R, if f is bounded below. If f is unbounded below,
Tr—a

then it is easy to see that lim f(x) = —oo =: ¢. Consequently, lim f(z) = c can be well defined for
T—a+ T—a+

any increasing function. Similarly, m? f(x) =:d < +oo is also well defined.
T—b—

Theorem 8.5 (Existence of continuous inverse function). Let a function f : (a,b) — R satisfy the
following properties:

1) f strictly increases on (a,b), that is, for any x1,z2 € (a,b) x1 < x2 implies f(x1) < f(x2);
2) [ € C((a,b)).
We set ¢ := ml_l)rgfllJr f(z) and d := xli>rlI)1— f(z).
Then there exists a function g : (¢,d) — (a,b) such that
a) g is strictly increasing on (c,d);
b) g € C(c,d));
¢) g(f(x)) =z for all x € (a,b), and f(g9(y)) =y for all y € (c,d), that is, g = f~1.

Remark 8.3. A similar statement also is true for a strictly decreasing function f : (a,b) — R, i.e.
for a function such that for any z1,x2 € (a,b) x1 < x2 implies f(z1) > f(x2).

Remark 8.4. If a € R, then Theorem 8.5 is also valid for the set [a,b).
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8.3 Some Inverse Functions

Example 8.8. n-th root function g(y) = z/y, y > 0.
Let m € N be fixed. We set [a,b) = [0,4+00) and f(x) = 2™, z € [0, +00). The function f satisfies
conditions of Theorem 8.5, namely, it strictly increases and is continuous on [0,4o00). Moreover,

c= lim 2™ =0and d = lim 2" = +oo. Thus, according to Theorem 8.5, there exists a function
z—0+ r—+400

g : [0,+00) — [0,400) which increases and is continuous on [0, +00) and inverse to f. Usually, the
function g is denoted as follows 7/y = yi :=g(y), y > 0. Moreover, V/z™ = x for each x > 0 and

(x/y)™ =y for each y > 0 .

Example 8.9. Logarithmic function g(y) = log,y, y > 0.
Let p > 0, p # 1 and f(z) = p*, x € R. We want to prove that the function f has the inverse
function, which is called the logarithm. We will consider the case p > 1, for which the function f

is strictly increasing and continuous, by Example 8.6. Moreover, c= lim p®* =0and d = lim p®.
T—>—00 T—+00

By Theorem 8.5, there exists a function g : (0, +00) — R, which is continuous on (0, +00) and inverse
to f. The function g is denoted by log,y := g(y), y > 0, and it satisfies log, p” = z for all z € R and
P8 Y =y for all y > 0.

Example 8.10. Trigonometric functions arcsin, arccos, arctan, arccot.

Let [a,b] = [—g, %], f(z) =sinz, z € [—%, g] By the definition of sin, it is strictly increasing

on [—g, g] Furthermore, by Example 8.5, sin is continuous on R and, in particular, on [—g, g]
Thus, using Theorem 8.5, there exists the continuous inverse function g : [—1,1] — [—g 5| to f. It

is denoted by arcsiny := g(y), y € [—1,1], and satisfies arcsin(sinz) = z for all z € [-%, %] and
sin(arcsiny) =y for all y € [—1,1].

Similarly, one can define the functions arccos : [—1,1] — [0, 7], arctan : R — (=%, %) and arccot :
R — (0,7), which are inverse to cos : [0,7] = [~1,1], tan : (=%,%Z) — R and cot : (0,7) — R,

respectively. Moreover, each function is continuous on the set where it is defined.
Exercise 8.10. Sketch the graphs of the functions In = log,, log 1 arcsin, arccos, arctan and arccot.

Exercise 8.11. Compute the following limits:

. In(1+x)+tarcsina? . arctanz . . arcsinz. : x . . arctanz.
a) il_r{%) arccos x+cosx b) ilinl 1+arctan 22’ C) ili% x ’ d) il_r% sin x+arcsin x’ e) ig% x ’
. arccosz—ZI . sin(arctanz
f) lim ———2; g) lim %
z—0 z—0 anz

8.4 Some Important Limits

Theorem 8.6. Let a >0 and a # 1. Then

lim log,(1+ z)

=1
z—0 x %8a ®
in particular, for a = e
In(1
lim M - 1.
z—0 X

Proof. We are going to use Theorem 8.3 ablout limit of composition 1111 order to prove the needed
equality. Let A = (=1,+00), f(z) = (1+z)z, 2> -1, p= lir%(l +x)z =e>0; B=(0,+00) and
T—
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g(y) = log,y, y > 0. In Example 8.9, we have proved that g is continuous and, consequently, it is
continuous at p = e > 0. Thus, using Theorem 8.3, we obtain

m log, (1 + )

. 1 . 1
il_m - :ig%loga(l-&-x)z = log, (}jli%(l—i-m)z) = log, e.
O
Theorem 8.7. Let a > 0. Then
. oa*—1
lim =Ina,
x—0 x
in particular, for a =e
et —1
lim =1.
z—0 €T

Proof. If a = 1, then the statement is true. We assume that a # 1. By the continuity and monotonicity
of the function h(x) = a” (see Example 8.6), one can easily seen that z := a®* —1 — 0 provided z — 0.
Moreover, x = log,(1 4+ z). Hence, by Theorem 8.6, we obtain

oat -1 . z 1
lim = lim = =log.a =1Ina.
=0 X z=0log,(14+2) log,e
O
Theorem 8.8. Let o € R. Then

. (+z)* -1

lim —— = q.

z—0 x

Proof. For a = 0 the statement holds. We assume that a # 0. Using the continuity of In (see
Example 8.9), we have In(1 4+ z) - In1 =0, x — 0. By theorems 8.1, 8.6 and 8.7, we get

. (I4+a2)*-1 ) (eo‘ln(Hz) — 1) aln(l+ z) et 1 In(1412)
lim ———— = lim =alm ——  lim ——— =«
2—0 x =0 zaln(l + ) a—0 aln(l+z) 20

Theorem 8.9. Let o € R and f(z) =z, x > 0. Then f is continuous on (0,+00).

Proof. Since for each x > 0, one has f(x) = e*!"®, the statement follows from the continuities of the
exponential function and the logarithm (see examples 8.6 and 8.9, respectively) and Theorem 8.4. []

Exercise 8.12. Compute the following limits:

1 T
. . . . . 14sin2z\ z . . 1— . . In(14x)+e*—cosx |
a) igr(l](cos x)*; b) gcll)IJIrloox(ln(l—i—x)—ln x); ¢) ili% (Lsin2zye, ) ili% Locosz ) ili% R R

arcsin(z—1)

1
1—(cos mz)™ —(cosmz)m f
xm—1 2

for m € N; h) lim —=%=— for m € N; i) lim " or

f) lim(cosm)z%; g) lim 1 1
d r—r

xz—0 z—0

1
) c (sin(m27))? oo (12t | 22 izt —a® ) :
m € N; k) il_)mlm, 1) C}:l_r)r%)<1+§'3z) ; m) algli)I(l)xw_Z , for a > 0; n) il_}rr%(l—x)logmz
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9 Lecture 9 — Properties of Continuous Functions

9.1 Boundedness of Continuous Functions and Intermediate Value Theorem

For more details see [1, Section 3.18].
Let —oo < a < b < +00 be fixes.

Theorem 9.1 (1st Weierstrass theorem). Let f : [a,b] — R be a continuous function on [a,b]. Then
f is bounded on [a,b].

Proof. We assume that f is unbounded on [a,b]. Then for each n € N there exists x,, € [a,b] such
that |f(x,)| > n. Since the sequence (x,,),>1 is bounded (each x,, belongs to the interval [a, b]), it has
a convergent subsequence (Zn, )g>1, by the Bolzano-Weierstrass theorem (see Theorem 4.6). So, let
Tn, — Too, k — 00. Using the inequalities a < z,, < b for all k£ > 1 and Theorem 3.6, we have that
a < Too < b. Since the function f is continuous on [a, b], we have that f(z,,) = f(zx), K — c0. But
this is impossible because |f(zy, )| > ng — +00, kK — 00. So, the function f must be bounded. O

Example 9.1. If f : (a,b] — R is a continuous function on (a,b], then the function could be un-
bounded. Indeed, we set (a,b] = (0,1] and f(z) = 1, z € (0,1]. Then f € C((0,1]) but f(z) — 400,
x — 0+.

Corollary 9.1. Let f : [a,+00) — R be a continuous function on |a,+00) and f(z) — p € R,
x — +00. Then f is bounded on [a,+00).

Proof. By Theorem 7.1 (iii), for € := 1 there exists D > a such that |f(z) —p| <e =1 for all z > D.
Hence p — 1 < f(z) < p+ 1 for all x > D, which implies the boundedness of f on [D,+0c0). Next,
since the function is continuous on the interval [a, D], we can apply the 1st Weierstrass theorem.
Consequently, f is also bounded on [a, D]. Hence the function f is bounded on [a, 4+00). O

Exercise 9.1. Prove that the function f(z) = (1+ 2)", 2 > 0, is bounded on (0, +00).
(Hint: Theorem 9.1 as well as Corollary 9.1 can not be applied to the interval (0, 4+00), since the the point a does not
belong to the interval. First find the limits of f as ¢ — 0+ and © — +00) and then use the argument from Corollary 9.1.)

Theorem 9.2 (2nd Weierstrass theorem). Let f : [a,b] — R be a continuous function on [a,b]. Then
f assumes its minimum and mazximum values on [a,b], that is, there exist x,. and x* in [a,b] such that

flzy) < f(x) < f(z*) for all x € [a,b].

Proof. We will prove the existence of z*. The proof is similar for x,. By the 1st Weierstrass theorem,
the function f is bounded on [a,b], that implies that the set f([a,b]) = {f(x) : =z € la,b]} is

bounded. So, we set p := sup f([a,b]) = sup f(z), which exists, by Theorem 2.2 (i). According to
z€[a,b]
1

Theorem 2.1 (i), for each n € N there exists , € [a,b] such that p — - < f(z,) < p. We apply
the Bolzano-Weierstrass theorem (see Theorem 4.6) to the sequence (x,),>1. Consequently, there
exists a convergent subsequence (zp, )r>1. We denote its limit by z*. So, z,, — z*, k — co. Since
f € C([a,b]), we have that f(zy, ) — f(z*), kK — oo. Moreover,

1
p_7<f(l'nk)§p
Nk

for all k > 1. Hence, f(zn,) — p, k — 00, by the Squeeze theorem (see Theorem 3.7). It implies that

f(x*) = p. Consequently, f(z*) = sup f(z)= m[a>l<)} f(x), that is, f(z) < f(z*) for all € [a,b]. O
z€a,b] z€la,

35



University of Leipzig — WS18/19
10-PHY-BIPMA1 — Mathematics 1 / Vitalii Konarovskyi

UNIVERSITAT LEIPZIG

Exercise 9.2. Prove the existence of the point x, in the 2nd Weierstrass theorem.

Exercise 9.3. Let f:[0,400) — R be a continuous function on [0, +00) and f(z) = 400, x — +00.
Show that there exists x, € [0, +00) such that f(z.) = inf f(z)= min f(z).

z€[0,+00) 2€[0,+00)
Theorem 9.3 (Intermediate value theorem). Let f : [a,b] — R be a continuous function on |a,b].
Then for any real number yo between f(a) and f(b), i.e. f(a) <yo < f(b) or f(b) < yo < f(a), there
exists xqo from [a,b] such that f(xg) = yo.

Proof. If yo = f(a) or yo = f(b), then xy equals a or b, respectively. Now we assume that f(a) <
yo < f(b). The case f(b) < yo < f(a) is similar. We set M := {x € [a,b] : f(x) < yo}, which is non
empty set because a € M. Moreover, it is bounded as a subset of the interval [a,b]. Consequently,
there exists sup M =: xg.

We are going to show that f(zo) = yo. According to Theorem 2.1 (i), for each n € N there
exists x,, € M such that xg — % < xp < xo. Thus, z, — xg, n — oo, by the Squeeze theorem (see
Theorem 3.7). Since z, € M, we have that f(z,) < yo for all n > 1. Moreover, f(z,) — f(zo),
n — oo due to the continuity of f. Thus, using Theorem 3.6, we obtain f(zg) < yo.

Next, for every x > x¢ we have that x ¢ M, since x( is the supremum of M. It implies that
f(x) > yo. Consequently, yg < x£%+ flx) = xlggo f(x) = f(xg). Here we have also used the

continuity of f and Theorem 7.8. Thus, yo = f(xo). O

Exercise 9.4. Prove that the function P(x) = 2% + 722 — 1, 2 € R, has at least one root, that is,
there exists zgp € R such that P(z¢) = 0.

Corollary 9.2. Let f,g € C([a,b]) and f(a) < g(a), f(b) > g(b). Then there exists xo € |a,b] such
that f(zo) = g(xo).

Proof. We note that the function h(z) := f(z) — g(z), = € [a,b], is continuous on [a,b] and satisfies
h(a) < 0 < h(b). So, taking yp := 0 and applying the intermediate value theorem, we obtain that
there exists x¢ € [a, b] such that h(zo) = f(zo) — g(xo) = 0. O

Example 9.2. Let g : [0,1] — [0, 1] be a continuous function on [0, 1]. Then there exists xg € [0, 1]
such that g(z¢) = xo.

To prove the existence of xg, we take f(x) = z, € [0, 1], and note that f is continuous on [0, 1]
and f(0) =0 < ¢(0), f(1) =1 > g(1). Thus, by Corollary 9.2, there exists zy € [0, 1] such that
9(zo) = f(z0) = zo.

Corollary 9.3. Let f € C([a,b]). Then its range f([a,b]) = {f(x): = € [a,b]} is an interval.

Proof. By the 2nd Weierstrass theorem (see Theorem 9.2), there exists z,, 2* € [a, b] such that f(z,) <
f(z) < f(x*) for all x € [a,b]. Consequently, f([a,b]) C [f(z4), f(z*)]. Next, due to the intermediate
value theorem, for each yo € [f(x.), f(z*)] there exists zy € [a, b] such that f(zg) = yo. It implies that

Yo € f(la,b]) and, consequently, [f(z+), f(«")] C f([a,b]). Hence, f([a,b]) = [f(xx), f(z")]. [

Exercise 9.5. Let f : [a,b] — R strictly increase on [a,b] and for each yo € [f(a), f(b)] there exist
xo € [a, b] such that f(xg) = yo. Prove that f € C([a,?]).

Exercise 9.6. Let f, g : [0,1]
=g

— [0, 1] be continuous and f be a surjection. Prove that there exists
xo € [0, 1] such that f(zo) xo

(o)-
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9.2 Uniformly Continuous Functions

For more details see [1, Section 3.19].

Let A be a subset of R and f : A — R. We recall that f is continuous at point xy provided
Ve > 0 30 > 0 such that for each x € A the inequality |x — xo| < 0 implies |f(z) — f(x0)| < & (see
Definition 8.3). The choice of § depends on ¢ and the point xg. It turns out to be very useful to know
when the ¢ can be chosen to depend only on €. Such functions are said to be uniformly continuous on

A.
Definition 9.1. A function f: A — R is said to be uniformly continuous on A, if
Ve>030 >0V, 2" € A, |2/ —2"| < §: |f(a)) — f(2")] <e.

Remark 9.1. Any uniformly continuous function on A is continuous on A. The converse statement
is not true, see Example 9.5 below.

Example 9.3. The function f(x) = z, € R, is uniformly continuous on R, since for each e > 0 we can
take 0 := e. Then for all 2/, 2" € R such that |2’ —2”| < 6 we have |f(z") — f(2")| = |2’ —2"| < d =e.

Example 9.4. The functions sin and cos are uniformly continuous on R.
The function sin is uniformly continuous on R, since for each £ > 0 we can take § := & > 0. Then
for all 2/, 2" € R such that |2/ — 2”| < § we have

/ /"

x/‘i‘x// -z ’x/_xI/’

Cos - |sin <2-1-

|sina’ —sinz”| = 2 =] —2"| <d=¢,

-
2

where we have also used Remark 6.3 for the estimation of |sin

Example 9.5. The function f(z) = 1, z € (0,1], is not uniformly continuous on (0, 1].
Indeed, for € := 1 we have that for all § > 0 we can take 2’ := 1 and 2" := —5 from (0, 1] such

n+1
that |2/ —2”| < § and |& — &| =|n— (n+1)| =1 =¢, where n € Nand n > }.

Il x/l

Exercise 9.7. Prove that the following functions are uniformly continuous on their domains:
a) f(z) =lnz, z € [1,4+00); b) f(z) =z, z € [0,400); ¢) f(z) =xsini, z € (0,400).

Exercise 9.8. Prove that the following functions are not uniformly continuous on their domains:
a) f(z) =Inz, z € (0,1]; b) f(z) =sin(z?), x € [0, +00); ¢) f(z) = wsinz, z € [0, +00).

Theorem 9.4 (Heine-Cantor theorem). Let a function f : [a,b] — R be continuous on [a,b]. Then f
is uniformly continuous on [a,b].

Proof. Be assume that f is not uniformly continuous on [a,b]. Then there exists ¢ > 0 such that
for all § > 0 there exists 2’ and z” from [a,b] such that |2/ — 2”| < 6 and |f(2') — f(2")] > &. So,
for each n € N taking § := 2, we can find 2/, and 2/, from [a,b] such that |2}, — 27| < § = 1 and
() — fa)] > e

We will consider the obtained sequences (z,),>1 and (z),>1. By the Bolzano-Weierstrass theorem
(see Theorem 4.6), there exists a subsequence (27, )n>1 of (2,)n>1 which converges to some real number
Too € [a,b]. Since |z, — a7 | < n—lk for all & > 1, we have x;, — Z. By the continuity of f,
f(xy,) = f(r), k — 00, and f(x},) — f(Teo), k — 0. But [f(x,, ) — f(zy, )| > e >0, forall k > 1,
that contradict our assumption. O
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10 Lecture 10 — Differentiation

10.1 Definition and Some Examples

Let A C R and a € A. We also assume that there exists § > 0 such that (a — d,a + ) C A. Let
f:A— R be a given function.

Definition 10.1. e We say that f is differentiable at a, or f has a derivative at a, if the limit
o 1) = f(@)

Tr—a Tr — a
exists and is finite. We will write f/(a) or %(a) for the derivative of f at a, that is,

f(a) = ﬁ(a) := lim M

dx z—a T —a

whenever this limit exists and is finite.

e If for each a € A the derivative f'(a) exists, then the function f is said to be differentiable on
A and the function defined by A 3 x — f’(x) is called the derivative of f on the set A.

Remark 10.1. Taking h := x — a in Definition 10.1, we have
, +h) — f(a)
/ — 1 f(a’ .
f(a) = lim Y
Definition 10.2. o If a finite left-sided limit

o f@) = f(a)

T—a— Tr—a
exists, then this limit is called a left derivative of f at a and is denoted by f’ (a) or %(a).

e If a finite right-sided limit
@) - f@)
T—a+ Tr—a
drf

exists, then this limit is called a right derivative of f at a and is denoted by f’, (a) or %1 (a).

Remark 10.2. By Theorem 7.8, a derivative f’(a) exists iff f’ (a) and f, (a) exist and f’ (a) = f! (a).

Example 10.1. For the function f(z) =z, z € R, and any point a € R we have

f'(a) = lim M B T

z—a Tr—a T—ar —a
Thus, (z) =1, z € R.
Example 10.2. For the function f(z) = |z|, z € R, and the point a = 0 we have

, 2~ [0 .
fﬁ(o)_xl—m— x—0 _xl—>0— T 1
and 2] |0]
R N z _
f+(0)_xl—l>nol+ r—0 _acl—>0+.%' L

So, fL(0) = =1 # f/.(0) = 1 and the derivative f’(0) does not exist.
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Example 10.3. Let f(x) = 22, € R, and a € R. Then

f'(a) = lim 2’ —a’ = lim W = lim (z + a) = 2a.

r—a T — Q r—a Tr—a r—a

Hence, (22) = 2z, x € R.
Example 10.4. For the function f(z) = /z, € R, and the point a = 0 we have

3/ 3 1
lim M = lim = +00.
z—0 x—0 20 2

Consequently, the derivative of f at 0 does not exist.

Example 10.5. Let f(z) = zsinl, 2 € R\ {0}, and f(0) = 0. Let also a = 0. Then [@)=70)

x) z—0

inl_
xsgljo 0 _ sin% does not have any limit as  — 0 (see Exercise 8.8). Thus, the function f is not

differentiable at 0.
Exercise 10.1. Check that (z|z|) = 2|z|, z € R.

Exercise 10.2. For the function f(z) = |2? — x|, € R, compute f'(x) for each z € R\ {0,1}.
Compute left and right derivatives at points 0 and 1.

10.2 Interpretation of Derivative

a) Physical Interpretation.

Let a point P move on the real line and s(t) is its position at time ¢. Let t1, t2 be two
moments of time and ¢; < t2. Then the average velocity over the period of time [t1,ts] is the

ratio %, where s(to) — s(t1) is the distance travelled by P during the time t3 — t;. The
instantaneous velocity at ¢; is the limit of the average velocity as to approaches t1, that is, it

is the limit 1tlin% w Thus, instantaneous velocity v(t) of the point P at time ¢t is
2—11

the derivative of s at ¢, i.e. v(t) = §'(1).

b) Geometric interpretation

Let a function f : (a,b) — R be differentiable at a.
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The slope of the secant line through (a, f(a)) and (z, f(x)) is
F(x) ~ fla)

Tr—a

tan o, =

If = approaches a, the secant line through (a, f(a)) and (z, f(z)) approaches the tangent line
through (a, f(a)). Hence, the derivative f’(a) is the slope of the tangent line through
the point (a, f(a)), that is,

tan o = lim 7]0(%) — fla)

T—a T —a

= f'(a).

So, the linear function whose graph is the tangent line through (a, f(a)) can be given by the
equation
y — fla)

f'(a) =tana = ———~, x €R,
T—a

that is,
y=f(a)+ f'(a)(x —a), x€R.

10.3 Properties of Derivatives

Theorem 10.1. If a function f: A — R is differentiable at a, then there exists a function p: A — R
such that
f(z) = fla) + f'(a)(z —a) + p(z)(z —a), z€A

and p(x) = 0, x — a.

Proof. We take o(x) := W — f'(a), z € A\{a} and ¢(a) = 0. Then the statement easily follows
from Definition 10.1. Ul

Exercise 10.3. If there exists L € R such that f(z) = f(a)+ L(x —a) + ¢(x)(x —a), z € A, for some
function ¢ : A — R satisfying ¢(x) — 0, x — a, then f is differentiable at a and f/'(a) = L. Prove
this statement.

Theorem 10.2. If f is differentiable at a point a, then f is continuous at a.

Proof. Using theorems 10.1 and 8.1, we obtain

lim f(z) = lim (f(a) + f'(a)(2 — a) + ¢(z)(z — a)) = f(a).

Tr—a r—a

O]

Exercise 10.4. Let f has a derivative f’(a) at a point a. Express through f(a) and f’(a) the following
limits:

L Ham)=f@) 1y i L2 F@), ) iy L@t —fa=h) gy ) 1y _ :
a) lim SE==RE0 b) Tim SEEEEEL o) lim o d) limon (f (ot ) = fla);
. n . za)—f(a . f CL+% "
e) lim n(f(*a) - f(a)); f) lim Healj@), g 7}3;( (f(a) )) , f(a) #0.

Exercise 10.5. Prove that f is continuous at a point @ if f/ (a) and f! (a) exist.
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Theorem 10.3 (Differentiation rules). Let functions f,g: A — R have derivatives f'(a) and ¢'(a) at
a point a. Then

1) for each ¢ € R the function cf has a derivative at a and (cf) (a) = cf'(a);
2) the function f + g has a derivative at a and (f + g)'(a) = f'(a) + ¢'(a);

3) the function f - g has a derivative at a and (f - g)'(a) = f'(a)g(a) + f(a)g'(a);

/ / /
4) if additionally g(a) # 0, then the function 5 has a derivative at a and (5) (a) = ! (a)g(a)g_gf(a)g (@),

Proof. Proof of 2). By the definition of derivative and Theorem 8.1 b), we have

Def. 10.1

(f+ o) (a) lim fz) + g(fc)w—_((J:(a) +g(a) _ lim <f(92 - Z:(a) N 9(92 - g(@)
Th. 8.1 lim f(‘raz — £(a) + lim g(x; : Z(a) Dt 101 10y 1 ¢/(a).

Proof of 3). We compute
L f(@e) ~ flagle) | f)a(e) - fa)g@) + Fl@)g(z) ~ Fla)o(a)

T—a T —a T—a T —a

Lf(“)g(m) n f(a)g(x)_g(a)> Tho 81y, 1) = Ja) g(x)

= lim <f( )
Tr—a xTr—a r—a xr—a r—ra

| f(a) tim 9@~ 9(a) (Def. 10.14Th- 10.2)

T—a T —a

(f - g)/(a) P01

f'(a)g(a) + f(a)g'(a).

Proof of /). Since g(a) # 0, we have that g(z) # 0 in some neighbourhood of the point a, by
theorems 10.2 and 8.2. Thus,

1 (f(x) B f(a)> _ f(w)g(a) = fla)g(a) + f(a)g(a) — f(a)g(x)
z—a\g(x) gla) 9(x)g(a)(x — a)
U (@@ ge) — gla)
st (e e — f0 =)
Thus, the needed equality follows from the latter relation and theorems 10.2 and 8.1. ]

Theorem 10.4 (Chain rule). Let a function f : A — R have a derivative f'(a) at a point a € A.
Let f(A) C B and a function g : B — R have a derivative ¢'(b) at the point b = f(a). Then the
composition go f = g(f) has a derivative at the point a and

(g0 f)(a) = (9(f))(a) =g (f(a))f(a).
Proof. By Theorem 10.1,
9(y) —g(b) = g'(b)(y = b) + ¢(y)(y — b),

for some function ¢ : B — R satisfying ¢(y) — 0, y — b. Taking y := f(x) and dividing the latter
equality by x — a, we obtain

9(f(x)) — g(f(a)) :g/(b)f(w) — f(a) +¢(f($))f($) — f(a)

r—a r—a r—a
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By Theorem 10.2, f(z) — f(a) = b, x — a, and, consequently, ¢(f(z)) = 0, x — a. So,

(g0 f)(a) = lim 9(f(x)) — g(f(a))

T—a T —a

=g (0)f'(a) +0f'(a) = ¢'(f(a))f (a).

Example 10.6. Let a € R. Then (z%) = ax®™ !, z > 0.
Indeed, using Remark 10.1 and Theorem 8.8, we obtain for x > 0

(xth)—a® o (1+5)" -1
h h

xT

a—1

—x a, h—0.

Exercise 10.6. a) Let n € N. Show that (")’ = nz" ! for all z € R.
b) Let m € Z. Show that (z™)" = ma™! for all z € R\ {0}.

Example 10.7. Let a > 0. Then (a*)’ = ¢® Ina for all z € R. In particular, if a = e, then (&%) = e”
for all x € R.
Indeed, using Remark 10.1 and Theorem 8.7, we have for x € R

atth — q* Lalh—1 .
. =a ” —a®*-lna, h—0.
Example 10.8. a) (sinz)' = cosx and (cosz) = —sinz for all z € R;
b) (tanz) = - forallz € R\ {§ + 7k: k € Z};
¢) (cotx) = —Sinl% for all z € R\ {rk : k € Z}.

Let us check the equalities in a). For every x € R we have

sin(zx +h) —sinz 2 . h +ﬁ _sin% +ﬁ . b5 0
7 = singceos{z+ o )= ] cos (z+ 3 cos T, .

Thus, (sinz)’ = cosz, z € R.
Similarly,

cos(z + h) — cosx 2 . h h __Sin%
h h™ 2 2)

h
= ——sin—sin|x+ = = sin<x+2>—>—sinx, h — 0.
2
Hence, (cosz) = —sinz, x € R.
In order to compute (tanz)’, we will use Theorem 10.3 4). So, for every x € R such that cosz # 0
we have

. !/ . . .
(tan 2 sin x (sinz) -cosz —sinx - (cosz)  cos®x 4 sinx 1
cos T cos? x cos? x cos? x
and for every x € R such that sinx # 0
(cot z)’ (cos:c)’ (cosz)" -sinx — cosz - (sinz)’ sin? x + cos? x 1
cotx = - = - = — - = —— .
sin x sin? sin? x sin? x

Exercise 10.7. Compute derivatives of the following functions:
2 o2 2
a)y =12 b)y= {1 y=e " d)y=g8ie) y=c" (1+cot ).
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Exercise 10.8. Let f(z) = 22, # <1, and f(z) = ax + b, > 1. For which a,b € R the function f:
a) is continuous on R; b) is differentiable on R? Compute f’.

Exercise 10.9. Show that
a) (sinhx) = coshz, z € R; b) (coshz) =sinhz, z € R;
¢) (tanhz) = —— 2 € R; d) (cothz) = ——L—, z € R\ {0}.

cosh? 2’ sinh? 2’

Exercise 10.10. Let f(z) = %efz% for z # 0 and f(0) = 0. Prove that f/(0) = 0.
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11 Lecture 11 — Derivatives of Inverse Functions and some Theo-
rems

11.1 Derivative of Inverse Function

Theorem 11.1 (Differentiation of inverse function). Let —oco < a < b < +o0 and a function f :
(a,b) — R satisfy the following properties

1) f is continuous on (a,b);
2) f strictly increases on (a,b).

Let (¢,d) := f((a,b)) ={f(x): x= € (a,b)}, where —co < ¢ < d < 400. Let also g : (¢,d) — (a,b) be
the inverse function to f.

If there exists a derivative f'(xg) # 0 at a point xg € (a,b), then the function g has a derivative
d'(yo) at the point yo = f(xg). Moreover,

9' (o) . .
0) = = .
f'(zo) — f'(9(v0))
Remark 11.1. If a function f : (a,b) — R is continuous and strictly increasing, then, by Theorem 8.5,

the range f((a, b)) of f is an interval and there exists the inverse function g to f which is also continuous
and strictly increasing.

Proof of Theorem 11.1. Since the function g is strictly increasing (see Remark 11.1), we have that
9(y) # g(yo) for y # yo. Using the definition of inverse function and Theorem 10.1, we obtain

y—yo=f(9(v)) — f(9(v0)) = f'(9(%0))(9(y) — 9(v0)) + ©(9(¥))(9(¥) — 9(%0)),

where ¢(g(y)) — 0 as g(y) — g(yo). Since g is continuous on (¢, d), one has g(y) — g9(vo), ¥ — Yo-
Thus, ¢(g9(y)) — 0, y — yo. Consequently,

9() —9(yo) _ 9() — 9(wo)
Y — 1o F'(9(0))(9(y) — 9(y0)) + (9(y))(9(y) — 9(y0))
1 1
= lao) + o) Flelw) YT

O]

Remark 11.2. Let us assume that, in Theorem 11.1, the function f has a derivative f’(z) # 0 at
each point x € (a,b). Then for each y € (c,d) there exists the derivative ¢’(y) and one can get a
relationship between f’ and ¢’ using the equalities g(f(z)) = z, « € (a,b), and f(9(y)) =y, y € (¢, d).
Indeed, by the chain rule (see Theorem 10.4), ¢'(f(z))f (x) = 1, x € (a,b), and f'(g9(y))d'(y) = 1,
y € (¢, d).

Example 11.1. Let o > 0, a # 1. Then (log, z)’ = —:— for all z > 0. In particular, (Inz)’ = 1 for
all z > 0.

We will consider the case @ > 1. To compute the derivative (log, x)’, we are going to use The-
orem 11.1. So, we set f(z) := o, x € (a,b) := R and (c¢,d) := (0,+00). Then f is continuous
and strictly increasing on R. Moreover, f'(z) = a*lna # 0, x € R, by Example 10.7. So, applying
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Theorem 11.1, to the function ¢g(y) = log, vy, vy € (¢,d) = (0,+00), which is inverse to f, we get for

Yo € (0, +OO)
1 1 1

/ _ 1 / — — =
g (yO) ( 08y yO) f/(mo) a®o ln o Yo Ina’

where yg = f(zg) = o™

Exercise 11.1. Show that (log, z) = ——, 2 >0, for 0 < o < 1.
Example 11.2. For all 2 € R (arctanz) = H%

Again we are going to use Theorem 11.1. We set f(z) := tanz, x € (a,b) := (—5,%) and
(c,d) := R By Example 8.5, f is continuous on (—%, %) Moreover, it is strictly increasing and

f(x) = COS% #0,z € (—%,%). Thus, applying Theorem 11.1 to g(y) = arctany, y € R, we have for
each yg € R

'(yo) = (arctan )’—#—005233 = ! !
g\ = Yo o f'(xe) "7 T+ tanZag 1+ 93

where yo = f(xg) = tan xo.

Exercise 11.2. For all z € R (arccotz) = —ﬁ.

: I 1
Example 11.3. For each x € (—1,1) (arcsinz)’ = it

We set f(z) :=sinz, z € (a,b) := (=3, %) and (¢, d) := (—1,1). By ExampleS 5, f is continuous on

(—g, 5) Moreover, f is strictly increasing and f’(x) = cosz # 0 for all x € ( T 2) by Example 10.8.

Thus, applying Theorem 11.1 to the function g(x) = arcsiny, y € (—1,1), we obtain for yg € (—1,1)

¢ () = (arcsingo)’ = — ! ! !
0 p— 0 pr— p— pr— p—
f'(@o)  coszo  \/1—sin?zg V1-92

where yo = f(z0) = sin xg.
1
Vi—z2’
Example 11.4. Compute the derivative of the function f(z) = %, > 0.
Solution. For x > 0 we have (2%)' = (elnﬂ)/ = (exl“)/ = e (zlnz) =27 ((z) Inz + z(Inx)’) =
2% (Inz +zl) = 2% (Inz +1).

Exercise 11.3. Show that for each x € (—1,1) (arccosz) = —

11.2 Some Theorems
Theorem 11.2 (Fermat theorem). Let f : (a,b) — R, 2o € (a,b) and f(zp) = m(a;z)f(x) or
x€(a,
fxo) = H?%) f(z). If f has a derivative at the point xg, then f'(x¢) = 0.
xe

)

Proof. We assume that f(xg) = max f(z). Then for each z € (a,b) f(z) < f(xo). Thus, by

z€(a,b)

Remark 10.2, we have
T—T0— Tr — X
and, similarly,
/ / . f(x) - f(xO)
= = — - = 0.
fi(zo) = fi(z0) = lim, vz =0
This implies that f’(x¢) = 0.
The case f(xg) = min f (z) is similar. O

ze(a,b
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Remark 11.3. In the Fermat theorem, the assumption a < xg < b is essential. Indeed, the statement
is not valid for the function f(x) =z, x € [0,1]. In that case, 2o = 1, but f/(zg) = 1.

Theorem 11.3 (Rolle’s theorem). Let f : [a,b] — R satisfies the following properties
1) f is continuous on |a,b|;
2) for each xz € (a,b) the derivative f'(z) ewists;

3) fla) = f(b).
Then there ezists ¢ € (a,b) such that f'(c) = 0.

Proof. 1f for every x € [a,b] f(x) = f(a), then f is a constant function. Consequently, f’(c) = 0 for
all c € (a,b).
We now assume that
Jdx € [a,b] such that f(z) # f(a). 9)

According to the assumption 1) and the 2nd Weierstrass theorem (see Theorem 9.2), there exist

Ty, " € [a,b] such that f(z.) = m[iri]f(:c) and f(z*) = m[a}é]f(az). Using assumptions (9) and 3),
z€e|a, re|a,

we have that f(z.) # f(a) or f(z*) # f(a). We consider the case f(z*) # f(a). In this case, we
have z* # a and z* # b, which implies that z* € (a,b). Hence, the function f and the point z¢o = x*
satisfy all assumptions of the Fermat theorem (see Theorem 11.2). Consequently, f/(z*) = 0. We take
c:=z".

The case f(x«) # f(a) can be considered similarly. O

Exercise 11.4. Let a function f € C([a,b]) have the derivative f/'(z) # 0 for all € (a,b). Then
fla) # f(b).

Theorem 11.4 (Lagrange (mean value) theorem). We assume that a function f : [a,b] — R satisfies
the following properties

1) [ is continuous on [a,b];
2) f is differentiable on (a,b), that is, f has a derivative f'(z) for all = € (a,b).

Then there emists ¢ € (a,b) such that f(b) — f(a) = f'(c)(b— a).

Proof. We take

o(@) = fa) — fla) - 1O

and note that g satisfies the assumptions of Rolle’s theorem (see Theorem 11.3). Moreover,

(x —a), xz€la,b,

g@)=f(z) - ——=——=, z€(ab)

By Rolle’s theorem, there exists ¢ € (a,b) such that ¢’(¢) = 0. It implies that f/(c) — % = 0.

Consequently, f(b) — f(a) = f'(c)(b — a). O

Exercise 11.5. Let a function f : (a,b) — R be differentiable on (a,b) and there exists L € R such
that |f'(z)| < L for all « € (a,b). Show that f is uniformly continuous on (a,b).
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Theorem 11.5 (Cauchy theorem). Let functions f,g : [a,b] — R satisfy the following conditions
1) f,g are continuous on [a,b];
2) f,g are differentiable on (a,b);
3) for every x € (a,b) ¢'(x) # 0.

Then there exists ¢ € (a,b) such that ];EZ;:;((S)) = ]gv,,gg))

Proof. We first note that g(a) # g(b). Otherwise, if g(a) = ¢(b), then there exists ¢ € (a,b) such that
g'(¢) = 0, by Rolle’s theorem. But this contradicts assumption 3).
So, we can set

W) = f(o) — fla) — LI oy o)), zefai).

g9(b) —g(a)
Then the function h satisfies the assumptions of Rolle’s theorem. Consequently, there exists ¢ € (a, b)
such that h'(¢) = 0. Thus, f/(c) — ];Ezg:g((s))g’(c) =0. O
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12 Lecture 12 — Application of Derivatives

12.1 Applications of Lagrange Theorem

Corollary 12.1. Let a function f : (a,b) — R have the derivative f' on (a,b) and for each z € (a,b)
f/(x) = 0. Then there exists L € R such that f(x) = L for all x € (a,b).

Proof. Let 2y € (a,b) be an arbitrary fixed point and x # x¢. Applying the Lagrange theorem to the
interval with the ends zy and x, we obtain

f(@) = f(zo) = f'(c)(x — z0) = 0.
Thus, we can set L := f(xo). O

Corollary 12.2. Let functions f,g : (a,b) — R have the derivatives f', g’ on (a,b) and for each
z € (a,b) f'(x) = ¢'(x). Then there exists L € R such that f(x) = g(x) + L for all x € (a,b).

Proof. Applying Corollary 12.1 to the function f — g, we obtain that there exists a constant L such
that f(z) —g(x) = L, x € (a,b). O

Corollary 12.3. Let a function f : (a,b) — R have the derivative f' on (a,b) and for each x € (a,b)
f(x) = M, where M is some real number. Then there exists L € R such that f(x) = Mx + L for all
x € (a,b).

Proof. Applying Corollary 12.2 to the functions f and g(z) = Mz, x € (a,b), we obtain the statement.
O

Exercise 12.1. Let a, b be a fixed numbers. Identify all functions f : R — R such that f'(z) = ax+b,
r e€R.

Exercise 12.2. Identify all functions f : R — R such that f'(z) = f(z), x € R.
(Hint: Note that (f(x)e ) = (f'(z) — f(x))e™ %, z € R)

Exercise 12.3. Let functions f, g : (a,b) — (0, +00) be differentiable on (a, b) and for every = € (a, b)

J},((f)) = %. Prove that there exists L > 0 such that f(z) = Lg(z) for all x € (a,b).
(Hint: Consider the functions In f and In g)

12.2 Proofs of Inequalities
In this section, we are going to prove a couple of inequalities which are often used in mathematics.

Example 12.1. We prove that for all 1,29 € R

a) |sinz) —sinxg| < |z1 —x2|; b) |cosx —cosxa| < |z —x2|; ¢) |arctanxy — arctan zo| < |z — 2|
The proof of these inequalities are similar. So, we will prove only a). We assume that x1 < xs.

Then applying the Lagrange theorem to the function f(x) = sinz, x € [x1,x2], we have that there

exists ¢ € (z1,x2) such that

|sinxe —sinxy| = |cosc| - |ze — z1| < |xg — 21|,
since |cosc| < 1.

Exercise 12.4. Prove b) and c¢) in Example 12.1.
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Exercise 12.5. Prove that
a) |21 — /T2| < §lz1 — 22| for all 21,25 € [1, +00);
b) |\/u2 + 02 —Vu2 + wz\ < |v — w| for all u,v,w € R. (Hint: Consider the function f(t) = vu2 + 2, t € R)

Example 12.2. We prove that
a) e¥ > 1+ x for all z € R, where e* =1+ z only if x = 0; b) €x>1+x+§forallx>0.

We prove a). We first assume that > 0. Then applying the Lagrange theorem to the function
f(u) = €% u € [0,z], we obtain that there exists ¢ € (0,7) such that e® — e = ¢ (x — 0). Since
e® > 1 for ¢ > 0, we obtain e* —1 > z for all x > 0. Next let x < 0. Then we can apply the Lagrange
theorem to the function f(u) = €“, u € [z,0]. So, we obtain that there exists ¢ € (x,0) such that
eV —e? =e¢- (0—x). Since e < 1 for ¢ < 0, we get 1 —e® < —u.

In order to prove b), we apply the Cauchy theorem to the functions f(u) = e, g(u) =1+ u+ %,

u € [0, z]. Hence, there exists ¢ € (0, x) such that
et — 60 eC

l+z+2 - C14c

. 2
Using a), we have e — 1 >z + %-.

. 2 3 n
Exercise 12.6. Prove that e* > 1+x+3§—!+%+...+ %' for all x > 0 and n € N.
(Hint: Use Example 12.2 and mathematical induction)

Exercise 12.7. Prove that {7 < In(l1+2z) <z forall x > —1.

Exercise 12.8 (Generalised Bernoulli inequality). For each a > 1, prove that (1 + z)® > 1 4+ ax for
all x > —1. Moreover, (1 +x)* =1+ az iff z =0.

Exercise 12.9. Prove that

3
a) x — gy <sinz < x for all z > 0;
b) 1—§§cosx§1forall$20.

12.3 Investigation of Monotonicity of Functions

Theorem 12.1. Let —oo < a < b < 400 and a function f: (a,b) — R be differentiable on (a,b).
(i) The function f increases on (a,b) iff f'(x) >0 for all x € (a,b).
(i) The function f decreases on (a,b) iff f'(x) <0 for all x € (a,b).

Proof. We prove (i). Let first f'(x) > 0 for all € (a,b). We take x1, 29 € (a,b) and x1 < x3. Then
applying the Lagrange theorem to the function f on the interval [z1, 2], we have that there exists
¢ € (z1,72) such that

f(x2) = fl21) = f'(e)(w2 — 1) 2 0. (10)
Next, let f increases on (a,b). Then for each z¢ € (a,b)
) T — X T—x0+ T — X

Here we used the definition of derivative, Remark 10.2 and the fact that f(z) > f(x¢) for z > xo.
In order to prove (ii), apply (i) of the theorem to the function g(xz) = —f(x), « € (a,b). O
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Remark 12.1. a) If f/(z) > 0 for all z € (a,b), then the function f is strictly increasing.

b) If f/(x) < 0 for all x € (a,b), then the function f is strictly decreasing.
Indeed, a) immediately follows from (10), where we have the strict inequality.

We note that the inverse statements of Remark 12.1 is not valid. Indeed, the function f(z) = 23,

r € R, strictly increases but its derivative f/(x) = 322, z € R, equals 0 at = = 0.
We formulate more general statement about strictly monotone functions.

Theorem 12.2. Let —0o < a < b < 400 and a function f : (a,b) — R be differentiable on (a,b).

(i) The function f strictly increases on (a,b) iff f'(x) > 0 for all x € (a,b) and there exists no
interval (o, B) C (a,b) such that f'(x) =0 for all x € (, B).

(i) The function f strictly decreases on (a,b) iff f'(x) < 0 for all x € (a,b) and there exists no
interval («, B) C (a,b) such that f'(x) =0 for all x € (o, B).

Example 12.3. By Theorem 12.2, the function f(x) = 2% + bz + ¢, x € R, strictly decreases on
(—oo,—g] and strictly increases on [—3,4—00), since f'(x) = 2z +b < 0 for x < —3 and f'(x) =
2x+b>0f0rzx>—%
Example 12.4. By Theorem 12.2, the function f(x) = e*, z € R, is strictly increasing on R, since
f(z)=€e*>0,xz€R.

Example 12.5. By Theorem 12.2, the function f(x) = 2 + sinz, x € R, is strictly increasing on R,
since f'(z) =1+4cosz >0 forallz e R\ {z: cosz = -1} =R\ {(2k+ 1)7: k € Z}.

Example 12.6. The function f(x) = h“Tx, x > 0, strictly increases on (0, €] and strictly decreases on

l1-Inz
22

[e, +00) according to Theorem 12.2. Indeed, its derivative f'(x) = , & > 0, is strictly positive on

(0, e) and strictly negative on (e, +00).

Example 12.7. The function f(z) = 2%, z > 0, is strictly increasing on [%, +oo) and strictly
decreasing on (—oo, 5 according to Theorem 12.2. Indeed, its derivative f'(z) = 2*(1 + Inx), x > 0,
is strictly positive on (%, +oo) and strictly negative on (—oo7 é) For the computation of the derivative
see Example 11.4.

Exercise 12.10. Identify intervals on which the following functions are monotone.
2) fe) =a® — 2,2 €B; b) f(2) = i w € B ©) J() = & — L w € R\ {0}
d) f(z) =2+ /|1 —2?, z €R.

Exercise 12.11. Identify a € R for which the function f(z) = x + asinx, x € R, is increasing on R.
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13 Lecture 13 — L’Hospital’s Rule and Taylor’s Theorem

13.1 L’Hospital’s Rule

Theorem 13.1 (L’Hospital’s Rule). Let a € R or a = —oo and functions f,g : (a,b) — R satisfy the
following properties

1) f,g are differentiable on (a,b);

2) Mim f(z) = lim g(x) =0 or lim |g(z)| = +oo;

r—a+ r—a+
3) ¢'(x) # 0 for all x € (a,b);

4) there exists zhrgr g/éx) =:LeR.

Then there exists lim Lx) = L.

z—a+ 9\F

\_/v

Proof. We will only give a proof for the case a € R and 1—i>m+ f(z) = lim g(x) = 0. For the general

case see e.g. [1, p.242-244).

We first extend the functions f and g to the interval [a, b), setting f(a) = g(a) := 0. According to
assumption 2), f and g are continuous at the point a. Since f, g are differentiable on (a,b), they are
continuous also at each point of (a,b), by Theorem 10.2. Thus, f, g are continuous on |[a,b). Next, we
note that g(x) # 0 for all x € (a,b). Indeed, if g(xo) = 0 for some zy € (a,b), then applying Rolle’s
theorem (see Theorem 11.3) to the function ¢ : [a,z9] — R, we obtain that there exists ¢ € (a,xo)
such that ¢’(¢) = 0, that is impossible by assumption 3).

Next, to show that hm+ % = L, we are going to use Theorem 7.7. Let € > 0 be fixed. By
T—ra

Theorem 7.7 and assumption 4),

/()

30 >0 V€ (a,a+9):
( ) g'(x)

—L'<6.

Applying the Cauchy theorem (see Theorem 11.5) to the functions f, g : [a,z] — R, we have for all
x € (a,a+9)

ACO R 2 S (ORI O
g(x) (x) = g(a) g'(c) ’
where ¢ € (a,z) C (a,a+ 6). O

Remark 13.1. A similar statement is true for the left-sided limit as x goes to b.

Example 13 1. Using L’Hospital’s Rule, we compute the following limits:

(sinz)’

a) li x%hm = lim “¢¥ = 1;
z—0 T a—0 (@) z—0
o0 1
. 0-c0 ;. . 1 ! . = .
b) lim zlnz = lim BZ = lim (nlx), = lim =~ =— lim z=0;
z—0+ z—0+ ; =0+ (1) x—0+ (—%2) z—0+
1
c) hm (cosx)= 22 lim ez M0s®
—0 z—0
We compute
1 % (Incos z)’ —sinz 1 i 1
: _ ncost 0 7: N T cosz sinz . 17: sin T _ 1
J i mcosr = L e £l DGR =l 5 = b i 55 = ) L i i =
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Thus, by the continuity of the function f(z) = e”, = € R, we have

. 1 lim -5 Incosz 1
lim e22 Incosz _ er—0 T2 —e 3 = 1

z—0 Ve’
See [1, p.245-248] for more examples of the application of L’'Hospital’s Rule.

Exercise 13.1. Using L’Hospital’s Rule, show that

B
. _ . . Inz)*—(2 —
a) lim 1;% =1; b) lim lnsin) =1; ¢) lim (na)—(2) = O‘Tﬁ, where «a, 8 are some real numbers;

z—0 x—0 ST z—e r—e
. (%arctanx)a—l _ 2a ) . (1n(1+x))alc R . z _ q.
O lm == =5 acR o lig (T57) =em f) lm gx =0
g) lim 2Z=0foralle>0; h) lim 2oz =0foralle>0; i) lim (In(l+2))" =1
z—+00 z—+40 z—+0

Exercise 13.2. Compute the following limits:

. In(l4z)—x, s eT_gsinT . T . . In(z+1)—In(z—1) .
) D BEE 0) l SSE ©) lip (v (5 —eretana))s @)l iU
1
. 1 1\T . 1 1\Z . (14z)z —e . rlne
e) lim (xsin=+=)":; ) lim (zsin=+ =5)7; lim ~~~——: h) lim -
) T—>+00 ( x z) ’ ) z—>+00 ( z 5’32) ’ g) z—0 z ’ z=+Foo (Inz)

13.2 Higher Order Derivatives

We assume that a function f : (a,b) — R is differentiable on (a,b). We denote its derivative f’ by g,
that is g(z) = f'(z), « € (a,b).

Definition 13.1. If there exists a derivative ¢'(x¢) of the function g at a point xq, then this derivative
is called the second derivative of f at the point xy and is denoted by f”(zg) or %(wo).

Let the n-th derivative f(®) be defined on (a,b). Then the (n+1)-th derivative of f at z( € (a,b)

is defined as (") (zq) = d({li:))(a:o), if it exists.

Example 13.2. Let a > 0. Then for each 2 € R we obtain (a*)’ = a®Ina, (a®)” = a®In?a,

(a®)" = a*Inda, ..., (a®) = a® In"a. In particular, (e*)™ = ¢*, z € R.

Exercise 13.3. Let o € R. Show that (z%)" = a(a —1)(a—2)...(a —n+ 1)z*"" for all z > 0 and
n € N.

Example 13.3. Let o € R. Then ((1+2)*)™ = a(a —1)(a —2)... (o —n+ 1)(1 + 2)>™ for all
x> —1landneN.
Indeed, ((1+z)*) =a(l+z)* !, (1 +2)%)" = (1 + x)o‘_l), = afa —1)(14 2)*2 and so on.

Exercise 13.4. Show that (In(1 + z))™ = %ﬁ_l)' for all x > —1 and n € N.

Example 13.4. For each z € R (sinz)™ =sin (z + n%) and (cosz)™ = cos (z + nk).
Indeed, (sinz) = cosz = sin(z+ %), (sinz)” = (cosz) = —sinz = sin (z + 25), (sinz)” =
(—sinz) = —cosz = sin (z + 3%) and so on. The same computation for (cos z)™),

Exercise 13.5. Compute the n-th derivative of the following functions:
a) f(x)=2""Y1 2€R; b) f(x) =v1+x,2>-1; c) f(x) = arctanz, z € R.

Theorem 13.2. Let functions f,g : (a,b) — R have n-th derivatives on (a,b). Then the following
equalities are true.
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1) for all ke {1,...,n} (f=RNE) = (fR k) — () yhere fO) = f;
2) for allc e R (cf)™ = cf™);
3) (f +9) = F) 4 g0,

Theorem 13.3 (Leibniz Formula). For a number n € N let g, f : (a,b) = R have n-th derivatives on
(a,b). Then f-g has the n-th derivative on (a,b) and

(f-gtm =>"chf®ghh,
k=0

k _ n!
where C; = Ho—m)-

Exercise 13.6. Compute the following derivatives:
a) (z2¢*)™, z € R; b) (3sinz)™, 2z € R; ¢) (z"Inz)™, z > 0.

13.3 Taylor’s Formula
13.3.1 Taylor’s Formula for a Polynomial

Let n € N and {ag, a1, a9, ...,a,} C R. For any point g € R a polynomial
P(x) =ap+ a1z + asx® + ... +apz”, z€R,
can be written in the form
P(x) = by +bi(z — x0) + ba(x — 20)> + ... + by(z — m0)", z€R, (11)

where {bg, b1, b, ..., b, } are some real numbers, which can be computed by the following way. Inserting
x = o into (11), we obtain by = P(z¢). Next we compute P’. So,

P'(z) = by + 2by(z — o) + 3b3(z — 20)? + ... + nbp(z — x0)"" L, z€R. (12)

Inserting x = ¢ into (12), we get by = P’(x¢). Next, we compute the second derivative of P

P'(z) =2by +3-2 -b3(x —x0) + ...+ n(n— Db, (z —20)" 2, zcR. (13)
Inserting x = z¢ into (13), we obtain by = w. Similarly, we obtain
P (o)
by = — k > 0.
Thus, for each x € R
P p pn)
P(z) = P(xo) + Y’”O) (z — o) + ;f‘” (x —20)2 + ...+ n(lxo)(x — zo)". (14)

We see that any polynomial can be completely defined only by its value and values of its derivatives
at a point zg. Formula (14) does not hold if P is not a polynomial, but it turns out that values of a
function are close to the right hand side of (14) if z is close to zp.
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13.3.2 Taylor’s Formula with Peano Remainder Term

Let f,g: A — R be some functions and xy be a limit point of A. If % — 0, z — xg, then we will
write f(z) = o(g(z)), ¢ — 0, or f =o0(g), x — xo.

Exercise 13.7. Show that
a) v =o(1),x — 0; b) 2% =0(2%), x = +o0; ¢)Inz = o(\/T), * = +00; d) x—sinz = o(x), z — 0.

Theorem 13.4. Let n € N and let a function f : (a,b) — R and a point xo € (a,b) satisfy the
following conditions:

1) there exists f™V(x) for all x € (a,b);
2) there exists f(™(xq).
Then

(k) (g
fla)=>" / kﬂ 0) (z — 20)* 4+ o((x — z0)"), =z — 0. (15)
k=0

The term o((x — z9)") is called the Peano remainder term.

Proof. We recall that 0! = 1 and set

Rn(x) = f(fL‘) - Z k! (ZL‘ - xO)k7 UAS (CL, b)

= ) ()
=0

According to assumptions 1) and 2), there exists R~ (z) for all € (a,b) and R™ (xq). Moreover

it is easy to see that
Ry (x0) = R, (x0) = Rli(z0) = ... = R (z0) = 0.

Assuming = > x¢ and applying the Lagrange theorem (see Theorem 11.4), we have

ate) ||l = Baleo)| | Bl )| _| o) - P
(x — xo)" (x — xo)" (x — xo)" (x — xg)n1
_ | Rale2)(er — wo) Ri(c2) | | Rule2) = Ry(zo)| _ | Ry (e3)(c2 — wo)
| (= zo)n (x—x0)" 2| | (z—mx0)"2 | | (x—z0)"2 |~
(n—1) . (n—1)
< |—= (en1) n__ (7o) — )Rg”)(mo)) =0, z— x09+,
T — T
where 2g < ¢p—1 < Cp—2 < ... < ca < ¢1 < x. Moreover ¢,—1 — Zg as £ — To+.
One can similarly obtain that ‘ (f_”ggf))n — 0, z — x¢9—. Consequently,
R, (x) =o((z —x0)"), =z — zp,
by Theorem 7.8. 0

Example 13.5. For every n € N
2 n

e$:1+x+%+...+%+o(x"), x — 0.

The formula follows from Theorem 13.4 applying to f(z) = €%, z € R, and the fact that f*)(0) =
eV = 1 (see Example 13.2).
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Example 13.6. For alln € N

ZE2 1:3 n

— o - o nflxi n
In(l+z)==x 2+3 o4 (=1) n—i—o(m ), = —0.

The formula follows from Theorem 13.4 applying to f(x) = In(1 + z), x > —1, and the fact that

F®(0) = % = (=1)*71(k — 1)! (see Example 13.4).

Example 13.7. For each « € R and n € N

—1)z? —1)...(a—n+1)z"
(l—i-a:)o‘:l—i-aa:—l—cw-i-...—i-a(a ) (? ntle +o(z"), x—0.
. n:

The formula follows from Theorem 13.4 applying to f(x)

= (14 x)% =z > —1, and the fact that
f®0)=ala—1)(a=2)...(a—k+1)(1+0)** =a(a—1)(a—2)..

.(a—k+1) (see Example 13.3).

Exercise 13.8. Show that for every n € NU {0}

SINT = — — —_— — ... — o\T X
3! 5! (2n + 1)! ’ ’
2 4 2n
1 _ i £ . _1\n £ 2n+1
cosx =1 51 + m ot (-1) (2n)!+0(x ), x*—0
Exercise 13.9. Show that for every n € NU {0}
) et _ o IL‘S 1‘5 l,2n+1 o2
SlnhI:T:$+§+y++m+O($ )7 QL'—>0,
L X +e % - 232 N J,‘4 N N 2n N ( 2n+1) 0
cosnryr = —— = —_— —_— e o\ x .
2 2! 41 (2n)! ’

Exercise 13.10. Use Taylor’s formula to compute the limits:
In(1+z+22)+In(1—z—22) . cos(ze®)—cos(ze%)
rsinz ) d) alclil}) 3 .

. T_1— . —qi .
a) lim ¢ x% L; b) lim =22 ¢) lim

z—0 z—0 e —1—2z—% x—0
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14 Lecture 14 — Local Extrema of Function

14.1 Taylor’s Formula with Lagrangian Remainder Term

Theorem 14.1. Let n € NU {0} and f : (a,b) — R. We assume that there exists f+1)(z) for all
x € (a,b). Then for each x,xo € (a,b) there exists a point £ between x and xo such that

_ xS P(ao) e, SOTUE) nt1

f(w)—kzk,!(x—ﬂﬁo) +m(w—$0) : (16)

0

(n+1)
The term L (7:1)(!5) (v — )" is called the Lagrangian remainder term.

Proof. If x = x, then formula (16) holds. We assume that o < = and consider a new function

(s
9= 1) - Y P9 = @, e faal,

k=0

where the number L is chosen such that g(zg) = 0. We note that the function g is continuous on
[0, x] and has a derivative

(n+1)
oy () n, L n
O A -
Moreover, g(x) = 0. By Rolle’s theorem (see Theorem 11.3), there exists £ € (xp,z) such that
g’ (&) =0, that is,
JLGRIG I PR
g©=-L""Ou i Legr=o

n!

Consequently, we have L = f(+1(¢).
The case = < xq is similar. ]

Remark 14.1. Formula (16) is a generalisation of the Lagrange theorem, which can be obtained
taking n = 0.

Example 14.1. Let f(z) = ¢*, x € R, and 29 = 0. Then for all n € N and x € R there exists £
between 0 and x such that
2 n eg

S
- o Tl T 1)

"L (17)

This formula follows from Theorem 14.1 and Example 13.2, since f*) (0) =€’ =1.

Remark 14.2. Formula (17) allows to obtain an approximate value of ¢, computing the value of the
.+

polynomial 1+ x + "”g—? + .. %T,L Moreover, the error is equal (nfl)!x”“. For instance, for z € [0, 3]
and n = 12 we have P 3313 .
n+1 <
(n+1)! 13! 1000
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14.2 Local Extrema of Function
Let f: (a,b) — R be a given function.

Definition 14.1. e A point xq is called a point of local maximum (local minimum) of f,
if there exists § > 0 such that B(zo,0) = (z0 — d,20 + 0) C (a,b) and f(z) < f(zo) (resp.
f(x) > f(zg)) for all z € B(xg,?).

If g is a point of local minimum or local maximum of f, then it is called a point of local
extrema of f.

e A point zg is called a point of strict local maximum (strict local minimum) of f, if
there exists 6 > 0 such that B(xo,9) C (a,b) and f(z) < f(xo) (resp. f(x) > f(xo)) for all
x € B(x0,9) \ {z0}.

If z¢ is a point of strict local minimum or strict local maximum of f, then it is called a point
of strict local extrema of f.

Example 14.2. For the function f(z) = 2%, € R, the point 2 = 0 is a point of strict local minimum
of f and f takes the smallest value at this point.

Example 14.3. For the function f(z) = z, € [0, 1], the points z, = 0 and z* = 1 are points at
which the function takes the smallest and the largest values, respectively. But they are not points of
local extrema.

Theorem 14.2. If zg is a point of local extrema of f and f has a derivative at xq, then f'(x¢) = 0.

Proof. Let xg be a point of local maximum. Then by Definition 14.1, there exists § > 0 such that
B(zp,0) C (a,b) and f(x) < f(xo) for all x € B(xg,d). In particular, f(zg) = r}ggx 5)f(:v). Applying
Te

Zo,

the Fermat theorem (see Theorem 11.2) to the function f defined on (z¢g — 0,29 + 4), we obtain
f'(xo) =0. o

Remark 14.3. Theorem 14.2 gives only a necessary condition of local extrema. If f'(z¢) = 0 at some
point oy € (a,b), then it does not imply that xo is a point of local extrema. For instance, for the
function f(x) = 23, x € R, the point zo = 0 is not a point of a local extrema while f/(0) = 0.

Remark 14.4. A point at which derivative does not exist can also be a point of local extrema. For
example, for the function f(x) = |z|, z € R, the point 9 = 0 is a point of local minimum but the
derivative at o = 0 does not exist (see Example 10.2).

Definition 14.2. A point xy € (a,b) is said to be a critical point or stationary point of f, if

f/(xo) = 0

Remark 14.5. Point of local extrema of f belong to the set of all critical points of f and points
where the derivative of f does not exist.

Theorem 14.3. Let xg be a critical point of f and the function f be differentiable on some neigh-
bourhood of the point xg.

a) If for some 6 >0 f'(x) > 0 for all x € (xg — 0,z0) and f'(x) <0 for all x € (xg,z0 + J), then
xg 18 a point of strict local mazimum of f.

b) If for some 6 >0 f'(x) <0 for all x € (xg — d,20) and f'(x) > 0 for all x € (xo,z0 + J), then
xg 18 a point of strict local minimum of f.
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Proof. We will only prove a). Since f’(x) > 0 for all € (xg — d,20), the function f strictly increases
on (xg — 6, x0], by Remark 12.1. Hence, f(z) < f(xo) for all x € (xg — d, zp). Similarly, f(z¢) > f(z)
for all € (xg,xz0 + 0), since the function f strictly decreases on [xg,zo + d) due to f'(z) < 0,
x € (zop,z9 + 6). Thus, z¢ is a point of strict local maximum. ]

Example 14.4. For the function f(x) = 23 — 3z, z € R, the points 1 and —1 are critical points of
f, since the derivative f(z) = 322 — 3, € R, equals zero at those points. The point —1 is a point of
strict local maximum because the derivative changes its sign from “4” to “—”, passing through —1.
The point 1 is a point of strict local minimum because the derivative changes its sign from “—” to
“47 . passing through 1.

Exercise 14.1. Find points of local extrema of the following functions:
a) fz) =2%%, 2 €R; b) flx) =2+, 2>0; ¢) f(z) =2%,2>0; d) f(z) = |z, z € R.

Theorem 14.4. Let a function f: (a,b) — R and a point xy € (a,b) satisfy the following properties:
1) there exists 6 > 0 such that f is differentiable on (xo — d,x0 + 9);
2) f'(xo) =0;
3) there exists f"(xg) and f"(xg) # 0.

If f"(xz0) < 0, then zq is a point of strict local mazimum. If f"(x¢) > 0, then x¢ is a point of strict
local minimum.

Proof. We write for the function f and the point zy the Taylor formula (see Theorem 13.4). So,

f"(xo)

ol (z — 0)* + o((x — 20)%), @ — 0.

f@) = f(wo) + f'(zo)(x — w0) +

Hence, for x # xy we have

”ﬂf ol (x — 1 2
f(iv)—f(xo)z(a:—x()ﬁ(f (20)  ol(z = o) >>

2! (x — ()2

and, hence, f(z)—f(zo) has the same sign as f”(x¢) on some neighbourhood of z, since ‘)(((5:7;?))22) — 0,
T — x0. ]

Example 14.5. For the function f(x) = 22—z, z € R, the point % is a point of strict local minimum,
since f’ (%) =0 and f” (%) =2<0.

Theorem 14.5. Let f : (a,b) — R, a point xy belong to (a,b) and m € N, m > 2. We also assume
that the following conditions hold:

1) there exists 6 > 0 such that f"V(x) exists for all x € (xg — 8, x0 + 6);
2) f'(z0) = f"(z0) = ... = f" D(zo) = 0;
3) there exists ™ (z0) and f(™)(xq) # 0.

If m is even and f(™) (z0) < 0, then xo is a point of local mazimum.
If m is even and ™ (zq) > 0, then xq is a point of local minimum.
If m is odd, then xq is not a point of local extrema.

58



University of Leipzig — WS18/19
10-PHY-BIPMA1 — Mathematics 1 / Vitalii Konarovskyi

UNIVERSITAT LEIPZIG

Proof. The proof of Theorem 14.5 is similar to the proof of Theorem 14.4. O
Exercise 14.2. Prove Theorem 14.5.

Exercise 14.3. Find points of local extrema of the following functions:

4 3 2 _ 1 9 T, w A0,
a) f(z) =2*(1—-2)°, z €R; b) f(x):7—1+m7$€& c) f(z) = 0 =0 ;v eR.
14.3 Convex and Concave Functions
Let —0o <a < b< +oo.
Definition 14.3. e A function f : (a,b) — R is said to be a convex function on (a,b), if for

each z1, 22 € (a,b) and o € (0,1)

flazr + (1 — a)za) < af(xr) + (1 — a) f(x2).

e A function f : (a,b) — R is said to be a concave function on (a,b), if for each z1,z2 € (a,b)
and a € (0,1)
flazy + (1 — a)x2) > af(zr) + (1 — a)f(22).

Definition 14.4. e A function f : (a,b) — R is said to be a strictly convex function on (a,b),
if for each x1,x92 € (a,b), z1 # 22, and a € (0, 1)

flazy + (1 — a)za) < af(x1) + (1 — a) f(x2).

e A function f : (a,b) — R is said to be a strictly concave function on (a,b), if for each
x1,x9 € (a,b), x1 # x2, and o € (0, 1)

flaz + (1 — a)z) > af(r1) + (1 — a) f(x2).

Example 14.6. Let M, L € R. The function f(xz) = Mz + L, = € R, is both convex and concave on
R. Indeed, for each 1,22 € R and a € (0,1) we have

flaxi+(1—a)ze) = M(axi+(1—a)ra)+L = a(Mz1+L)+(1—a)(Mzo+L) = af(z1)+(1—a) f(x2).

Example 14.7. The function f(z) = |z|, z € R, is convex on R. Indeed, for each z1, 22 € (a,b) and
ac(0,1)

flazy + (1 = a)zg) = |azy + (1 — a)aa| < ala| + (1 — a)ze| = af(z1) + (1 — a)f(22),
by the triangular inequality (see Theorem 2.5).

Example 14.8. The function f(z) = 22, 2 € R, is strictly convex on R. To prove this, we fix
r1,79 € R, 21 # 2, a € (0,1) and use the inequality 2z172 < 22 + 22 which trivially follows from
(1 — 22)? > 0. Thus,

flazy 4+ (1 — a)zs) = (azy + (1 — @)x9)? = &®2F + 20(1 — @) z125 + (1 — )%23
<t +a(l—a)2? + x%) +(1- a)%% = aw% +(1- a)x% =af(z1) + (1 —a)f(x2).

59



University of Leipzig — WS18/19
10-PHY-BIPMA1 — Mathematics 1 / Vitalii Konarovskyi

UNIVERSITAT LEIPZIG

Theorem 14.6. Let a function f : (a,b) — R has the derivative f'(x) for all x € (a,b).
(i) The function f is convez (strictly convex) on (a,b), if ' increases (strictly increases) on (a,b).
(i1) The function f is concave (strictly concave) on (a,b), if f' decreases (strictly decreases) on (a,b).
Combining theorems 14.6, 12.1 and 12.2 we obtain the following statement.
Theorem 14.7. Let a function f : (a,b) — R have the second derivative f"(x) for all x € (a,b).
(i) The function f is convex (concave) on (a,b) iff f"(x) >0 (resp. f"(x) <0) for all z € (a,b).

(i) The function f is strictly convex (strictly concave) on (a,b) iff f"(x) >0 (resp. f"(x) <0) for
all € (a,b) and there is no interval (o, B) C (a,b) such that f"(x) =0 for all x € (o, B).

Exercise 14.4. Identify intervals on which the following functions are convex or concave:
a) f(z) =¢e*, x €R; b) f(z) =Inz, x >0; ¢) f(z) =sinz, x € R; d) f(z) = arctanz, z € R;
e) flz) =z >0, acR.

Theorem 14.8 (Jensen’s inequality). Let f : (a,b) = R be a convex function. Then for each n > 2,
X1y...,Zpn € (a,b) and aq,...,an €10,1], a1 + ... + o = 1, the inequality

flagzr + ..o+ aney) < arf(xr) + ...+ anf(xy) (18)
holds.

Proof. We are going to use the mathematical induction to prove the theorem. For n = 2 inequality (18)
is true due to the convexity of f.

Next, we assume that inequality (18) holds for some n > 2 and each z1,...,x, € (a,b) and
each ay,...,a, € [0,1], a1 + ... + o, = 1, and prove (18) for n + 1 and z1,...,2,41 € (a,b),
a1y y0py1 € [0,1], a1 + ... + apy1 = 1. We remark that there exists k such that oy < 1. So, let
an+1 < 1. Then, by Definition 14.3 and the induction assumption,

n+1 n n
f (Z Oékﬂfk> =f (an+1a¢n+1 + Z akmk> < apt1f(@ns1) + (1 — any1)f (Z akxk)
k=1

k=1 el
n a n+1
k
< i fan) + (= ) 3 ) = 3 o).
=1 - Onl k=1
[
Example 14.9. The function f(z) = —Inz, z > 0, is convex on (0,400), since f"(z) = % > 0,

x > 0 (see Theorem 14.7 (i)). Applying (18) to f, for each n > 2, x1,...,z, € (0,+00) and
al,y...,0p €10,1], a1 + ...+ a, =1, we have

n n
In <Z aka:k> > Z o In .
k=1 k=1
This implies

n n
H 2 < Z QLT (19)
k=1 k=1
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forall n > 2, z1,...,2, € (0,400) and ay,...,a, € [0,1], a1 + ...+ a,, = 1. In particular, taking

alz...:an:%,weget

foralln > 2, xq,...,2, € (0,400), which is the inequality of arithmetic and geometric means.

Exercise 14.5 (Young’s inequality). Let p > 1, ¢ > 1 and %—1— % = 1. Prove that zy < % + %: for all
x,y € (0,400).
(Hint: Use inequality (19))
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15 Lecture 15 — Antiderivative and Indefinite Integral

15.1 Definitions and Elementary Properties

In this section, J denotes one of the following intervals [a,b], [a,b), (a,b], (a,b), (—o0,a], (—o0,a),
[b, +00), (b,400) or (—oo,+00). Moreover, for a function f : [a,b] — R, we set f'(a) := f\(a) and

f'(b) == fL(b).

Definition 15.1. A function F' : J — R is said to be an antiderivative or a primitive function of
a function f:J — R, if for each = € J there exists F'(z) and F'(z) = f(x).

Example 15.1. An antiderivative of the function f(z) = z, z € R, is the function F(z) = 2% 2 € R,

since (%x2)/ =z for all x € R.
The function G(z) = %:UQ + 1 is also an antiderivative of f because (%1)2 + 1)/ =g for all x € R.

0, <0 0 <0,
Example 15.2. An antiderivative of the function f(z) = v " v

" is the function F((z) = ¢ )
z, x>0, 5, x2>0.
Indeed, for each x < 0, F'(x) = 0 and for each x > 0 F'(z) = x. Moreover, F' (0) =0, F}(0) =0

and, thus, F'(0) = 0, by Remark 10.2.

Remark 15.1. We note if f has an antiderivative, then it is not unique. Indeed, if F' is an antideriva-
tive of f, then for any constant C' € R the function F' + C' is also an andiderivative of f because for
each z € J (F(z) + C) = F'(x) = f(z). Moreover, if F' and G are antiderivatives of f, then there
exists a constant C' € R such that F = G 4 C, by Corollary 12.2.

Definition 15.2. The indefinite integral of a function f : J — R is the expression F(z) + C,
x € J, where F is an antiderivative of f and C denotes an arbitrary constant. The indefinite integral
of a function f is denoted by [ f(x)dz, x € J.

Exercise 15.1. Find antiderivatives of the following functions:
8) f(z) = |z], = € R; b) f(z) = max{1,2%}, 5 €R; ¢) f(z) = |sinz], 7 € R
d) f(z) =sinz + |sinz|, z € R.

Exercise 15.2. Let a function f : R — R has an antiderivative F' : R — R. Find f, if for each z € R:
a) F(z) = f(z); b) F(z) = 3f(z); ¢) F(z) = f(z) +1; d) 20F(z) = f(x).

Theorem 15.1 (Properties of indefinite integral). Indefinite integral satisfies the following properties:
1) %ff(x)dw = f(z), z € J;
2) [ fl(x)dx = f(x)+C, z € J;
3) [(af(z))dz =a [ f(zx)dz, x € J, for alla € R, a # 0;

4) J(f(@) +g(x))dz = [ f(x)dz + [ g(x)dx, x € J.

From definitions 15.2 and 15.1 we have that F'(z) = f(z), € J, provided [ f(z)dz = F(z) + C,
x € J. Using this relationship, we can get the following list of important indefinite integrals.

ma+1

o [x%dr =T +C, € (0,+00), for all « € R\ {~1};

fx"dx:nx—:l—l—(?,xeR,forallneNU{O};
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e [ldy =In|z|+ C on each interval (—oo,0) and (0, +00);
e [a*dr={- +C,ze€Rforalla>0,a+#1;

o [edr=e"+C, 2z €eR,;

o [coszdr =sinz+C, z €R;

o [sinzdr=—cosz+C,z R,

Co‘igx = tanz + C on each interval (—g +nm, 5+ mr), n € Z;
o [ dr_ — _ cotx 4 C on each interval (nm, 7 + nrw), n € Z;
(300 4

o [ 11“;2 =arctanz + C, x € R;

o [ \/flf? = arcsinz + C, z € (—1,1).

15.2 Computation of Indefinite Integrals

An elementary function is the compositions of rational, exponential, trigonometric functions and their
inverse functions. A function is called elementary integrable if it has an elementary antiderivative.
“Most” functions are not elementary integrable. For example, antiderivatives of fi(x) = e*xQ, x eR;
folz) = <, 2 > 0; f3(z) = 2L 2 > 0; fu(z) = sina?, z € R; f5(z) = cosa?, z € R, cannot be
expressed as elementary functions.

In the following subsections, we will consider some approaches which allow to compute antideriva-

tives of some classes of functions.

15.2.1 Substitution rule

Definition 15.3. The differential df(z) of a differentiable function f is defined by df(z) =
I (x)dz.
According to Definition 15.3, we set [ f(z)dp(z) := [ f(z)¢'(x)dx.

Theorem 15.2. Let a function f : J — R be continuous on J1, g : J — J1 be continuously
differentiable on J (i.e. g has the continuous derivative on J) and let [ f(t)dz = F(t)+ C, t € J;.

Then [ f(g(x))g'(z)dz = [ f(g(z))dg(x) = F(g(x)) +C, z € J.
Proof. Indeed, (F(g(x))) = F'(g9(x))d' () = f(g9(x))g'(z), x € J, by the chain rule. O

Example 15.3. Compute [ sinbzdz, z € R.
Solution. According to Theorem 15.2, we have

1 1 1 1
/sin5a;da:— 5/sin5xd(5m) = |[fx =t| = 5/sintdt— —gcost—i—C: —gCOSSx—i—C, x €R.

Example 15.4. Compute f2xex2dx, z € R.
Solution. By Theorem 15.2, we obtain

/2:Be“"2d:v:/e””2d332: |x2:t‘ :/etdt:et+C:ex2+C, z € R.

63



University of Leipzig — WS18/19
10-PHY-BIPMA1 — Mathematics 1 / Vitalii Konarovskyi

UNIVERSITAT LEIPZIG

Exercise 15.3. Compute the following indefinite integrals:
a) [sin®zdr, z € R; b) [sin2zsin3zdr, z € R; ¢) [sin®zdz, x € R; d) fsinxd%, z € (0,%);
e) [zcosa?dr, z € R; f) [ £ on (—oo,1) and (1, +00).

Theorem 15.3. Let a function f: J — R be continuous, ¢ : Jo — J be continuously differentiable
on Jo and let ¢ have an inverse function p~'. Let also G be an antiderivative for the function

g(t) = fle(t)¢'(t), t € Jo. Then
/f(w)d-’r = /f(w(t))dw(t) = /f(go(t))go’(t)dt =Gt +C =Gl Hz))+C, zel

Proof. Let F be an antiderivative of f on J. Then according to the chain rule, we have

(F(p(t) = F'(0(t)¢'(t) = fle(t)p(t) te Jo.

Thus, there exists a constant C' such that G(t) = F(p(t)) + C, t € Jy, or G(p~(z)) = F(x) + C,
x e J. O

Example 15.5. Compute [ V1 — z?dz, z € [-1,1].
Solution. Using Theorem 15.3, we have

=i 1 2t
/\/1—x2d$:‘ Al ’:/COSQtdt:/—i—COSdt

dr = dsint = costdt 2

1 1 1 1
= §t+ Zsith—FC = Earcsinx—i- ix\/l —z22+4+C.
Here, we have used that ¢ = arcsinz and sin2t = 2sintcost = 2sintv1 — cos?2t = zv/1 — 22, for

xr =sint, t € (—g,g)

Exercise 15.4. Compute the following indefinite integrals:
B 22+1)d
a) [ ze(-5.3); b) [ ek o) [S 0>0 d) [ FUE seR;
e) [VI—=3zdr, z<3i; f) [YBEdy 2 € (0,%); g) dr_ 2 >0; h) [cos?zsin®zdr, v € R;

cos? rlnx’

1) fﬁ? HS R; J) f 1%32 on (—OO,—l), (_171) and (L"’OO)

15.2.2 Integration by Parts Formula

Theorem 15.4. Let u,v : J — R be differentiable on J and the function uv’ has an antiderivative on
J. Then the function u'v also has an antiderivative on J and the following equality

/u’(x)v(x)dx = u(x)v(x) — /u(x)v’(x)dx, x € J, (20)
holds.

Proof. The function uv is antiderivative of the function u'v 4+ uv’ on J, by Theorem 10.3 3). Thus,

/(U'(fv)v(fv) +u(2)v'(x))de = u(z)v(z) + C,

which implies equality (20). O
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Remark 15.2. According to Definition 15.3, the integration by parts formula (20) can be written as
follows

/ v(@)du(z) = u(z)v(z) - / u(z)dv(z), = €J

Example 15.6. Compute [ zsinzdz, z € R.
Solution. Using Theorem 15.4 and Remark 15.2, we have

/wsinxdwz—/wdcoswz—xcos:v—l—/cos:vdx:—ajcosa:+sina:+0, z € R.

Example 15.7. Compute [Inzdz, z > 0.
Solution. Using Theorem 15.4 and Remark 15.2, we get

/lna:dx:xlnx—/azdlnx:a:lna:—/dxlenx—x—i-c, x> 0.

Exercise 15.5. Compute [ e”sinzdz, z € R.
Solution. Applying Theorem 15.4 and Remark 15.2, we obtain

/exsin:rd:c:/sinxdew:exsin:r—/ewdsinx:exsin:r—/ezcos:cdx
:exsinx/cosxder :emsinxefﬂcostr/erdcosx
—ex(sinx—cos:c)—/exsinxdsc z €R.

Thus, [e”sinzdr = Je%(sinz — cosz) + C, z € R.

Exercise 15.6. Compute the following indefinite integrals:
a) [xsinadr, z € R; b) [2?sinadr, z € R; ¢) [(Inz)’dz, z > 0; d) [In(z? + 2 + 1)dz, z € R.

Exercise 15.7. Find a mistake in the following reasoning.
Using Theorem 15.4 and Remark 15.2, we have

1 1 1
dx:x-—/xdzl—/x-(—2>dm:1+ dj, x> 0.
x x x x x

Thus, 0 = 1!
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16 Lecture 16 — Riemann Integral

16.1 Area of the Region under the Graph of Function

We consider the following problem. Let f : [a,b] — R be non-negative continuous function. We want
to compute the area of the region under the graph of f, that is, the area of the set

Fi={(a,y): yelo,f@)] =€ [a,b]}.

F)

For this, we divide the interval [a, b] into smaller subintervals [zx_1,zk|, k = 1,...,n, where a = 2y <
1 <...<Tp_1 < xy=>, and consider the following partition of F' to the sets

F:=A{(z,y): y €0, f(2)], = € [xp—1,m]},

k=1,...,n. Since f is a continuous, its values vary little on [zj_1,xg], if Axg = ) — xf_1 is small.
Consequently, we should expect that the area of Fj should be close to the area of the rectangle with
sides Az and f(&x) which equals f(&x)Axy, where & are points from the intervals [xy_1,x]. Thus,
one can expect that

Zf(fk)A:rk — S(F), as m]?X|A:1:k| — 0. (21)
k=1

Limit of the type (21) really exists, and will be studied in the next sections.

16.2 Definition of the Integral

Definition 16.1. e Let [a,b] be an interval and n € N. A set of points xg,z1,..., 2, such that
a=1x9<x] <..<xp_1 <z, =>0Iiscalled a partition of the interval [a,b] and is denoted
by A.

66



University of Leipzig — WS18/19
10-PHY-BIPMA1 — Mathematics 1 / Vitalii Konarovskyi

UNIVERSITAT LEIPZIG

e The number |A| = max{Ax : 1 <k < n}, where Az = xp — x}_1, is called the mesh of a
partition \.

Let f : [a,b] — R be a function, A = {zg,z1,...,z,} be a partition of the interval [a,b] and
& € [zr—1,2k), K =1,...,n. The sum

> ) Ay (22)

k=1

n

is called the Riemann sum.

Definition 16.2. A function f is said to be integrable on |[a, b], if there exists a limit J of Riemann
sums (22) as |A\| = 0 and this limit does not depend on the choice of partitions A and points &. More
precisely, if for all € > 0 there exists § > 0 such that for each partition A\ = {xg,z1,...,2,} with
|A| < ¢ and points & € [zr_1,2%], k=1,...,n,

<e.

T =Y f(&) A
k=1

The number J is called the Riemann integral of f over [a,b] and is denoted by f; f(x)dx.

Shortly, we will write
n

b
dr = li Axy. 23
| #Gayis jim, 3 f(6n, (23)
If f:]a,b] — R is integrable on [a, b], then we will write f € R(a,b]).

Exercise 16.1. Show that a constant function f(x) = ¢, z € [a, ], is integrable on [a, b] and compute
b

[ cdzx.
a

Exercise 16.2. Show that the Dirichlet function f(z) =1, x € Q, and f(z) =0, z € R\ Q, is not
integrable on any interval [a,b], a < b.

Exercise 16.3. Let f, g : [a,b] — R be integrable on [a, b]. Show that f + g is also integrable on [a, b].
Theorem 16.1. If a function f : [a,b] — R is integrable on |a,b], then f is bounded on [a,D].
Exercise 16.4. Prove Theorem 16.1.

Let f : [a,b] — R be a bounded function on [a, b].

Definition 16.3. e The upper Darboux sum of f with respect to a partition A is the sum
n
U(f,0) =) MyAay,
k=1
where My := sup  f(x).

TE[TR_1,Tk]

e The lower Darboux sum of f with respect to a partition A is the sum
n
L(f,A) =Y mpAwy,
k=1

where my :=  inf  f(x).
LIJE[lTk,l,LEk]
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Theorem 16.2 (Integrability criterion). A function f : [a,b] — R is integrable on [a,b] iff for every
e > 0 there exists A = A([a, b]) such that

U(f,\) — L(f, ) < e.

Exercise 16.5. Let f € R([a,b]). Show that
a) |f| € R(la,b]); b) sin f € R([a,b]); ¢) f* € R([a,b]); d) max{0, f} € R([a,b]).

Exercise 16.6. Let f,g € R([a,b]). Show that fg € R([a,]).

16.3 Classes of Integrable Functions
16.3.1 Integrability of Monotone Functions

Theorem 16.3. Let f : [a,b] — R be a monotone function on [a,b]. Then f is integrable on [a,b].

Proof. We assume that f is increasing on [a, b] and f(a) < f(b). To prove the theorem, we are going to
use the integrability criterion (see Theorem 16.2). For any € > 0 we take a partition A of the interval
[a, b] such that || < f(b)f 7ay- For such a partition we have

n n

U(fN) = L(f,A) = > (M —mp) Az, = > (f (@) — f(@r-1)) Ay,

k=1 k=1

<A (flar) = fzr-1)) = [M(f(n) = f(@0)) = (f(b) = f(a) <e.
k=1

O]

Exercise 16.7. For any bounded function f : [a,b] - Rweset g(z) = sup f(u)and h(z) = iI[lf ]f(u),
u€la,r] ue|a,x

x € [a,b]. Show that g,h € R([a,b]).

16.3.2 Integrability of Continuous Functions
Theorem 16.4. Let f : [a,b] — R be continuous on [a,b]. Then f is integrable on [a,b).

Proof. We will use the integrability criterion again, to prove the theorem. By the Cantor theorem (see
Theorem 9.4), f is uniformly continuous on [a, b]. Thus, for a number =~ > 0 there exists § > 0 such
that for each o/, 2" € [a,b], |2/ — 2| < 0 it follows | f(z) — f(2")| < 3= . Next, we choose a partition A
of [a,b] with |A| < §. Thus, by the 2nd Weierstrass theorem (see Theorem 9.2), for each k =1,...,n

My—mp= sup fl@)— inf f(z) = f(a") = f(w,) < —

)
o€ler—1,74] €lwr—1,74] b-a

where z* and x, are points where f takes its maximum and minimum value on [zy_1, zx], respectively.
Consequently,

n

Uf,A) — L(f,0) = S (M, — my) Ay, < ﬁ Y Az =-.
k=1 k=1
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16.4 Properties of Riemann Integral

Theorem 16.5 (Linearity and addidivity). (i) Let f € R([a,b]) and ¢ € R. Then cf € R(la,b))

and
/abcf(a:)da: = c/abf(as)d:c.

(i1) Let f,g € R([a,b]). Then f+ g € R([a,b]) and
b b b
/(f(fﬁ)-l-g(:v))d:c:/ f(x)d:L‘+/ g(x)dw.

(i1i) Let f € R([a,b]) and c € (a,b). Then f € R([a,c]) and f € R([c,b]). Moreover,

/a ) = / " f(2)da + / " fwdr.

Exercise 16.8. Prove (i) and (ii) of Theorem 16.5.

Exercise 16.9. Let ¢ € (a,b). Show that f € R([a,b]), if f € R([a,c]) and f € R([c,b]).

Theorem 16.6. Let f,g € R([a,b]) and f(x) < g(z), x € [a,b]. Then ff f(x)dx < f;g(x)da:.

Proof. The statement immediately follows from the definition of the integral. O
Exercise 16.10. Prove Theorem 16.6.

Corollary 16.1. Let f € R([a,b]) and m = ir[lfb]f(:c), M := sup f(z). Then
z€la, z€[a,b]

b
m(b—a) < / F@)dz < M(b— a). (24)

Proof. We first note that m and M exists, since f is bounded (see Theorem 16.1). Inequality (24)
follows from the inequality m < f(x) < M, x € [a, b], and Theorem 16.6. O

Corollary 16.2. Let f € R([a,b]). Then |f| € R([a,b]) and

/ab f(x)dx

Exercise 16.11. Prove Corollary 16.2.

< [ @i

Theorem 16.7 (Mean value theorem for integrals). Let f : [a,b] — R be a continuous function on
[a,b]. Then there exists 0 € [a,b] such that f; flz)dz = f(0)(b—a).

Proof. By Corollary 16.1,
1 b
mSL:—/ f(z)dx < M.
b—a J,

Since f is continuous, we can apply the 2nd Weierstrass theorem (see Theorem 9.2) to f. Thus,
there exist x,,z* € [a,b] such that m = f(z,) and M = f(z*). Consequently, f(z,) < L < f(z*).
By the intermediate value theorem (see Theorem 9.3), there exists § between z* and z, such that
f(6)=L. O
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Exercise 16.12. Let f : [a,b] — R be a non-negative continuous function on [a, b] such that f(z) > 0
for some xg € [a,b]. Show that f: f(z)dx > 0.

Exercise 16.13. Let f € C([a,b)]), g € R([ b]) and g(z) > 0, x € [a,b]. Show that there exists
0 € [a, b] such that fab f(x)g(z)dx = f g(z

Exercise 16.14. For functions f, g € R([a,b]) compute the limit

I/l\1|§02f§k / g(x)dz.

-1

Exercise 16.15. For a function f € R([0, 1]) prove the equality

lim f d:c—/f

n—oo

Exercise 16.16 (Cauchy inequality). For f,g € R([a,b]) prove the following inequality

( / bf(x)g(x)dx)2 </ ' Py /ab 2.
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17 Lecture 17 — Fundamental Theorem of Calculus and Application
of Riemann Integral

17.1 Fundamental Theorem of Calculus
We set f¢f(z)dz :=0and [' f(z)dzx = — fff(:z:)da; for a < b.

Theorem 17.1. Let f : [a,b] — R be integrable on [a,b]. Then the function ¢(z) = [T f(u)du,
x € [a,b], is continuous on [a, b].

Proof. For every x’, 2" € [a,b] we have

/a . f(x)dz — / f(z)da /r f(x)dz

by Theorem 16.5 (iii) and corollaries 16.1, 16.2. Consequently, ¢ is uniformly continuous on [a,b]. [

17

< / F@)lde < sup |f(@)|le — 2",

! z€la,b]

|o(a') = p(a")] =

Theorem 17.2. Let f : [a,b] — R be continuous on [a,b]. Then the function p(x) := [T f(u)du,
x € [a,b], is differentiable on [a,b] and ¢'(x) = f(x), x € [a,b], that is, ¢ is an antiderivative of f on
[a, b].

Proof. Let o € [a,b] and h # 0. By the mean value theorem (see Theorem 16.7), there exists 6y,
between xg and xg + h such that

o(xo+h) —p(xg) 1 /xﬁh

f(z)dz = f(6,).

h h

0

Since 0, — xg, h = 0, and f is continuous, we obtain

iy 2100+ 1) (20

lim = lim f(0n) = f (o).

O

Theorem 17.3 (Fundamental Theorem of Calculus). We assume that f : [a,b] — R satisfies the
following properties:

1) f is integrable on [a,b];
2) f has an antiderivative F' on [a,b].

Then )
/ f(z)dx = F(b) — F(a).

b
We will also denote F'(x)

a

Proof. We first prove the theorem in the case f € C([a,b]). The function p(z) := [ f(u)du, x € [a,b],
is an antiderivative of f on [a,b], by Theorem 17.2. Thus, using Remark 15.1, there exists C' € R
such that ¢(x) = F(z) + C, x € [a,b]. In particular, p(a) = F(a) + C = 0. Thus, C = —F(a).
Consequently, f: f(z)dz = p(b) = F(b) + C = F(b) — F(a).

= F(b) — F(a).
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Next, we give the second proof of the theorem in the general case. Let A = {zg,z1,...,z,} be a
partition of [a,b]. We first note that

n

F(b) — F(a) = (F(21) - F(x0)) + (F(22) = F(1)) + ..+ (F(2n) = F(2a1)) = S (Flax) = Fla_1)).
k=1

We apply the Lagrange theorem (see Theorem 11.4) to the function F' on [zp_1,x] for each k =
1,...,n. So, there exists & € [xg—1, 2], K =1,...,n, such that

F(b) = F(a) =Y (F(ax) — F(zp-1)) = Y F'(&)Azk = > f(&) Ay
k=1 k=1 k=1
Making |A\| — 0, we have
n b
FO) - F(o) = Y. f(@)Aa > [ fla)da,

k=1 a
since f is integrable on [a, b]. O
Exercise 17.1. Compute the following integrals:

a) ffl Jxdz; b) fowsin:vda:; c) f%g 119;2; d) f02|1 — z|dz; e) Elﬁfomﬂ for o € (0, 7).

Example 17.1 (Leibniz’s rule). Let a function f : R — R have an antiderivative on R and be
integrable on each finite interval. Let functions a,bR — R be differentiable on R. Then

d b(x)

i J flu)du = f((x)V (z) - f(a(z))a'(z), =eR.

Indeed, let F' be an antiderivative of f on R. By the fundamental theorem of calculus,

b(x)
" f(w)du = F(b(x)) — F(a(x)), x€R. (25)

Moreover, the right hand side of (25) is differentiable and

% (F(b(z)) — F(a(x))) = F'(b(x))V'(z) — F'(a(z))d (z) = f(b(z))V(z) - f(a(z))d'(z), =z €R,
by the chain rule.

Exercise 17.2. Compute the following derivatives:
2 3
a) & [Psina®de; b) L [Psina®de; o) L[ VI 2dt; d) L[5 1oy,

xT

Exercise 17.3. Compute the following limits:
z 42 2
Iy CO; tzdt; b) lim Jo (arctan t)?dt lim ( o€ dt)

a llm C =% 5.0 . -
) r—+00 Va?+l ’ z—too  Jy e2t?dt

z—0
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17.2 Some Corollaries

Theorem 17.4 (Substitution rule). We assume that f : [a,b] — R is continuous on [a,b] and u :
[, B] = [a,b] is continuously differentiable on [a, B]. Then the following equality

B B u(B)
u o' (t)dt = u du(t) = x)dx
léf(@)@)tblf(@)(ﬂ Z@)ﬂ)
holds.

Proof. Since the function f is continuous on [u(«a),u(S)], it has an antiderivative F' on [u(«a),u(8)],
by Theorem 17.2. Using the fundamental theorem of calculus,

u(B)
/})ﬂmszwm»—me»

Moreover, the function F'(u) is an antiderivative of f(u)u’ on [a, §]. Thus, by the fundamental theorem
of calculus,

B
[ #ae)u 0t = Fu(®) - Plu(a).
This proves the theorem. ]

Exercise 17.4. Using the substitution rule, compute the following integrals:

a) Jo/"wsinaldr; b) [y €2 lda; o) [1) 2 d) [P Ve = Tdas e) [ ok

Theorem 17.5 (Integration by parts). Let u,v : [a,b] — R be continuously differentiable functions
on la,b]. Then

b

Lzmwwwzmmwm —Anmwwm,

a
i.€.

b b
/ u(x)v' (z)dz = u(b)v(b) — u(a)v(a) — / o (z)v(z)dw.
Proof. Since the function uv is an antiderivative of uv’ + u/v on [a, b],
b
/ (u(@)v' () + ' (z)v(z))dz = u(b)o(b) — u(a)v(a),

by the fundamental theorem of calculus. Using Theorem 16.5 (ii), we obtain the integration by parts
formula. O

Exercise 17.5. Using the integration by parts formula, compute the following integrals:
a) énQ ze " dx; b) [ wsinzdr; c) f027r z?cosxdr; d) [1|lnz|dz; e) fol arccos xdz.
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17.3 Application of the Integral
17.3.1 Area of the Region under the Graph of Function

Theorem 17.6. Let f : [a,b] — R be a continuous function on [a,b] and f(z) > 0, x € [a,b]. Then
the area of the region
F={(z,y): 0<y<f(zx), a<z<b}

under the graph of f is equal to

b
S(F) = / (@) da.

Proof. We first note that f is integrable on [a, b] because it is continuous (see Theorem 16.4). Thus,
the formula for the area follows from the discussion in Section 16.1 and definition of the integral
(see (23)). O

Example 17.2. The area of the region under the graph of the function f(z) = 22, x € [0,1], is equal

1 31 1
9 X
d:—’:f.
/Oxx 300 3
Yy

Example 17.3. Compute the area of the region G enclosed by the ellipse ‘z—z + b—j =1,a>0,b>0.
In order to compute the area of G, it is enough to compute the area of

/ 2
F:{(x,y):()gygb 1—2—, ngga}.
By Theorem 17.6,
B B @ | 2, | z=asint | _ LR
S(G)—4S(F)—4/O b 1_a2dx_‘dx—acostdt’_4ab/0 cos” tdt

31 2t 3 z
= 4ab/2 ﬂdt = 2abt)2 + absin 2t|> = wab.
0 2 0 0

Exercise 17.6. Compute the area of regions bounded by the graphs of the following functions:
a)2r=y?and 2y =22 b)y=22andz+y=2; ¢)y=2% y=2and z = 0;

d)yzag‘jriax2 and y = 0, where a > 0.

17.3.2 Length of a Curve

Definition 17.1. Let ¢, : [a,b] — R be continuous functions on [a, b]. The set of points

D= {(z,y) €R®: z=p(t), y=(t), t € [a,b]} (26)
is called a continuous (plane) curve.

We first give a definition of the length of the continuous curve I'. Let A = {t¢,t1,...,t,} be a
partition of [a,b]. We consider the polygonal curve I'y with vertices (p(tx),¥(tx)), k = 0,...,n. Its
length equals

IT) =DV (plt) — (1)) + () — (1))
k=1
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Definition 17.2. The curve I' is said to be a rectifiable curve, if there exists a finite limit

lim I(Ty) =: (T
\Aﬂlo“) (),

that is, if there exists a real number [(I") such that
Ve>0 36>0 VX |A[<d: [I(T))—UD)| <e.
The limit [(T") is called the length of rectifiable curve T

Theorem 17.7. Let ¢, : [a,b] — R be continuously differentiable on [a,b]. Then I', defined by (26),
s a rectifiable curve and its length equals

0= [ V& IR

Proof. Using the Lagrange theorem (see Theorem 11.4), we have

=> V(@& + (@ ()2 Aty = Z V(¢! + (V' (&) 2 Aty + 7,
k=1

where &, mg € [tk—1,tk], k=1,...,n, and

A= Z V(¢ + (¢! ()2 Aty — Z V(¥ + (V'(&k))* At

Since the function f(t) = \/(¢'(t))2+ (¥'(t))2, t € [a,b], is continuous on [a,b], it is integrable on
[a, b], by Theorem 16.4. Thus,

lim Z\/ + (V' (&) 2Atk_/ V(e Y (t))2dt.

|>\\—>0

Moreover, using the inequality

WVu2 4+ 02 = Va2 +w| < Jv—w|, uv,weR,

(see Exercise 12.5 b)), we have
Al < Z ' (&) — ¥ (k) |Aty, < Z My, — my) Aty
- =1

where My := sup ¢/(t) and my := inf ¢/(t), k=1,...,n. Using theorems 16.2 and 16.4, we
L€tk —1,t1] t€[tk_1,tk]
obtain

n
Al <D (Mg, — mi) Aty — 0, [A] = 0.
=1
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Remark 17.1. If a curve I is given by the graph of a continuously differentiable function f : [a,b] — R,
that is,
I'= {(fl?,y) S f(x)v T € [a7b]}7

then its length equals
b
0y = [ VI ().

Example 17.4. We compute the length of the circle 2 + y? = r2, r > 0, that is, the length of the
curve
F={(z,y): 2 +y* =1} ={(z,y): v =rcost, y=rsint, t €[0,2m)}.

By Theorem 17.7,

2 27
ur) = Vr2sin?t + r2 cos? tdt = / rdt = 2mr.
0 0

Exercise3 17.7. Compute the length of continuous curves defined by the following functions:
a)y==x2,z€[0,4]; b)y=€",0<xz<b; c¢)z=a(t—sint), y=a(l—cost), t € 0,2n], where
a > 0.

17.3.3 Volume of Solid of Revolution

Definition 17.3. Let f : [a,b] — R be a positive continuous function. A solid of revolution G is a
set of points in R? obtained by rotating of the region under the graph of f around the z-axis, that is,

G = {(w,y,z) P+ 22 < fx), z e [a,b]}.

Theorem 17.8. Let f : [a,b] — R be a positive continuous function. Then the volume of solid of
revolution G is equal to

b
V(G) = / P2(2)da

Idea of Proof. We consider a partition A = {xg, x1, ..., z,} of the interval [a, b] and split G into smaller
sets
G = {(m,y,z) P+ A< ),z e [xk_l,xk]}, k=1,...,n.

Then the volume of Gy, is approximately equal the volume of the cylinder

{(xaya Z) : y2 +22 < f2(§k)7 T € [-:Uk'fl?xk]}a

where & € [zr_1,xk]. Thus,

V(G) =Y VI(Gr) & Y mf* (&) Ay

k

n n
=1 k=1

Passing to the limit as |A\| — 0, we obtain

b
V(G) = ﬂ'/ 2(x)dz.
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Example 17.5. The volume of the cone
G={(x,y,2): v*+22<2? zecl01]}

equals

21 7

1
V(G) = Ydr=71"—| ==
()Tr/oxx 1= 3

since G can be obtained by rotating of the region under the graph of the function f(z) =z, x € [0, 1],
around the z-axis.
Exercise 17.8. Compute the volume of the paraboloid of revolution

G={(z,y,2): Y+ <=z, =z€l01]}

(Hint: G can be obtained by rotating of the region under the graph of the function f(z) = /z, = € [0, 1], around
the z-axis)
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18 Lecture 18 — Improper Integrals

18.1 Integrals over Unbounded Intervals
18.1.1 Definition and Elementary Properties

In this section, we assume that a function f : [a, +00) — R is integrable on [a, z] for all z > a and set

z
o(z) ::/ f(z)dz, =z>a.
a
Definition 18.1. The finite limit

lim ¢(z) = lim /Z f(z)dx (27)

z—400 Z—>+00

is called the improper integral of f over [a,+0c0) and is denoted by

+o00
/ f(z)dz. (28)

In this case, we will say that improper integral (28) converges. If limit (27) does not exist or is
infinite, then improper integral (28) is said to be divergent.

Remark 18.1. If integral (28) converges, then for each b > a the improper integral

+oo
/b f(z)dx (29)

also converges. If for some b > a improper integral (29) converges, then improper integral (28) also
converges. These both statements follow from the equality

/:f(a:)dx = /abf(x)d:c + /b fx)dz, a<b<z,

and the definition of the improper integral.

Example 18.1. The improper integral f0+°° e~ *dx converges and equals 1. Indeed,

“+o00 z
/ e "dr = lim e %dr = lim (—e_x
0

zZ—r400 0 zZ—400

0)2 lim (1—-e7%) =1

Z—+00

Example 18.2. The equality f0+°° 113; 5 = 5 is true, since

oo dr . 2 dx .
= lim = lim (arctan x
0 14+ 2 z=4o0 Jo 1+ x2 2—+00

Example 18.3. Let p > 0. The improper integral f1+°° g—if converges for p > 1 and diverges for p < 1.

Indeed, for each z > 1
*dx Inz—Inl, p=1,
(P(Z) = ) e R 1

P 1
r T o PFEL

# i T
0) = ZJTm(arctanz —-0) = 3
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Example 18.4. The integral f0+oo cos xdx diverges, since for the function ¢(z) = foz cos xdx = sin z,
z > 0, there is no limit as z — +oo.

Theorem 18.1 (Elementary properties of improper integrals). The following properties of improper
integrals are true.

1) Let integrals f;_oo (z)dz and f+oo x)dx converge. Then the integrals f+ f(z)dz, ¢ € R,
[ (x) + g(2))dz converge and

+oo +o0
/ cf(x)de =c f(x)dx

a

[ @ g = [ s@ans [ gt

2) Let f have an antiderivative F on [a,+00). If the limit

F(+00) := zggloo F(z) (30)
exists, then f:—oo f(z)dr = F(400) — F(a). If limit (30) does not exists or is infinite, then the
integral f;roo f(z)dz diverges.

3) (Integration by parts) We assume that functions u,v are continuously differentiable on [a,+00).
If the integral [ u(x)'(x)de = [ u(z)dv(z) converges and the limit u(+o0)v(+00) =
lim wu(z)v(z) exists, then the integral fjoo "(z)v(x)dx = f+°° x)du(x) converges and

2400
R /(;OO u(z)dv(x).

a

+oo
/ v(z)du(z) = u(x)v(x)

Example 18.5. The integral f0+°° re~*dx converges and equals 1, since

—+00 “+o00 +00 “+o0o
/ xe Ydr = —/ rde = —xe * —|—/ e Tdx =1,
0 0 0

0
according to examples 7.3 and 18.1.

18.1.2 Convergence of Improper Integrals of Non-Negative Functions

Theorem 18.2. The improper integral fa+oo f(x)dx of a non-negative function f converges iff there
exists C € R such that ¢(z f f(z)dz < C for all z > a.

Proof. Since f is non-negative function, the function ¢ non-decreases. Consequently, the upper bound-
edness of ¢ is equivalent to the existence of the limit lir}ra ¢(z), by Theorem 7.9 (i). O
Z—r+00

Theorem 18.3. Let f : [a,+00) = R and g : [a,+00) = R satisfy 0 < f(x) < g(z) for all x > a.
Then the convergence of the improper integral f;oo g(xz)dx implies the convergence of f;oo flx)dzx.
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Proof. The statement follows from Theorem 18.2 and the estimate

o) = /:f(x)dm < /:g(:c)dx < tim [ g@)de = /:wg(x)dx _C :>a

zZ—+00 a

Here the inequality for integrals follows from Theorem 16.6. 0

Example 18.6. The integral f0+oo cos’2 gy converges because we can apply Theorem 18.3 with a = 0,

) 1+22
f2) = ©2 2 > 0, and g(z) =

. 1+z2 >
o dx
0 Traz See Example 18.2.

ﬁ, x > 0. For the convergence of the integral f0+oo g(z)dr =

Exercise 18.1. Show that the following improper integrals converge:
a) ffroo e dx; b) ffoo e Clnazdr; c) [[7° 0L gg

1 1422
Corollary 18.1. We assume that for some numbers 0 < C' < +oo and p > 0 f(z) ~ m%, T — 400,
i.e. lir_i{l aP f(z) = C. Then the integral fa+oo f(x)dx converges for p > 1 and diverges for p < 1.
T—>+00

Proof. Let p > 1. By Theorem 7.1 (iii), there exists D > a such that 2P f(z) < 2C for all x > D.
Thus, f(z) < 20 » > D. Now applying Theorem 18.3 with a = D, g(z) = 2¢ x> D, and

2 Bk
using Example 18.3, we obtain that fgoo f(x)dx converges. Hence, f;oo f(z)dx also converges, by
Remark 18.1.

Let p < 1. Similarly, there exists D > a such that f(x) > % for all z > D. Since the integral

f+00 Cdx
D 2xP

diverges (see Example 18.3), the integral [ g > f(x)dx also diverges. O

18.1.3 Absolute and conditional convergence

Definition 18.2. An improper integral

+oo
/ f(z)dx (31)

is said to be absolutely convergent, if the integral

+o0
[ @l (32)
a
converges. If integral (31) converges but integral (32) diverges, then (31) is called conditionally
convergent.
Theorem 18.4. If an improper integral absolutely converges, then it converges.

Proof. Let integral (32) converge. We consider the following functions

f(x) == W’ T >a,
f—i—(x) = W? Tz a,

and note that 0 < f_(z) < |f(z)], 0 < fr(z) < |f(x)| and f(z) = fr(x) — f—(z) for all z > a.
By Theorem 18.3, the integrals f;oo f-(z)dz and f;roo f+(z)dx converge. Thus, using Theo-

rem 18.1 1), we have that the improper integral [ f(z)dz = [F(fi(x) — f—(x))dz also con-
verges. O
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Example 18.7. The integral f1+°° Si%dw is conditionally convergent. Indeed, according to the inte-
gration by parts formula, we have
z Z 1
— / cos a:d]
1 1 x

—+oco
= — lim [COSZ —cos1 +/ Cosxda?} =cos1 —/ ﬂdm.
< 1 1

z

+OO . z .
sin x . sin x . 1 . Ccos T
dr = lim dr = — lim —dcosx = — lim
1 X z—+00 1 xX z—+0c0o 1 T z—+00 xX

z—+00 2 2

The integral [ oo €5 dx absolutely converges because |CZZ$| < 5, > 1, and the integral [| +oo ix

converges (see Example 18.3). Thus, ffroo 5%dx converges, by Theorem 18.4. This implies the

convergence of the integral f1+°° sinz g

Next, we show that f1+<>o %dw diverges. We estimate

nr |sm:c| / | sin z| 1 /k” , 2 -1
——dzx > — dr = — —.
/7T Z e @ T > kZ_Q R Jo | sin z|dz - kz_2 :

In the next lecture we will show that ZZ:Q% — +00, n — oo. Thus, f:oo ‘Simﬂda; diverges and,

|smx|

consequently, dx also diverges.

Theorem 18.5 (Dirichlet’s test). Let functions f and g satisfy the following properties:
1) there exists C € R such that | [7 f(z)dz| < C for all 2 > a;
2) the function g is monotone on [a,+00);
3) g(z) = 0, x — 4o0.

Then the integral f:_oo f(x)g(x)dx converges.

Example 18.8. The integral ffroo Si%dx converges, since the functions f(z) = sinz, = > 1, and
g(z) =1, x> 1, satisfy conditions 1)-3) of Theorem 18.5 with C' = 2.

Example 18.9. The integral [| % gin 23dx converges, since the functions f(z) =2%sinz?, 2> 1, and
g(x) = 2, x > 1, satisfy conditions 1)-3) of Theorem 18.5 with C' =

Theorem 18.6 (Abel’s test). Let functions f and g satisfy the following properties:
1) the integral f:oo f(x)dx converges;
2) the function g is monotone on |a,+00);
3) the function g is bounded on [a,+00).

Then the integral fa+°° f(x)g(x)dx converges.

Exercise 18.2. Prove the convergence of the following integrals:

a) [ arda; ) % cosa?dz; c) O+°°sin:c2dm; d) [ro0 sin2zsing g,

Remark 18.2. The definition and properties of the improper integral ffoo f(x)dx are similar to ones
of [ f(x)da. The integral [T2° f(x)da is defined as [*__ f(z)dx + [°° f(z)dz for any a € R.
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18.2 Improper Integrals of Unbounded Functions

In this section, we will consider a function f[a,b) — R such that for all ¢ € (a,b) it is integrable on
[a, c] and unbounded on (¢, b). The case of a function f(a,b] — R, which is unbounded near a can be

considered similarly. We set
:/ f(z)dz, =z € (a,b).

lim ¢(z)dz = lim / flx (33)

z—b— z—b—

Definition 18.3. The finite limit

is called the improper integral of f over [a,b) and is denoted by

b
/ fx)dx. (34)

In this case, we will say that the improper integral (34) converges. If limit (33) does not exist or is
infinite, then the improper integral (34) is said to be divergent.

Exercise 18.3. The improper integral fol \/% converges, since

Example 18.10. The improper integral fol In zdz converges, since

NI
NI

1
=—1—zlnz+2z— -1, z— 0+,

z

1
/ Inzdr = (xlnx — x)

by Exeample 13.1 b). For the computation of an antiderivative of Inz see Example 15.7.

Exercise 18.4. Prove that the improper integral f p > 0, converges for p < 1 and diverges

for p > 1.

(b— x)P’

The following properties of improper integrals of unbounded functions can be proved similarly as
properties of improper integrals over unbounded intervals.

1. Let f(z) > 0, = € [a,b). The improper integral f: f(z)dz converges iff there exists C' € R such
that [” f(x)dz < C for all z € [a,b).

2. Let 0 < f(z) < g(z), € [a,b). If the improper integral f:g(x)dx converges, then f:f(x)dx
also converges.

3. If for some p > 0 and 0 < C' < 400 f(x) ~ ﬁ, x — b—, that is, xhj{,l,(b_ )P f(x) = C, then
the integral f; f(x)dx converges for p < 1 and diverges for p > 1.

4. If a function f has an antiderivative F' on [a,b) and there exists a limit F(b—) := lim F(z),

T—b—
then fab f(x)dx = F(b—) — F(a).

Exercise 18.5. Prove the convergence of the integral fol

dzx
V122"
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19 Lecture 19 — Series

19.1 Definition and Elementary Properties of Series

Let (an)n>1 be a sequence of the real numbers. For each n € N we set
Spi=a1+ag+ ...+ an.

Definition 19.1. The sequence (s;),>1 is called a series and is denoted by
o0
a1—|—a2—|—...—|—an—|—...:Zan. (35)

Elements of the sequence (s, ),>1 are called the partial sums of series (35). If the sequence (S, )n>1
converges to a real number s, then series (35) is said to be convergent, and the number s is called
the sum of series (35) and is denoted by

o0
s = g an.-
n=1

If the sequence (sy)n>1 has no a finite limit, then series (35) is said to be divergent.

o0
Theorem 19.1. If a series Y a, converges, then a, — 0, n — co.
n=1

Proof. Indeed, since a,, = s,, — s,—1 for all n > 2, we have a,, = s, —s,-1 >s—s=0,n—>00. 0O

[ee]
Exercise 19.1. Prove that the convergence of a series ) a, implies that a, + apy1+ ...+ agy, — 0,
n — 00. =t
Example 19.1. The series
1+14...+1+...

and
1—14+1—1+...+(=D)" 4.,

n+1

diverge, since their terms a, = 1, n > 1, for the first series and a,, = (—1)"*", n > 1, for the second

one do not converge to 0.

Example 19.2 (Geometric series). For ¢ € R the series

14+q+q°+. Zq" ! Zq (36)

is called the geometric series. Its partial sums s, = 1 +¢q+¢>+...+¢" ! are equal to =L for all
n > 1. Thus, series (36) converges and
(o)
I
L—gq
n=0

for |q| < 1. If |g| > 1, then the geometric series diverges.
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Example 19.3 (Harmonic series). The series

+ ...

| =
I
[S—y
+
| =
+
|
+
+
S|

n=1

diverges. In order to prove this, we assume that the series converges and its sum equal s. Then
Son — Spn — S—8=0,n— oco. But foreachn > 1

1 1 " 1 S 1
S —Sp = [N - n— — —
2n " n4+1 n+2 n-_ 2n 2
that contradicts the convergence of (s2;, — S5 )n>1 to 0.
Exercise 19.2. Show that 12 + 23 + 34 +. n(nl—i-l) +...=1.
o0
Theorem 19.2. Let series Z ap, E b, converge and c € R. Then the series Z can, Y (an +by)
- n= 1OO oo n=1 n=1
also converge and > cap =c¢ Y apn, Y, (an +by) = Z an + E by,.
n=1 n=1 n=1 n=1 n=1

Proof. The proof of the statement immediately follows from Definition 19.1 and Theorem 3.8. Indeed,

n [o.¢]
E can, = lim E can = ¢ hm E anp = ¢ E anp
n—oo
k=1 n=1

and

o n n n o0 o0
Zan—I—b _nli_{gOZ(ak—'_bk):nlLr&Zak+JLr&Zbk:Zan+an'
n=1 k=1 k=1 k=1 n=1 n=1

O
o0
Theorem 19.3 (Cauchy criterion). A series Y a, converges iff
n=1
Ve>0 AN eN Vn>N VpeN: |apt1+ani2+ ...+ anip| <e.
o0
Proof. We remark that ) a, converges if and only if the sequence of partial sums (s, ),>1 converges.
n=1
Thus, using Theorem 5.3, we have that the convergence of (s,),>1 is equivalent to
Ve>0 ANeN Vn>N VYpeN: |[s,4p—sn| <e.
Hence, the statement follows from the equality s,4, — 85, = apt1 + apy2 + ...+ Apgp. ]

19.2 Series with Positive Terms

oo
Theorem 19.4. Let terms of a series Y a, are non-negative, that is, a, > 0 for alln > 1. The

n=1

o0
series Y ay converges iff the sequence of its partial sums (sp)n>1 is bounded.
n=1
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Proof. We note that the sequence (s,),>1 increases. Hence, the statement follows from theorems 4.1
and 3.5. ]

Theorem 19.5 (Integral criterion for convergence). Let f : [1,+00) — R be a non-negative decreasing

oo oo
function and f(n) = a, for all n > 1. Then the convergence of the series Y a, = Y, f(n) is
n=1 n=1

equivalent to the convergence of the improper integral f1+°° f(z)dz.

Proof. Using the monotonicity of the function f and Corollary 16.1, we can estimate for each n > 2
n
a =)< [ f@do < - 1) = arn
n—1
So, if the improper integral ffroo f(z)dz converges, then for every n > 1

n n n k n +oo
sn:Zak:al—l—Zak:al—i-Z/ f(x)daz:al—l—/ f(x)dxgal—i-/ f(z)dz.
k=1 k=2 k=2 k1 1 1

o
Hence, the sequence (s,)n>1 is bounded and, consequently, the series ) a, converges, by Theo-

n=1
rem 19.4. -
Next, if the series ) a, converges, then for each z > 1
n=1
z n n k n n—1 [e's)
o(z) = / flx)dx < / flz)der = Z f(z)dx < Zak_l = Zak < Zak =:C,
! ! k=2 k-1 k=2 k=1 k=1
where n := |z] + 1. Thus, the integral ffLoo f(z)dz converges, by Theorem 18.2. O

P

oo
Example 19.4. The series Y. -1, p > 0, converges for p > 1 and diverges for p < 1. This follows
n=1

from Theorem 19.5 and the fact that the integral f1+oo i% converges for p > 1 and diverges for p < 1
(see Example 18.3).

o0
Exercise 19.3. Show that the series Y. ——— converges for p > 1 and diverges for p < 1.
n=2

n(lnn)p

o0 o0
Theorem 19.6 (Comparison criterion). Let Y a, and ) b, be series.
n=1 n=1

o0 o0
(i) If 0 < a, < by, n > 1, then the convergence of . b, implies the convergence of > ay,.
n=1 n=1
(ii) Let a, >0, b, >0, n> 1, and there exists a limit
lim 2 =, 0<C < 4o

n—oo n

o0 o0
If C < 400, then the convergence of > by, implies the convergence of > an. If C > 0, then

n=1 n=1

o0 o0

the divergence of > by, implies the divergence of > a,. Consequently, the convergences of both
n=1 n=1

series are equivalent in the case 0 < C' < 4o00.
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o
(iii) If a, > 0, b, > 0 and aZ—:l < b’;)% for all n > 1, then the convergence of »_ by implies the

n=1
o
convergence of > ap.
n=1
Proof. We prove only (i). We estimate for each n > 1
n n n 400
S SUES SUTS "5 9 31
k=1 k=1 k=1 k=1
o0
Thus, the sequence (sy,),>1 is bounded that implies the convergence of the series » ay, according to
n=1
Theorem 19.4. O

Exercise 19.4. Prove Theorem 19.6 (ii), (iii). (Hint: To prove (iii), note that 3 < §= <...3%)

1

Remark 19.1. We will write, an ~ bn, n = oo, if $» = 1, n — oo. So, Theorem 19.6 (ii) implies
[e.e] o0

that the convergence of > a, is equivalent to the convergence of »_ by, if a, ~ by, n — oco.
n=1 n=1

o
Example 19.5. The series ) nsinn—l3 converges, since nsinni3 ~ oy = 7712’ n — 00, and the series
n=1

o0
> % converges (see Example 19.4).
n=1

Exercise 19.5. Prove the convergence of the following series:

SPIE- Y niﬁ/f; ) Y (1—cost); d) (#1)"(““); 5> (m—n)z; f)

=1 n=1 n=1 n=1

3
o

3
Il
_

o0

8) Y %o ) X (Ing2y - ).
n=1 n=2

81
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20 Lecture 20 — Series with Arbitrary Terms

20.1 Root and Ratio Tests for Series with Positive Terms

oo
Theorem 20.1 (Ratio Test). Let > ay be a series with a, > 0, n > 1, and let there exist a limit
n=1
o0
r:= lim “*:L. Then the series Y. a, converges if r < 1 and diverges if r > 1.
n—oo n=1
Proof. Let lim L = < 1. We take ¢ € (r,1). Then there exists N € N such that “2 < ¢ = qzzl
n—oo “m n

for all n > N. Thus, using Theorem 19.6 (iii) and the convergence of the geometric series for |¢| < 1
oo o0

(see Example 19.2), we have that the series ay + an41 + ... = Y. a, converges and, hence, > a,
n=N n=1
also converges.

If lim a’;—:l = r > 1, then there exists N € N such that a’;—:l > 1 for all n > N. Consequently,

n—oo
an < apy1 for all n > N. So, we obtain that 0 < ay < an+1 < ay42 < .... This implies that a,, /4 0,
o0
n — oo. Hence, the series » a, diverges, according to Theorem 19.1. 0
n=1

o
Example 20.1. The series ) %7: converges for all x > 0. Indeed,

n=1

) anrl n! ) T
r = lim = lim =0<1.

Exercise 20.1. Prove that the following series converge:

) n(nl 2 o) n(n 2
a) 3 s b) L SE

58]
Theorem 20.2 (Root Test). Let Y a, be a series with a,, >0, n > 1, and let r := lim {/a,,. Then
n—oo

n=1
[e.°]
the series Y ap converges if r < 1 and diverges if r > 1.
n=1

Proof. Let lim /a, = r < 1 and let ¢ be a number from (r,1). Then there exists N € N such that
n—oo

[o¢]
va, < qforalln > N. So, a, < ¢" for all n > N. By Theorem 19.6 (i), the series . a, converges
n=N
o
due to the convergence of the geometric series > ¢" for |g| < 1.
n=1
If lim /@, =r > 1, then there exists a subsequence ( %/ank)kzl such that ng/an, — r, k — oo,

n—oo
since the upper limit is also a subsequential limit (see Theorem 5.1). Hence, there exists K € N such

that ny/a,, > 1 for all k > K. Consequently, a,, > 1 for all k& > K. This implies that a, # 0,
n — 00, since the sequence (ay)n>1 has an subsequence which does not converge to 0. ]

LR s . . 3 . Vn)3
Example 20.2. The series ) 77 converges, since r = lim {/57 = lim (Tn) =1<1
ne=1 n—00 n—00

Exercise 20.2. Prove that the following series converge:
oo

Ty b S
a) nzzjl (Inn) ) = (n+1)7?
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20.2 Series with Arbitrary Terms
20.2.1 Absolute and Conditional Convergence
Definition 20.1. A series
a1+a2+...+an+...:Zan (37)

is said to be absolutely convergent, if the series
o0
lar| + Jaz] + ...+ fan] + ... = |an] (38)

converges. If series (38) diverges but (37) converges, then series (37) is called conditionally conver-
gent.
o0

Theorem 20.3. If a series Y ay absolutely converges, then it converges and
n=1

[eS)
D> an
n=1

)
<2 lanl.
n=1

Proof. We note that terms of the series

> (an + lan)) (39)
n=1

satisfy the property 0 < a,, + |an| < 2|ay,|, n > 1. Thus, series (39) converges due to the convergence
o
of the series Y 2 | 2|a,| and Theorem 19.6 (i). Summing series (39) with the series Y (—|ay|), which

n=1

o0 o0
also converges, we have that the series > (an + |an| — |an|) = > an converges, by Theorem 19.2. [
n=1 n=1

We set a)f := max{a,,0} and a;, := —min{a,,0}, n > 1. Then a, = a;f —a,, and |a,| = a} + a;,
for all n > 1.

(&) &) (&)
Theorem 20.4. A series Y. ap absolutely converges iff the series Y. a} and Y a, converge. More-

n=1 n=1 n=1

%) 00 0o e’} 00 00

— + - — + -
D= 0= an, Y lanl =) ay+) an
n=1 n=1 n=1 n=1 n=1 n=1

Exercise 20.3. Prove Theorem 20.4. (Hint: Use the equalities 0 < a;} < |a,| and 0 < a;, < |an|)

over,

Corollary 20.1. Let a series Z an, conditionally converge. Then the series Z al and Z a,, diverge.

n=1 n=1

o0 o0
Proof. We assume that > a; converges. Using Theorem 19.2, we obtain that the series > af —

n=1 n=1
o0 o0 o0 o0
ST an= > (af —a,) = Y a, also converges. But then, by Theorem 20.4, the series Y a, absolutely
n=1 n=1 n=1 n=1
converges that contradicts the assumption of the corollary. O
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Exercise 20.4. Show that the following series absolutely converge:

- sinn o (=D)"n!
a) ﬂ?f?méi%%f'

20.2.2 Dirichlet’s and Abel’s Tests

Theorem 20.5 (Dirichlet’s test). Let sequences (an)n>1 and (by)n>1 satisfy the following properties:
1) (ap)p>1 is a monotone sequence;

2) an — 0, n — 0o;

3) there exists C' > 0 such that < C foralln >1.

2 bn
k=1

o0
Then the series Y apby, converges.
n=1
Proof. For proof of the theorem see Theorem 3.42 [2]. O
Example 20.3. The series
1 1 1 (1)t
lm oo =
2 + 3 4 + Z n
n=1
conditionally converges. Indeed, taking a, := % and b, := (—1)"*', n > 1, we can see that the
sequences (a,)n>1 and (bn)n>1 satisfy the conditions of Dmchlet S test (condltlon 3) is satisfied Wlth
C = 1). Thus, the series Z anbp, Z (_ o converges. But the series Z iﬂ Z L
diverges (see Example 19.3). -
o0 .
Example 20.4. The series ) *3" converges. To prove this, we take a, := %, b, :=sinn, n > 1.

n=1
The sequence (ay)n>1 is monotone and converges to 0. Next, we compute for n > 1

" 1 < 1 1
§ ink = § k- sin = § E—=)— k+
— Sin sm SlIl 2 Sln é = <COS < > COS ( 2))

1
2 k

1 1 L1
= COS - —Cos|{n = .
2sin § 2 2
1 L1
281n COs 5 cos | n 9
o0

and, consequently, condition 3) of Dirichlet’s test is satisfied. Hence, the series % converges.
n=1

Hence,

< 1
— 17
sin bl

n>1,

o0 .
Exercise 20.5. Show that the series ) w diverges. (Hint: Use the equality |sina| > sin®q = 1=9g22
n=1

and then show that the series > ;- diverges and ) ©%2% converges).

n=1 n=1
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Exercise 20.6. Prove the convergence of the following sequences:
S n(n+1) S S 3 o
B ()5 s b) 3 o) §5 e

n=1

Corollary 20.2 (Leibniz’s test). Let a sequence (an)n>1 satisfy the following properties:
1) 0 < apt1 < ap forn > 1;
2) ap =0, n — oo.

Then the series
[o@)

ar—ag+a3—aq4+...= Z(—l)n+1an
n=1
converges.
Proof. The corollary follows from Dirichlet’s test taking b, := (=1)"*! n > 1. O

o0
Example 20.5. The series Y (—1)"In 2 converges due to Leibniz’s test, since the sequence (a,)n>1 =

n=1
(ln ”Tﬂ)n21 decreases to 0. Indeed, a, = ln"T‘"1 =1In (1 + %) > In (1 + %4-1) = ap41 > 0 because

1+ % >1+ n%_l and In is an increasing function.
Theorem 20.6 (Abel’s test). Let sequences (an)n>1 and (bn)n>1 satisfy the following properties:
1) (ap)p>1 is monotone;

2) (an)n>1 is bounded;

oo
3) the series Y by converges.
n=1

[e.°]

Then the series >, anby, converges.
n=1

Proof. In order to prove Abel’s test, we are going to use Dirichlet’s test. Since the sequence (an)n>1
is monotone and bounded, it has a limit ¢ € R, by Theorem 4.1. Applying Dirichlet’s test to the
o0

sequences (a, — a)p>1 and (by)n>1, we get that the series > (a, — a)b, convergence. Thus, the series
n=1

o0 oo o0 oo
> (an—a)bp+a > by, = > apby, is convergent due to the convergence of > b, and Theorem 19.2. [
n=1

n=1 n=1 n=1

n arctann

o0
Exercise 20.7. Prove the convergence of the series > (—1) I

n=1

20.2.3 Permutation of Terms of a Series

Definition 20.2. A bijection ¢ : N — N is called a permutation.
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In this section, we will study series obtained from permutation of their terms, i.e.

oo
Ug(1) t Qg(2) T oo T Qo) + ... = Z Qg (n)- (40)
n=1
oo n
According to Example 20.3, the series ) (71% i converges. Moreover, one can show that
n=1
1 1 1 2 (1)t
l—=-+4+-—-—-4+...= ———— =1In2.
5 371" ;; n "

But it turns out that a rearrangement of the series gives other finite sum, e.g.

IR U S I
3 2 5Ty T

So, we see that there exist series whose sums depend on order of their terms.

o0

Theorem 20.7. Let > a, be an absolutely convergent series. Then for every permutation o the
n=1

permuted series (40) converges to the same sum, i.e.

[ee) o)
D o) = D n.
n=1 n=1
Proof. For proof of the theorem see Theorem 3.55 [2]. O
o0
Theorem 20.8 (Riemann rearrangement theorem). Let > a, be conditionally convergent and s €
n=1

RU{—00,400}. Then there exists a permutation o such that

Z aa(n) = S.
n=1

Proof. For proof of the theorem in more general setting see Theorem 3.54 [2]. O
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21 Lecture 21 — Complex Numbers

21.1 Definition and Basic Properties
We recall that the equation az? + bz +c¢ = 0, a,b,c € R, a # 0, has solutions if and only if D :=

b> — 4ac > 0 which can be computed by the formula 212 = _bi;/ﬁ. Thus, e.g. the equation
22 —2242=0 (41)
has no solutions, since D =4 —4-1-2 = —4 < 0. However, we can formally take z; := L\Q/jl and

Z9 1= 272£. If /—4 was a number such that (v/—4)%? = —4, then a simple computation would show
that z; and zy are solutions to (41). We are going to give this idea the rigorous meaning, namely,
we extend the set of real numbers and later show that any polynomial equation has solutions in that
class of numbers.

We consider a new symbol i and postulate that i = /—1, that is, i> = —1.

Definition 21.1. A number z = z + yi, where x,3 € R and i2 = —1, is called a complex number.
The number z is called the real part of z and is denoted by x = Rez. The number y is called the
imaginary part of z and is denoted by y = Im z.

The set of all complex numbers is denoted by C, i.e C={z=x+yi: =,y € R}.

Remark 21.1. If Imz = 0, that is, z = x + 0i, then we will identify z with the real number x and
write z € R.

Next, we introduce operations on complex numbers.
Addition and subtraction of complex numbers: For z1 = x1 + y1t, 29 = 2 + Yot from C we
define
2129 = (l’l + fL‘Q) + (y1 + yz)i. (42)

Example 21.1. a) (1—20)+(2+4i) = (14+2)+(—2+4)i = 3+2i; b) i+(2—2i) = (0+2)+(1—2)i = 2—i.
Exercise 21.1. Prove that z1 + 20 = 29 + 21 and (21 + 22) + 23 = 21 + (22 + 2z3) for all 21, 29, 23 € C.

Moultiplication and division of complexr numbers: For z; = x1 + y1i, 29 = T9 + Y2t from C
we define

Z21 22 = (1‘1962 - ylyz) + (y1332 + 96192)1'7 (43)
Z1  T1T2 +Y1Y2 | Y1%2 — T1y2 .
220 = — = + 1, 2z 7#0. 44

Remark 21.2. The multiplication rule is motivated by the multiplication rule of polynomials and the
equality i2 = —1. Indeed, multiplying z; = x1 + 17 and 2o = 9 + 927 as two polynomials, we have

2120 = (21 + y19) - (T2 + Y2i) = T129 + T1Y2i + Y1721 + Y1yei® = (v172 — Y1y2) + (Y122 + T1Y0)i.

Remark 21.3. The division of two complex numbers is motivated by the following observation:
(w2 + y2i)(z2 — yoi) = 23 + y3. Thus, for 20 # 0

21wty (@) (w2 —yei)  (@ixe +yiye) + (w2 — 31yp)i

Zog T2+ Y2t B (x2 + y21) - (w2 — y2i) x% + y%
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Example 21.2. a) (2—i)(1+3i) =2+6i —i—3i* =2+ 5i — 3 (—1) = 5 + 5i;
b) =i = (A—i)(142i) _ 142-i+2i _ 344 _ % + éi; <) 1 _ 1((:;)) - i

120 — (1—2)(1+2) 12422 ~ 5
Exercise 21.2. Express the following complex numbers in the form z + yi for z,y € R:
a) (<24 30)(1+ ) b) (V2—i)% o) g d) e

Exercise 21.3. Show that for zp =z +yri € C, k= 1,2, 3,

a) z1-20=29-21; b) (21-22) 23 =21-(22-23); ¢) 21+ (224 23) = 2120+ 21 - 23;
d) Z1 - %9 € RifZI,ZQ € R.

21.2 Complex Conjugate and Absolute Value of Complex Numbers

Definition 21.2. The number Z := x — yi is sad to be the conjugate of a complex number
z=x+yicC.

Theorem 21.1. Let 21,29,z € C. Then the following equalities hold:
a) 21+ 2 =71+ 7
b) Z1 -z =71 %
¢) z+Z=2Rez and z — 2z =2iIm z;
d) z-Z=Re?z+Im? 2z = |z|? (for the definition of |z| see Definition 21.8 below);

1__ _z  _ =z .
e) = ReZaqImZz 22’ 2z #0;

I3

Proof. Equalities a), b), ¢), d), f) and g) immediately follow from the definition of complex conjugate
and (42), (43), (44). Equality e) follows from d). Indeed, multiplying the nominator and denominator
of 1 by z and using d), we have

Exercise 21.4. Prove equalities a)-d), f) and g).

Definition 21.3. The number |z| = /22 + 32 = V/Re? 2 + Im? 2 is called the absolute value of a
complex number z =z + yi € C.

Theorem 21.2. Let z1, 20,z € C. Then the absolute value satisfies the following properties:
0,) ’Z‘ =Vz-Z;
b) |z| >0 unless z = 0;

c) |z = |z;
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d) |21 29| = |21] - |22];
6) 7@ 227&0;

I
f) [Rez| <z, [Imz| < |z,

28
22

g) |21+ 22| < [a1] + |22f.

Proof. Properties a), b), c¢) and f) easily follow from Definition 21.3. To show d), we compute for
z1 = x1 + y1t and 22 = x2 + Yot

43)
\Zl : 2'2’2 = RGQ(Zl - 22) + Im2(2’1 : 2'2) (: (371362 - y1y2)2 + (y1z2 + 961?42)2
= 2202 — 21010 + Y23 + yPad + 2w oy ye + 23y
= zia3 + yiys + yias + 2lys = (2 +u3) (@3 + u3) = |21 - [z

Thus, d) holds. Next, we prove e). So, for zo # 0 we have

21| Thm21.1e) |21 - 22| d) 21| - [Z2] o) @
2 |22]2 |22]2 22|
Now, we check triangle inequality g):
— Thm21.1
|21 +22’2 a:) (21 + 22) - (21 + 22) = #) (z1+22) - Zi+Z2) =21-Z1+21-Z2+ 22 Z1 + 22+ 22

a) & Thm 21.1 g) 9 Thm 21.1 b), g

|21 + 21 - T + 20 - 21 + | 20| )\z1|2+z1-5+72-z1+\z2!2

Thm 21.1 f)
m 211 ) 12112 + 2Re(21 - 3) + |22 < |21 % + 2|21 - Z2| + |22)?

. d
I 1012 + 202 - 20| + 222 = (1] + |22 ])2

Exercise 21.5. Let z,w € C. Prove the parallelogram law |z — w|? + |z + w|? = 2(]2]? + |w|?).

Exercise 21.6. Let z,w € C with Zw # 1 such that either |z] = 1 or |w| = 1. Prove that

zZ—w
1—ZzZw

Exercise 21.7. Let z be a complex number with |z| < . Show that
N2 3
|(14+1d)z" +iz| < 7
Exercise 21.8. Solve the following equations:
a) |zl —2=1+4+2i; b) |z]|+2=2+1.

21.3 Complex Plane and Polar form of complex numbers

In this section, we will identify complex numbers with points of a plane which we will call the complex
plane. So, we will identify a number z = x + iy € C with the point (z,y) of R?. The point (z,y) is
called the rectangular coordinates of z. We will also identify z with its polar coordinates (r,6),
where r is the length of the vector (0,0), (z,y) and equals the absolute volume of z, and 6 is the angle
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between the positive real axis and the vector
(0,0), (x,y). The angle @ is called the argu-
ment of z and is denoted by 0 = arg z. We
remark that for z # 0 the argument 6 is y
uniquely determined up to integer multiples
of 2.
By the definition of sin and cos, it is easy
to see that r=l

z=x+Yl

T
cos = — and sinf = g.
r T

Consequently, we can write the number z =
 + yi in the form

z =r(cosf +isinf),

where r = |z| and 6 = arg z. This form is called the polar form of the complex number z.

Example 21.3. Let us write the number z = 1 4 ¢ in the polar form. For this we compute r = |z| =
V12 + 12 = /2. The argument # can be found from the equalities cosf = % and sinf = % Thus,

6 = 7. Hence, z =1+1i= \/i(cosg +isin§).
Exercise 21.9. Write the following complex numbers in the polar form:
a)i; b)1—id; ¢) —1++/3i; d) —2— 2.

It turns out, that the polar form of complex numbers is convenient for the multiplication and
division.
Theorem 21.3. Let z; = r1(cosf1 +isinf) and zo = ro(cos bz +isinby) be complex numbers, written
in the polar form. Then

21 - 2z = r11r2(cos(fy + O2) + isin(01 + 62)), (45)
EU T cos(fr — 0) + isin(6r — 02)), 20 # 0. (46)
z2 T2

Proof. The equalities immediately follows from (43), (44) and the formulas

cos(01 = 02) = cos 01 cos B2 F sin ; sin O,
sin(f; & 62) = sin 6y cos O3 £ cos 61 sin .

Remark 21.4. Setting '
¢ = cosf +isin0,?

equalities (45) and (46) can be rewritten as follows

2129 = (Tlewl) - <T26102) — pyrgei(it62)

161
Z1 e 1 (0, —
—_ = 0 = 761(91 62), Z9 7é 0.
29 roetv2 9

!This formula is called Euler’s formula and can be obtain from the Taylor expansion of functions of complex argument.
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Exercise 21.10. Simplify the expression % .
(1—+/3i)(cos @+isin §)
2(1—i)(cosf—isin6) °

Exercise 21.11. Compute

Corollary 21.1 (De Moivre’s formula). Let z = r(cosf +isin€) # 0 be a complex number. Then for
eachn € Z

2" = r"(cosnb + isinnd).

Proof. The corollary immediately follows from Theorem 21.3. O

\ 20 \ 24
Exercise 21.12. Compute: a) (1+1)?; b) (v/3 —3i)'5; ¢) (L‘/‘;’Z) ; d) <1 - \/‘5;’) .

21.4 Roots of Complex Numbers
Let n € N be fixed.
Definition 21.4. A complex number w is called an n-th root of z € C if w" = z.

Theorem 21.4. Let z = r(cosf+isinf) # 0 be a complex number. Then z has n different n-th roots
given by the formula

0+ 2wk 0+ 27k
ftzJ/rc—\’L/F(cos—i_ﬁ—i-z'sin+7r

n

), k=0,1,...,n—1,

where /1 is the usual n-th root of the positive real number r.

Proof. Let w = p(cosp + isin ) be a complex number written in the polar form such that w" = z.
Then
" = p"(cosnp + isinny) = r(cosf + isinf),

by Corollary 21.1. Thus, p™ = r and ny = 0 + 27k, k € Z. This implies that p = {/r and ¢ = 9+2“k,
k € Z. So, we obtain that the numbers

2 2
wy = %(cosm—kisin‘w{;), ke,
n

n

are n-th roots of z. By the periodicity of sin and cos, one can see that there are only n different wy,

k=0,....,n—1. O
Example 21.4. Let us compute 4-th root of 2z = —1. First we write —1 in the polar form:
—1 =1(cosm +isinm). Then wk = cos ”+27rk + isin ”+2”k k = 0,1,2,3, are 4-th roots of —1, by

_ 1 1 7r+27r 7r+27r _ 1 L
Theorem 21.4. Thus, wg = cos § +isin§ = 7 + ﬂz w1 = COS + 7sin = - + 73h
Wy = COS ”+4” + 7sin 7”;14” = —% \}52 w3 = COS 7r+67r + 7 sin ”‘ZG” = % — %2

Remark 21.5. The n-th roots of z # 0 form a regular n-gon in the complex plane with center 0. The
vertices of this n-gon lie on the circle with center 0 and the radius {/|z|.

Exercise 21.13. Solve the following equations:
a) 2> —2=0; b) 2t +i=0; c) 2> —4i=0.

Exercise 21.14. Compute a) 6-th roots of \}?:_-iz’ b) 8-th roots of \};_’Z
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22 Lecture 22 — Fundamental Theorem of Algebra and Definition
of Vector Space

22.1 Fundamental Theorem of Algebra

For more details see [3, Chapter 4].
Let n € N and ag, a1, ...,a, be a complex numbers. We set

f(2) =anz"+an_12" 4+ ...+ a1z +ay, z€C.

The function f is called a polynomial function. The numbers ag, a1, ..., a, are coefficients of the
polynomial f. If a,, # 0, then the number n is called the degree of f and is denoted by deg f := n.

In this section, we are going to prove that the equation f(z) = 0 as at most n solutions. The next
theorem is called the fundamental theorem of algebra and we formulate it without prof. The prof will
be given at the course of complex analysis using Liouville’s theorem.

Theorem 22.1 (Fundamental theorem of algebra). For every n € N and ag,a1,...,a, € C, a, # 0,
the equation
2" 4+ ap_12"" '+ . +aiz+a0=0

has at least one solution in C.
Theorem 22.2. Let f be a polynomial function of degree n € N. Then

1) for any w € C we have that f(w) = 0 iff there exists a polynomial g of degree n — 1 such that
f(z) = (z-w)g(z), z€C
2) there exist at most n distinct complex solutions of the polynomial equation f(z) = 0;
3) there exist wy, ..., w, € C (not necessary distinct) such that
f)=an(z—w1)...(z—wy), z€C,
where a,, denotes the coefficient about z".

Proof. To prove 1), we first recall that for each a,b € R

n

a® — b= (a—b)(a" 1 +a" b+ ...+ a2+ ") = (a—D) Z a"kphl,

Let f(w)=0. Then

n—1
=an(z—w) Yy 2" FuF 4 a, (2 —w) Z R ag (2 — w)
k=1 k=1
n n—1
= (2 —w) (an T S N AR P a1> = (z —w)y(2),
k=1 k=1
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where g(2) = a, > p_y 2" FwF +a,q 22;11 Ak =lywk=t 4 44y, z € C, is a polynomial of degree
n — 1.

Now, we prove 3). Let w; be a complex number such that f(w;) = 0, which exists according to
Theorem 22.1. Applying the part 1) of Theorem 22.2, we have that there exists a polynomial g; such
that f(z) = (z—w1)g1(2), z € C. Next, using Theorem 22.1 again, we obtain that there exists ws such
that f(ws) = 0. By Theorem 22.2 1), there exists a polynomial g» such that gi(z) = (z — w2)g2(%2),
z € C. Consequently, f(z) = (z — w1)(z — w2)g2(z), z € C. Applying theorems 22.1 and 22.2 1) n
times, we get that

fR)=(EF-w)...(z—wp)gn, z€C, (47)

for some wy, wo, ..., w, € C and a polynomial g, of degree 0 which is a constant function. Since the

right hand side of (47) is a polynomial with the coefficient g,, about z,, we can conclude that g, = a,.
The part 2) of the theorem easily follows from 3).

O

Exercise 22.1. For a complex number a show that the coefficients of the polynomial

p(2) = (z —a)(z —@)
are real numbers.

Exercise 22.2. Let p(z) be a polynomial with real coefficients and let « be a complex number. Prove
that p(a) = 0 if and only if p(@) = 0.

Exercise 22.3. Prove that any polynomial p(z) with real coefficients can be decomposed into a
product of polynomials of the form az? + bz + ¢, where a, b, ¢ € R.
22.2 Definition and some Examples of Vector Spaces

For more details see [3, Chapter 5].

Let F denote the set of real numbers R or complex numbers C. We will call F a field. We also
consider a set V', whose elements are called vectors and will be denoted by v,u,w... etc. We define
on V two operations:

e vector addition + : V x V — V, that maps two elements u,v of V tou+v € V;
e scalar multiplication - : F x V — V that mapsa € FandueV toa-u=aueV.

Definition 22.1. A vector space over F is a set V' together with operations of vector addition and
scalar multiplication which satisfy the following properties:

1) commutativity: u+ v=v+uforalluvev;

[\

associativity: (u+v)+w=u+ (v+w) and (ab)v = a(bv) for all a,b € F and u,v,w € V;

w

)
)
) additive identity: there exists a vector 0 € V such that 0 + v =v for all v e V;
4)

additive inverse: for every v € V there exists a vector w € V (denoted by —v) such that
v+w=0;

5) multiplicative identity: 1-v =v for all v e V;
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6) distributivity: a(u+v) =au+av and (a+b)v=av +bv for all a,b € F, u,v € V.

A vector space over R will be called a real vector space and a vector space over C is similarly
called a complex vector space.

Example 22.1. The set V = F with the usual operations of addition and multiplication is trivially a
vector space over FF.

Example 22.2. The set
F*" ={x = (z1,22,...,2y) : ax €F, k=1,...,n}

with operations
x+y=@1+y1,T2+Y2 - Tn+ Yn)

and
ax = (ax1,axs,...,ax,),

for all @ € F, x = (z1,22,...,24), ¥ = (y1,¥2,...,yn) € F", is a vector space. It is easily to
see that the additive identity is 0 = (0,0,...,0) and the additive inverse of x = (x1,2z2,...,2,) is
—X = (=21, T2, ..., —Tp).

Example 22.3. Similarly, the set
F>* ={x = (z1,22,...): zx €F, ke N}

with operations
x+y=(x1+y,r2+y2...)

and
ax = (axy,axs,...),

for all a € F, x = (z1,22,...), ¥ = (y1,%2,...) € F, is also a vector space, where 0 = (0,0,...) is
additive identity and —x = (—z1, —z2,...) is the additive inverse of x = (x1,x2,...).

Example 22.4. The set of all polynomials of degree at most n
F'z] ={p(z) =anz"+...4a1z4+ap, z€F: ap€F, k=1,...,n}
with the addition
(P+q)(2) =(an+b)z"+ ...+ (a1 +b1)z+ag+ by, z€F,
and scalar multiplication
(ap)(z) = aapz" + ...+ aa1z + aap, z €T,

for all a € F and p(z) = apz" + ...+ a1z + ag, q(z) = bp2" + ...+ biz + by, z € F, from F"[z] is also
a vector space.

Exercise 22.4. The vector space F[z] of all polynomials of any degree can be defined similarly as
F"[z] and is also a vector space.
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Example 22.5. The set of (real-valued) continuous functions on an interval [a,b] with the usual
addition of functions and multiplication by a constant is a real vector space.

Exercise 22.5. The set of complex numbers C = {z 4+ iy : z,y € R} can be considered as a real
vector space with the usual addition of complex numbers and the multiplication by the real number.

Example 22.6. The set V = {0}, where 0 is any element, with addition 0 + 0 := 0 and scalar
multiplication @ - 0 := 0 is a vector space. (Here 0 also plays a role of the additive identity).

Exercise 22.6. Show that the sets from the previous examples are vector spaces under corresponding
addition and scalar multiplication.

Exercise 22.7. For each of the following sets, either show that the set is a vector space over F or
explain why it is not a vector space.

a) The set R of real numbers under the usual operations of addition and multiplication, F = R.
b) The set R of real numbers under the usual operations of addition and multiplication, F = C.

c) The set {f € C[0,1] : f(0) = 2} under the usual operations of addition and multiplication of
functions, F = R.

d) Theset {f € C[0,1] : f(0) = f(1) = 0} under the usual operations of addition and multiplication
of functions, F = R.

e) Theset {(z,y,2) € R?: x—2y+2z = 0} under the usual operations of addition and multiplication
on R F=R.

f) The set {(x,y,2) € C?: 20+ 2z+i = 0} under the usual operations of addition and multiplication
on C3 F=C.

22.3 Elementary Properties of Vector Spaces

In this section, we prove some important and simple properties of vector spaces. Let V' denote a vector
space over F.

Proposition 22.1. Any vector space has a unique additive identity.

Proof. Let us assume that there exist two additive identities 0 and 0’. Then

where the first identity holds since 0" is an identity and the second equality holds since O is an
identity. O

Proposition 22.2. Every v € V has a unique inverse.

Proof. We assume that w and w’ are additive inverses of v so that v +w = 0 and v +w’ = 0. Then

w=w+0=w+(v+w)=wW+v)+w =0+w =w".
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Since the additive inverse of v is unique, we will denote it by —v. We also define w—v := w+(—v).
Proposition 22.3. For everyveV 0-v =0.

Proof. For v € V we have that
0-v=(04+0)-v=0-v+0-v.
Adding the additive inverse of Ov to both sides, we obtain

0=0v—0v=(0v+0v)—0v=0v.

Proposition 22.4. For everya € F a-0=0.
Exercise 22.8. Prove Proposition 22.4.
Proposition 22.5. For everyv eV (=1)-v = —v.
We recall that the vector —v denotes the additive inverse of v.
Proof. For v € V| we have
v+(-1)-v=1-v+(-1)-v=(1+(-1)v=0-v=0,
by Proposition 22.3. 0
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23 Lecture 23 — Vector Subspaces and Span
23.1 Vector Subspaces
Throughout this section, V' denotes a vector space over F.

Definition 23.1. Let V be a vector space over F, and let U C V be a subset of V. Then U is called
a subspace of V if U is a vector space over F

To check that a subset U C V is a subspace, it is suffices to check only a few of the conditions of
a vector space.

Lemma 23.1. Let U C V be a subset of a vector space V over F. Then U is a subspace of V iff the
following conditions holds:

(1) closure under addition: u,v € U impliesu+v € U;

(2) closure under scalar multiplication: a € F, u € U implies that au € U.
Exercise 23.1. Prove Lemma 23.1.

Example 23.1. In every vector space V', the subset U = {0} is a vector subspace of V.
Exercise 23.2. Show that the set {(x1,0) : z; € R} is a vector subspace of R2.

Exercise 23.3. Show that the set {(z1,22,73) € R®: 21 +229 — 23+ 1 = 0} is not a vector subspace
of R3.

Exercise 23.4. Let U; and Us be a vector subspaces of V. Prove that the intersection Uy NUs is also
a vector subspace. Is the union Uy U Us a vector subspace?

23.2 Sums and Direct Sums of Vector Subspaces

Let U1, Uy be a vector subspaces of V.
Definition 23.2. Let Uy, Us be a vector subspaces of V. The set
Ui+ Uy={u;+ug: u € Up, up € Uz}
is said to be a sum of vector subspaces U; and Us.
Exercise 23.5. Check that a direct sum of two vector subspaces is a vector space.

Example 23.2. Let

Uy = {(2,0,0) e F3: z € F}
Uy ={(0,,0) € F*: y €F}
Us = {(y,y,0) €eF*: y € F}.

Then
U1+U2:U1+U3:{(l‘,y,0) eF3: a:,yGIE‘}.
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We remark that u € U = U; + Us if and only if there exist vectors u; € Uy and uy € Us such that
u=uj + us.

Definition 23.3. If every vector u € U = Uy + Us can be uniquely written as u = uj +us for u; € Uy
and uy € Uy. Then we call the vector space U the direct sum of Uy, Us and denote by

U=U; ®Us.
Example 23.3. Let
Ur = {(z,y,0) e R®: z,y € R},
Us ={(0,0,2) €R®: 2 € R},
U3 = {(O7y7z) € R?) Y,z E R}

Then R® = U; @ Us. But R?® = Uy + Uz and R3 # U; @ Us (the vector (0,0,0) can be written as
(07 07 0) + (07 07 O) and (07 _L 0) + (03 17 0))

Proposition 23.1. Let U; and Uy be a vector subspaces of V.. Then V = Uy @ Us iff the following
conditions hold:

(1) V =U; +Usy;
(2) If 0 = u; + uy with uy € Uy and uy € Uy, then u; = ug = 0.

Proof. We assume that V = U; @ U,. Then Condition (1) follows from the definition. Since 0 can be
uniquely written as 0 + 0, we have that Condition (2) is also true.

Next, let conditions (1) and (2) hold. By Condition (1), for every vector u € V' there exist u; € Uy
and us € Us such that u = u; + us. We assume that u = v; + vy for some vy € U; and vy € Us.
Subtracting the two equations, we obtain

0= (u; —vy)+ (ug — va),

where u; — vy € Uy and ug — vo € Us. By Condition (2), we have that u; = v; and uy = vy. This
implies that V = Uy @ Us. L]

Proposition 23.2. Let U; and Uy be a vector subspaces of V.. Then V = Uy @ Us iff the following
conditions hold:

(1) V =U; +Us;
(2) Uy nU; ={0}.

Proof. We assume that V' = U1 ®@Us. Then Condition (1) follows from the definition. Next, we suppose

that u € Uy NUs. Then by Exercise 23.4, —u also belongs to U; NUs because U; NUs is a vector space.

Thus, 0 = u+ (—u), where u € Uy NUs C Uy and —u € U; N Uz C Uy. By Proposition 23.1, u = 0.
Next, we assume that conditions (1) and (2) hold. In order to prove that V = U; & Uy, we show

that 0 = uy +uo, where uy € Uy and uy € Uy, implies u; = up = 0. Since 0 = u; +ug, u; = —us. So,
u; = —ug € Uy because U; is a vector space. Thus, uy € U; N Uy and, consequently, u; = —us = 0,
according to Condition (2). USsing Proposition 23.1, we obtain that V' is the direct sum of U; and
Us. O
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Exercise 23.6. Prove or give a counterexample to the following claim:

1) Let V be a vector space over F and suppose that W7, Wy and W3 are vector subspaces of V' such
that Wi + W3 = Wy + W3. Then W; = Wh.

2) Let V be a vector space over F and suppose that Wy, Wy and W3 are vector subspaces of V' such
that W1 @ W3 = Wy @ W3. Then W7 = Wh.

Exercise 23.7. Let F[z] denote the vector space of all polynomials with coefficients in F and let
U ={az>+b2": a,becTF}.
Find a subspace W of F[z] such that F[z] =U & W.

23.3 Linear Span

In order to give a definition of one of the main notion of the linear algebra: basis of a vector space,
we need to introduce a notion of a linear span of vectors.

Definition 23.4. A vector v € V is a linear combination of vectors vi,ve, ..., vy, if there exists
scalars aq, as, ..., a, from F such that

V=a1vy+agve+...+a,vy.
Definition 23.5. The set
span{vy,vo,..., vy} :={a1vi + agve + ...+ apvy : ai,ag,...,a, € F}
is called a linear span of vectors vi,va,...,Vy,.
The following lemma follows from the definitions of a vector spaces and linear span.
Proposition 23.3. Let V be a vector space and vi,va,..., v, € V. Then
(1) the vector v; belongs to span{vi,va,..., vy},
(ii) span{vi,va,..., vy} is a subspace of V;

(iii) If U is a subspace of V' such that vi,va,...,v, € U, then span{vi,va,...,v,} C U.

Proposition 23.3 implies that span{vy, va,...,v,} is the smallest vector space of V' which contains
the set of vectors vi,vo,...,v,.
Definition 23.6. If span{vy,vs,...,v,} =V, then we say that vectors vi,vs,...,v, span V and

we call V finite-dimensional. If a vector space is not finite dimensional, then we call it infinite-
dimensional.

Example 23.4. The vectors e; = (1,0,0,...,0), e2 = (0,1,0,...,0), ..., &, = (0,...,0,1) span F".
According to the previous definition the space F" is finite-dimensional.

Example 23.5. Let py(z) = 2, for k = 0,...,n. Then the set po, Py, Ps,- .., P, span F[z]. It is
easy to see that the space F|z] of all polynomials is infinite-dimensional.

Exercise 23.8. Consider the complex vector space V = C? and the list {v{, vo, v3} of vectors in V,
where vi = (7,0,0), vo = (¢,1,0) and v3 = (i,7,—1).
a) Prove that span{vy,vo,v3} = V.
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24 Lecture 24 — Basis

24.1 Linear Independence

In this section, we are going to define the notion of linear independence of a list of vectors.

Definition 24.1. Vectors vi,va,...,v, are called linearly independent if the only solution for
ai,a9,...,a, € F to the equation

a1vi +agvg+...+a,v, =0
isa; =as =...=a, = 0. Otherwise, the vectors vy, vo,...,v, are said to be linearly dependent.

Example 24.1. The vectors ey, eo, ..., e, from Example 23.4 are linearly independent, since
aje + azes + ...+ ane, = (a1,a2,...,a,) = (0,0,...,0)
provided a1 = as =... =a, = 0.
Example 24.2. The vectors vi = (1,1,3), vo = (1,1,0), v3 = (0,0, 1) are linearly dependent because
vi — ve — 3v3z = (0,0,0).
Example 24.3. The vectors (1,z,22,...,2") in F,[z] are linearly independent.

Exercise 24.1. Show that the vectors vi = (1,1,1), vo = (1,2,3), and v3 = (2,—1,1) are linearly
independent in R3. Write v = (1,—2,5) as a linear combination of v{, vo and vs.

Exercise 24.2. Consider the complex vector space V = C3 and the vectors vi = (i,0,0), vo = (i, 1,0),
V3 = (i,i, —1).

a) Prove that span{vy,va,v3} =V.

b) Are vi,Va, V3 a basis of C3?

Exercise 24.3. Determine the value of A € R for which each vectors (A, —1,—1), (=1, —1),
(—1,—1, ) are linearly dependent in R3.

Theorem 24.1. Vectors vi,va,..., v, are linearly independent iff each vector v € span{vy,va,..., vy}
can be unequally written as a linear combination of vi,va, ..., Vy.
Proof. Let vi,va,..., v, be linearly independent. If v € span{vy,va,...,v,} can be written as

/ / /
V=a1Vyi+ave+ ...+ apVy = a1Vy + a9V + ...+ a,Vy,

then 0 = v —v = (a1 — a})v1 + (a2 — ab)ve + ...+ (a, — a,,) vy, which implies that a1 = a}, ag = d,
.sy @y, = a,. The sufficiency can be proved trivially, taking v = 0. O

Theorem 24.2. Let vi,va,..., vy, be linearly dependent and vi # 0. Then there exists j € {2,...,n}
such that

1) vj € span{vi,va,...,Vj_1};

2) span{vi,...,V;_1,Vj41,...,Vp} =span{vy, va,..., vy }.
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Proof. Since vi,va,...,v, are linearly dependent, there exist ai,aso,...,a, € F such that a;vy +
agvy + ...+ apvy, = 0. Since vi # 0, not all of ag,...,a, are 0. Let j € {2,...,n} be the largest
index such that a; # 0. Then we have

aq a aj—1
Vj = ——V] — —Va2 —...— J ijl- (48)
7] 7 7
This implies 1).
Let v be an arbitrary vector from span{vy, va,...,v,}. It means that there exist by,bo,...,b, € F
such that
v="01v]+bava + ...+ b,v,.
According to (48), v can be rewritten as linear combination of the vectors vi,...,vj_1,Vjq1,...,Vp.
This proves 2). O
Theorem 24.3. Let V be a finite-dimensional vector space, vi,Va, ..., vy, be linearly independent and
span V', and let wq,Wa, ..., Wy, be vectors that span V. Then n < m.
Proof. For the proof of the theorem see the proof of Theorem 5.2.9 [3]. O
Exercise 24.4. Let V be a vector space over F, and suppose that vi,ve,..., v, € V are linearly
independent. Let w be a vector from V such that the vectors vi +w, vy +w, ..., v, + W are linearly
dependent. Prove that w € span{vy,va,...,v,}.
24.2 Bases
Definition 24.2. A set of vectors {vy,va,...,v,} is a basis of a finite-dimensional vector space V if
V1i,V2,...,Vy, are linearly independent and span V, i.e. V = span{vi,va,...,v,}.

Remark 24.1. We remark that each vector v € V' can be uniquely written as a linear combination
of vi,va,..., vy iff {vy,va,...,v,} is a basis of V.

Example 24.4. The set of the vectors {ej, es,...,e,} is a basis of F".
Exercise 24.5. Prove that the set of vectors (1,1,0), (1,0,0), (0,0,1) is a basis of F3.

Example 24.5. The set 1,22,..., 2" is a basis of F,[2].

Theorem 24.4 (Basis reduction theorem). IfV = span{vy, vo,...,v,}, then either the set {vy,va,..., vy}

is a basis of V' or some vy can be removed to obtain a basis of V.

Proof. Suppose V' = span{vy,va,...,v,}. We start with the set S = {vy,va,...,v,} and sequentially

run through all vectors v for k =1,2,...,m to determine whether to keep or remove them from S:
Step 1. If vi = 0, then remove vy from S. Otherwise, leave S unchanged.
Step k. If vi, € span{vy,va,...,Vig_1}, then remove vj from S. Otherwise, leave S unchanged.

The final set S still spans V since, at each step, a vector was only discarded if it was already in the
span of the previous vectors. The process also ensures that no vector is in the span of the previous
vectors. Hence, by Theorem 24.2, the final list S is linearly independent. It follows that S is a basis
of V. 0
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Example 24.6. The set of vectors vi = (1,—1,0), vo = (0,1,0), v3 = (1,1,1), v4 = (0,—1,2) are
linearly dependent, since
0vy 4+ 3vy — 2vg + vy = 0.

But the vectors vi, v, v3 form a basis of R3. Indeed, each element v = (x,%,2) can be uniquely
written as follows
(,y,2) = (& — 2)vi + (x + y — 22)va + 2V3.

Corollary 24.1. Every finite-dimensional vector space has a basis.
Proof. The statement immediately follows from Theorem 24.4. O

Theorem 24.5 (Basis Extension Theorem). Every linearly independent set of vectors in a finite-
dimensional vector space V' can be extended to a basis of V.

Proof. Let V be finite-dimensional and vi,ve,...,v, be linearly independent. Since V is finite-
dimensional, there exists a set of vectors wi, wa, ..., w,, that spans V. We are going to adjoin some
of the wy, to {vi,va,...,Vv,} in order to create a basis of V.

Step 1. If wy € span{vi,va,...,v,}, thenlet S := {vq,va,...,v,}. Otherwise, S := span{vy, va,..

Step k. If wi € span S, then leave S unchanged. Otherwise, adjoin wy to S.

After each step, the set S is still linearly independent, since we only adjoined wy if wi was not
in the span of the previous vectors. After m steps, wy € span S for all k = 1,2,...,m. Since the set
{w1,wa,..., Wy, } spans V, S also spans V. Consequently, S is a basis of V. O

24.3 Dimension

Let {vi,va,..., vy} and {wy,wa,...,w;,} be two bases of a finite-dimensional vector space V', that
is, they both are linearly independent and span V. Then by Theorem 24.3, it follows that n = m.

Definition 24.3. We call the length of any basis of V' the dimension of V and denote by dim V.
Example 24.7. According to Example 24.4, the dimension of F" equals n.
Example 24.8. By Example 24.5, the dimension of F,[z] equals n + 1.

Exercise 24.6. Let po,pi1,...,Pn € Fplz] satisfy pj(2) = 0 for all j = 0,1,...,n. Prove that
Po, P1, - - -, Pn must be a linearly dependent in F,[z].

Remark 24.2. We note that dim C® = n as a complex vector space, whereas dim C"” = 2n as a real
vector space. This comes from the fact that we can view C itself as a real vector space of dimension
2 with basis {1,i}.

Theorem 24.6. Let V' be a finite-dimensional vector space with dimV =n. Then
(i) If U C V is a subspace of V, then dimU < dim V.
(ii) If V = span{vi,va,..., vy}, then {vi,va,...,v,} is a basis of V.

(iii) If vi,va,..., vy are linearly independent in V, then they form a basis of V.
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Proof. To prove statement (i), first we note that U is necessarily finite-dimensional (otherwise we
could find a list of linearly independent vectors longer than dim V'). Therefore, by Corollary 24.1, U
has a basis u, usg, ..., u,, which are linearly independent in both U and V. By Theorem 24.5, we can
extend up, ug,...,u,, to a basis of V, which is of length n since dim V' = n. This implies that m < n.

In order to prove statement (ii), we suppose that vi,ve,...,v, span V. Then, by the basis
reduction theorem (see Theorem 24.4), this set can be reduced to a basis. However, every basis
of V' has length n. Hence, no vector needs to be removed from {vi,va,...,v,}. It follows that
{v1,va,...,v,} is a basis of V.

To prove statement (iii), we assume that vi,vs,...,v, are linearly independent. By the basis
extension theorem (see Theorem 24.5), this set can be extended to a basis. However, every basis has
length n. Hence, no vector needs to be added to {vi,va,...,v,}. It follows that {vi,va,...,v,} isa
basis of V. O

Theorem 24.7. Let U C V be a subspace of a finite-dimensional vector space V. Then there exists a
subspace W C 'V such that V=U & W.

Proof. Let uj,uy,...,u,, be a basis of U. By Theorem 24.6 (i), we know that m < dim V. Hence, by

the basis extension theorem (see Theorem 24.5), the set {uj,us,...,u,,} can be extended to a basis
{u,ug,...,up, wi,wo,...,wi} of V. Let W := span{wy, wo,..., wWg}.
We now show that V' = U @ W. Since the set {uj,uz,..., wy,, w1, ws, ..., wg} is a basis of V, each

element v of V' can be uniquely written as follows
V=aiu +agus+ ...+ auuy, +biwi +bowo + ...+ bpwr = u+w

for some ai,a9,...,am,b1,ba,...,b € F, where u := aju; +asus+. ..+ a0, and w = bywi +bowso +
...+ bgwg. Sinceu € U and w € W, V is the direct sum of U and W, according to Definition 23.3. [

Exercise 24.7. Let V be a finite-dimensional vector space over F with dim V' = n for some n € N.
Prove that there exist n one-dimensional subspaces Uy, Us, ..., U, of V such that

V=UioUs®...0U,.
Theorem 24.8. If U, W C V are subspaces of a finite-dimensional vector space, then
dim(U + W) =dimU + dim W — dim(U N W).
Proof. For the proof of the theorem see the proof of Theorem 5.4.6 [3]. O

Exercise 24.8. Let V be a finite-dimensional vector space over [F, and let U be a vector subspace of
V for which dimU = dim V. Prove that U = V.
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25 Lecture 25 — Linear Maps
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26 Lecture 26 — Matrices
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10.

Selected exercises

. Show that

a) AUl=A, AUA=A, AUB=BUA,, AU(BUC)=(AUB)UC = AUBUC;,
b) ANO=0,AnNA=A, AUB=BNA AN(BNnC)=(AnB)NC = ANBNC;

d) AN(BUC)=(ANB)U(ANC),Au(BNC)=(AuB)N(AUC).
(AUB)¢ = A°N B¢ (AN B)° = A°U B“.

€

)
)
¢) AANB=(AUB)\ (ANB) = (A\B)U(B\ A), A\ B= An B
)
)

. Let A, ={1,...,n} for each n € N. Then

UAﬂ_LL%_N [jAw_ﬂAﬂ_u}

neN neN

. Prove that

a) V6 £Q; b)vV2+v3¢Q; c)foreach n € N either \/n € Nor /n € Q.

. Using mathematical induction prove that:

a)l+2+4+---+n= %n(n + 1) for positive integers n;
b)13+23 4 nd=(1+2+...+n)? for each n € N;
c) 11" — 4™ is d1v1s1b1e by 7 for each n e N;

d) 5" —4n — 1, n € N, are divisible by 16;

)1+22+ —i-nl§2—5f0ralln€N.

. Prove that there does not exist a rational number z solving the equation x> = 2.

. Prove that the following sets are bounded:

a) {nLH nEN};

b) {E2 s ne N},

For each a < b prove that inf[a, b] = inf(a, b] = a and sup[a, b] = supla,b) = b.

. Show that
a)2">n+1,neN; b)3">2n+1,neN; ¢) 2" > (vV2—-1)2n% neN.
. Let x1,...,x, be a positive real numbers. Prove that

(I+x) ..-(I+axy) > 14214+ ...+ 5.

Prove the boundedness of the following sequences:

a) (271)71>17 an—\/2+\/2+ \@

n square roots
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11. Prove the following statements:

a) ap —~>a, n—>00 & ap,—a—0, n—>00 & |a, —al — 0, n— oo;
b) an, =0, n =00 < |a,| = 0, n — oo;
c) apb > a, n—o0o < Ye>03IN eN: {an,an+1,...} C(x —e,z+¢);
d) ap, =0, n =00 < sup{lag|: k>n} —0, n— oo;
e) ap = a, n— oo = |a,| — lal, n — cc.
12. Prove that for a sequence (ap)n>1 with a, # 0 the equality nh—>Hc>lo lan| = 400 is equivalent to
ey =0

13. Compute the following limits:

. 39,2 . . i L2
a) lim MoRmgmin, ) nyigb(x/ﬁégij;i~— V) ¢) lim Vn22n 437 d) lim S22 e)

n—00 n—00 n
2 : n 3
: n“4sinn . : 2"+n°, n+1
nlglolo nZ+ncosn’ f) nhj}olo 3n+17 g) \/ﬁ

14. Let (an)n>1 be a bounded sequence and b,, — 0, n > oo. Prove that a,b, — 0, n — oo.

max{ai,a2,...,an } 5 0.1 — 00
—_— = , .

15. Let (an)n>1 be a sequence such that %> — 0, n — oco. Prove that
16. Let (an)n>1 be a bounded sequence and b,, — 400, n > co. Prove that a, + b, — +00, n — 0.

17. Using the monotonicity compute the following limits:

a) lim %:O; b)7}1—>r202n7'2’ c) hm \/2—1—\/2—|— 2—1—\@ d)nh—{go?%:o'

n—o0

n square roots

18. Identify the set of subsequential limits of the following sequences:

a) (sm 2’5")n>1; b) (sin3mn)p>1; <) (an)n>1,
a n+1

b (=1)2 +mn, ifnisodd,
where a,, = n
" (-1)z + 1, ifnis even.

19. Prove that a,, > a, n - c0 < lim a, = lim a, = a.
n—00 n—oo

20. For a sequence (a,)n>1 compute lim a, and lim a,, if for all n > 1
n—00 n—oo

a) a, =1—1; b)an:%—i—w; c)an—nﬁcos?’;” d) a, = 1+ nsin %,

€) an = (1+1)" (-1)" +sin 2%; f) a, = E° 4 HOUT

n

21. Check whether the following sequences are Cauchy sequences.
8) (27)p513 D) (F1)")nzii ©) (an =St + 52 4 4+ 55)

22. Show that (ay)n>1 is a Cauchy sequence iff ~ sup  |ap, — an| — 0, N — oo.
N m>N,n>N

23. Find the domain and the range of the following functions:

a) f(@) = gips b) @) =VI—a% o) f(2) =In(1 + o).
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24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.
36.

Let f: X =Y and A; C X, Ay C X. Check that
a) f(A1UA2) = f(A1)Uf(A2); )f(AiﬂAzl (f(A1) N f(A2)); ¢) (f(A)\f(A2)) C F(A1\A2);
d) A1 C Ay = f(A1) C f(A2); €) AL C fTH(f(AD); ) (F(X)\ f(A1) C F(X\ A).

Let f: X - Y and By CY, By C Y. Show that

a) f[7Y(B1UBy) = f1(B1) U f'(Ba); b) f71(B1N By) = f~1(B1) N f~(Ba);
¢) f7H(B1\ Ba) = f~H(B1)\ fH(B2); d) BiC Ba= f1(B 1) cf ( 2);

e) f(f7HB1)) =BiNf(X); f) f71(Bf) = (f1(B1))".

Prove that the set of all limit points of Q equals R U {—o0, +o0}.

Prove that ()—>() x — a, if f(x) - +o0, z — a.

Prove that the limit of the function f(z) = cos i, z € R\ {0}, does not exist at the point a = 0.

Using ¢ — ¢ definition, show that
a) lim /zr=2; b) lim 12 =0,
x—4 z

T—-+00

Compute the following limits:

3 .
llHl tanz b l1m cosw llm x d llHl x°—xsinx+x ., e l1 x —l—cosm—i—l .
) —0 ’ ) a0 T ) g1 T° 3 +27 ) rtoo 1—3z3+Inz ’ ) oo Vat+l+a+3’

f) lim ( 2 #) g) lim == 24w h) lim (:L’(\/m—x— 1));

70 \sin?z  l—cosz 20 Y1+sinz— U z—+oo

i) lim (\/ax—i— —/z), for some a > 0.

Compute the following limits:

jus
lim —Z—: lim lim —2—; lim
a) 2—0— V1—cos?z’ b) :v—>0+ V1- coszav7 C) e V1-sinz’ d) oI+ \/1 sinz’
. _1 . -z
e) lim e =; f) l1mex.
z—0+ z—0+ ¥

Let f be an increasing function on an interval [a, b].
a) For each ¢ € (a,b) show that the one-sided limits f(a+), f(c—), f(c+), f(b—) exist.
b) Check the inequalities

fla) < flat) < fle=) < fle) < flet) < f(0=) < f(B),

for all ¢ € (a,b).
c¢) Prove that lim f(z—) = f(c+) and lim f(x+) = f(c—) for all ¢ € (a,b).
r—c+ r—c—
Let a,b be a real numbers, f(z) =z + 1, x < 0 and f(z) = ax + b, x > 0. For which a,b the
function f is continuous on R?

Compute the following limits:

: N AW 22341, i, zcosz+1
a) :Ilgr%](tanx e’); b) hm2 T ¢ glg% e

Prove that the function f(x) = sin %, x # 0, and f(0) = 0, is discontinuous at 0.

Show that the Dirichlet function f(z) =1, x € Q, and f(z) =0, x € R\ Q is discontinuous at
any point of R.
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37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.
48.

49.

Compute the following limits:

. In(14z)+arcsinz? | : arctanz . . arcsinz. : T . s arctanz,
a) i s oreoss 5 P) M Triangzs © Hm ®5EE d) m o o) lim SEE0RES
. arccosz—Z% . sin(arcta
f) lim %720 o) Jim M
z—0 z x—0 anz

Compute the following limits:

1
. . . i = . — . In(14x)+e*—cosx
a) lim(cosz)®; b) lim z(In(l+z)—lnz); c) lim (1E5822)z. ) lim 1= . ¢) iy Mo PTe —CosT,
) xﬁO( ) ’ ) x—+00 ( ( + ) )’ ) z—0 ( cos 2z ) ’ ) a0 1—cos 2z’ ) 2—0 e’ —ltsinz
1 s _ . _ m
f) lim(cosz)=?; g) lim %@11) for m € N; h) lim 2=Cm)™ for € N;
z—0 z—0 T —0 z

1
N 1:. . 1—(cosmaz)m . {cosz—1 . esin2z_gtanz
i) lim —="~— for m e N; k) lim ——; 1) lim &—-¢%—
) z—0 a? ’ ) 2—0 VI+a2-1’ ) z—0 z

Prove that the function P(z) = 2% + 722 — 1, x € R, has at least one root, that is, there exists
xo € R such that P(zg) = 0.

Let g : [0,1] — [0,1] be a continuous function on [0,1]. Show that there exists xo € [0, 1] such
that g(z¢) = xo.

Let f,g:[0,1] — [0,1] be continuous and f be a surjection. Prove that there exists zg € [0, 1]
such that f(zo) = g(zo).

Using the definition of derivative, check that (z|z|)’ = 2|z|, z € R.

Show that the following functions are not differentiable at 0.
a) f(z) =|z|, 2 €R; b) f(z) = Yz, 2 €R; ¢) f(z) =asinl, z € R\ {0}, and f(0) =0.

For the function f(x) = |2? — x|, 2 € R, compute f'(x) for each x € R\ {0,1}. Compute left
and right derivatives at points 0 and 1.

ﬂ@:{ﬂ’ .

axr+b, x>1.

Let

For which a,b € R the function f:
a) is continuous on R; b) is differentiable on R? Compute also f’.

Check whether the following functions are differentiable at 0. Justify your answer.

a) f(x):{cosg—l, v #0, b)f(z) = Va2, z €R; «¢) f(z) =|sinz|, z € R.

0, xz=0;
Prove that f is continuous at a point a if f’ (a) and f’ (a) exist.

Compute derivatives of the following functions:

'1)2 xr —T
a) f(z) = 2’sinz; b) f(z) =e” 7 cosa; c¢) f(z) = 5 d) fl2) = Gie;
e) f(z) =220 f) f(2) = sin(cos?(tan® v)); @) f(x) = {/ 155

—2? si : in? : in bz —b cos b
h)y=e @508 ) y="275: j)y=e" (1—|—Cot %), k) f(z) = e . 25 224-1?;5 z

where a, b are some constants.

Let f(z) = x—lzge*a%? for x # 0 and f(0) = 0. Prove that f/(0) = 0.
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50. Compute derivatives of the following functions:
a) f(@) = ==L b) f(z)=1n (x—i— VaT T 1); ¢) f(z) = Intan £;
d) f(z) = arcsin 1\[, e) f(z) = arctan 1££; f) f(z) = 2% g) f(z) = ¥=.

51. Let a function f : (a,b) — R be differentiable on (a,b) and there exists L € R such that
|f/(x)] < L for all € (a,b). Show that f is uniformly continuous on (a,b).

52. Prove that
a)x—%gsinazgwforallznzo;
b) 1—x—2<cosa:§1foralla;20;

¢) 1z <In(l+2) <z foralz> 1.

53. For each a > 1, prove that (1 + z)* > 1+ ax for all z > —1.

54. Identify the intervals on which the following functions are monotone

a) f(x) =3z —23, z € R b)f(x)zli“;z,xeR; c) flx) = 2x,$ER
d) f(x) =x+ /|1 —22|, 2z € R; e)f(m):gc%—%,xeR\{O}.

55. Identify a € R for which the function f(z) = x + asinz, x € R, is increasing on R.

56. Using L’Hospital’s Rule, show that

B

. _ . In(1 . Inz)*—(Z _
a.) alj% 71 ;gsx = 1, b) hm 7ns(in_';3m) = 17 C) ilﬁ)n’é 7( )$—6(e) — 7ae’87
4 arctan x)afl 2a

Inz

where a, 8 are some real numbers; d) lim ( ,a € R;

z—1

T 2w —

1
e) lim <M>x = e 3, f) hm 5 =0; g) lim 1;C‘j”:Ofor all € > 0;

z—0+ T—+ T—4-00
h) lirgozna Inx =0 for all € > 0; i) hm (In(1+2))* =1.
r—r

57. Compute the following limits:

sin x

In(z+1)—In(z—1) .

. In(l4z)—=x e’ —¢ . . T .
a) limy =555 ) i S5 o) Jlim (@ (5 —arctanz)); d) Tim UG a
1
i ini 4+ 1)% i indi 4+ 1) (Atz)e —e, g
e) xll)rfoo (zsinl 4+ 1)% f) zll)rfoo (zsint+ %)% g) ;li% ~—; h) zEToo R
58. Show that for every n € NU {0}
) LA 333 1,5 x2n+1 P
SlnthT—$+§+a+ +m+0($ ), 334)0

2z —x?

59. Write Taylor’s expansion of the function e , € R at the point xgp = 0 up to the term

with 2°.
60. Use Taylor’s formula to compute the limits
2

x
. 5 . T o —2(1 . T __1__ . —si
a) lim ©52—¢" 2. }) lim %FM; ¢) lim €=1=2; ) lim —2=snz_.

xz—0 z—0 z—0 z—0 e?—1—z— %
. In(l4a42?)+Iin(l—z—22?) . cos(ze®)—cos(zre™%)
e) il_r{%) zsinz ’ f) ig% x3 )
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61. Find points of local extrema of the following functions:
a) f() =2'(1—2)%, 2 €R; b) f(z) =2%",2€R; ¢ fz)=z+1,2>0;
x2 $ x
d) f(a:):7—%+m,wel& e) f(z ):]a:\e ,xe€R; f) f(x) =2 x> 0;

1
e 22, x#0,
8) J(x) = 70 aer
0, z =0,

62. Identify intervals on which the following functions are convex or concave:
a) f(x)=€e*, x €R; b) f(z) =Ilnz, x >0; c) f(zr) =sinz, z € R; d) f(z) = arctanz, z € R;
e) f(z) =2 >0, a e R

63. Compute the following indefinite integrals:
a) [cosbrdz, x € R; b) [xsinzdr,z €R; c¢) [sin®zdz, v € R;
d) [sin2zsin3zdz, © € R; fsin3xdx,x€R; f) [——de m€(0,2)

sinx cos? x’

fxcostdm reR; h) [ on (—o0,1) and (1,+400); i) wcllr:fx’ x>0
2z+1)d J '
f<f+>+x2,xeR kf\c/ganda:xe(O ), 1) [ e (-2,

fcos xsin® zdz, x € R; n)fm,xel& o} fa: sinzdz, x € R;

p) [(Inz)*dz, z>0; q fe%cosxdw zreR. 1) fﬁ,HTGR; s) fezdac x> 0;

t) [VI—3adr,z <% u ) [ 2 25 on (—oo, —1), (—1,1) and (1, 400);
v) [In(z? + 2 + 1)dz, z € R.

64. Let f:]0,1] — R be integrable on [0, 1]. Prove the equality

lim f dm—/f

n—oo

65. Compute the following integrals:

a) f8 Jxdr; b) f?%; c) fogsin2:vdx; d) foleh*lda:' e) fOZ\l—:U|dx; f) f&ﬂxe*mdx;
3

fo x sin x2dx; )fo%xzcosa:dx; i) f_ll \/%; j) ln2\/ 1dz;
for a € (0,7); 1) [T |lnz|dz; m fo arccos rdzx.

f 1 22—2x cosa+1 2xcosa+1

66. Compute the following derivatives:

b . b . 2 3
a) %fa sin z2dz; b) d%fa sin z?dx; c) %fg V14 t2dt; d) %f; 1?1&4'

67. Compute the following limits:
a) lim Jo cost?dt Jo (arctant)?dt
z—0

P b) lm e

68. Compute the area of regions bounded by the graphs of the following functions:
a)2r =y*and 2y = 2% b)y=22andz+y=2; ¢)y=2% y=2and z = 0;
d)yz#}andy:O, where a > 0.

69. Compute the length of the circle 2% + y? =2, r > 0.

70. Computegthe length of continuous curves defined by the following functions:
a)y==x2,x€[0,4]; b)y=¢€",0<x<b; c)zx=a(t—sint),y =a(l —cost), t € [0,27],
where a > 0.
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71.

72.
73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

Compute the following improper integrals:

a) 0 re~%dx; b) oo de . c) fol

. +oo 2 2
0 0 24 z+1° d) fo e dx.

dx
Vi-z’

Identify all p € R for which the improper integral ffroo xPe”*dx converges. Justify your answer.

Show that the following improper integrals converge:
a) [;F° e dr; b) [T =2 _dx; ¢ Jree s gry d) [ e nady; e) [[° % dy

1 x3+x+1 1+x2 1 1+x2
f1+00 cos T fl COS CIIQd(L’, f1+00 sin 2:1;smxdx; h) fol cllx . fD In zde.
o0
Prove that the convergence of a series ) a, implies that a, + ap+1 + ...+ a2, — 0, n — oo.
n=1
(o]
Identify all p > 0 for which the series m converges. Justify your answer.
n=2

Prove the convergence of the following series:
e n X g 00 00 n(n—i—l) 00 2
a) 21 n32_n+21+1; b) 21;1—6; c) 21 (1—cos ) d) 21( ) e) 21 (\/n2 1—n> :
X2 X -2 e
DY B e >t )X (gt - 4.
n=1 n=1 n=2

Investigate the convergence of the following series
o . 00 5 00 12 00 n(n+1) X gn(n)2
DN EE DY s o S 0% () 9 i
n 1 n=1 n=1 n=1 n=1
nl)2 S 3n S nn22n
f) Z oyl g > Mn)m’ h) > ()2
n=1 n=1 n=1

Prove the convergence of the following sequences

) Z ( 1)n+1 b) nil(_l) <2+) 1 . ) sm3n ) §

Investigate the absolute and conditional convergence of the following series:
o0

sinn o n!, S Nt s = cosn
2) 3 b) 3 Gt o) X (<1 sind g5 d) 3

n=1 n= n=1

Show that for each z € R

T 2 3 n

z
el +—+—+ Tt
3! n!

Express the following complex numbers in the form x + yi for x,y € R:
a) (=24 3i)(1+1i); b) (V2—1i)% <) (2+3i)%(1 + 20);

2437, 3—1 . ] 1 1
d) 2—‘:;7 e) 2+2Z7;, f) (1,2')27 g) 7 (14+49)2°

Compute the real and imaginary parts of Z%, where z =z + 1y, z,y € R.

Solve the following equations:
a) |z| —z2=1+2i; b) 2| +2=2+1.

Write the following complex numbers in the polar form:
a)i; b) 1—i; ¢) —1++/3i; d) —2 — 2.
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85.

86.

87.

88.
89.

90.

91.

92.

93.

94.

95.

(1—+/34)(cos @+i sin §)
2(1—4)(cos @—isin@) -

Compute

-\ 20 -\ 24
Compute a) (~} + 405 b) (VB-30)% o) (1+9%; @) ()75 o) (1-42)"

Solve the following equations:
a) 224 2+43=0; b)23—i=0; ¢)2°—2=0; d)2*4+i=0; e)2>—4i=0.

Let z,w € C. Prove the parallelogram law |z — w|? + |2 + w|? = 2(]z|* + |w|?).

For a complex number o show that the coefficients of the polynomial

p(2) = (2 —a)(z —@)
are real numbers.

Let p(z) be a polynomial with real coefficients and let « be a complex number. Prove that
p(a) = 0 if and only if p(@) = 0.

For each of the following sets, either show that the set is a vector space over F or explain why
it is not a vector space.

a) The set R of real numbers under the usual operations of addition and multiplication, F = R.
b) The set R of real numbers under the usual operations of addition and multiplication, F = C.

¢) The set {f € C[0,1] : f(0) = 2} under the usual operations of addition and multiplication
of functions, F = R.

d) The set {f € C[0,1] : f(0) = f(1) = 0} under the usual operations of addition and
multiplication of functions, F = R.

e) The set {(z,9,2) € R3 : # — 2y + z = 0} under the usual operations of addition and
multiplication on R?, F = R.

f) The set {(z,y,2) € C3 : 20 + z + i = 0} under the usual operations of addition and
multiplication on C3, F = C.

Let [F[z] denote the vector space of all polynomials with coefficients in F and let
U={az* +b2°: a,bcF}.
Find a subspace W of F[z] such that F[z]| =U & W.

Consider the complex vector space V = C? and the list {vy,ve,v3} of vectors in V, where
v1 = (4,0,0), va = (4,1,0) and vs = (i,7,—1).

a) Prove that span{vi,ve,v3} = V.

b) Prove or disprove that {v1,vs,v3} is a basis of V.

Let V be a vector space over F, and suppose that vy, ve,...,v, € V are linearly independent.
Let w be a vector from V such that the vectors v; +w,vs +w, ..., v, +w are linearly dependent.
Prove that w € span{vi,va,...,v,}.

Let po, p1,...,pn € Fplz] satisfy p;j(2) =0 for all j =0,1,...,n. Prove that po,p1,...,p, must
be a linearly dependent in F,,[2].
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96. Define the map T : R? — R? by T'(z,y) = (z + v, x).
a) Show that 7" is linear; b) show that T is surjective; c¢) find dim(ker 7).

97. Show that the linear map 7' : R* — R? is surjective if

ker T = {(x1,x2,x3,14) € R*: 21 = bxo, 23 = Txg}.

98. Let V and W be vector spaces over F with V finite-dimensional, and let U be any subspace of
V. Given a linear map S € L(U, W), prove that there exists a linear map 7' € L(V, W) such
that, for every u € U, S(u) = T (u).

99. Let U, V and W be finite-dimensional vector spaces over F with S € L(U,V) and T € L(V,W).
Prove that
dim(ker(7'S)) < dim(ker T') + dim(ker S).
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B Homework

B.1 Problem sheet 1
1. [141 points] List elements of the following sets:
a) {neN: (n—4)2<5%}; b){neN: n®>4n}.
2. [24242 points] Check the following relations:
a) AN(BUC)=(ANB)U(ANC); b) (AUB)*=A°NB°% «c) <ﬂ At>cz U A¢

3. [2+2+42 points] Prove that
a) V6 € Q; b)V2+V3¢Q; c) for each n € N either v/n € Nor /n € Q.

4. [343 points] Using mathematical induction prove that:
a) 13 +254 .. . +nd=(1+2+...4+n)?foreach n € N;
b) 11™ — 4™ is divisible by 7 for each n € N.

5. [24243 points] Prove that a) sup A = —inf(—A), where A is a subset of R bounded from
above and —A :={—a: a € A};
b) Let A and B be subsets of R bounded from above. Show that sup(AUB) = max{sup A, sup B};
c) Let A={0,1c09...0p...: Vn €N «, € {1,2,3,4,5,6,7,8}}. Find inf A and sup A.
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B.2 Problem sheet 2
1. [141+1 points] Using the definition of the limit show that

a) lim =1 =1; D) lim n? = +o0; c¢) lim (—1)" doe not exist.
n—oo n—oo n—oo

2. [3 points] Assume that a,, — a, n — oo, and b,, — b, n — co. Show that max{a,, b,} — max{a, b},
n — oo.

3. [24242 points] Compute the following limits:

n3—2n2 cosntn. : 2 _ . 3 n/,29n n
a) nlin;o By b) T}Lngo(\/n + Vvn); c) nl;rgo Vn?22n 4 31,

4. [3 points] Let (a,),>1 be a bounded sequence and b, — 0, n > co. Prove that a,b, — 0,
n — oo.

5. [34+3 points] Using the monotonicity compute the following limits:

a) lim 2 lim \/2+\/2+ 2+xf

n—oo 2 n—00

n square roots
6. [2 points] Show that lim nln(1+ 1) =1.
n—oo

7. [2 points] Identify the set of subsequential limits of the sequence (sm 2’5")n21.

122



University of Leipzig — WS18/19
10-PHY-BIPMA1 — Mathematics 1 / Vitalii Konarovskyi

UNIVERSITAT LEIPZIG

B.3 Problem sheet 3

1. [14+1+1 points] For a sequence (a,),>1 compute lim a, and lim a,, if for all n > 1
- n—00 n—00
a) a, =1+ %; b) a, =1+ nsin%f; c) a, = 7(_71)" + 71“;1)”.

2. [3 points] Show that a := lim a,, = lim inf aj, for the case a € R.
n—0o0 n—00 k>n

(The equality also holds in the case a € {—o0,+00})

3. [2 points] Check that the sequence (an = Sg‘ll + 31222 +...+ SiQI}’Ln)nZl is a Cauchy sequence.

4. [24-242 points]| Find the domain and the range of the following functions:

a) f(2) = gips b) f@) =VI—a% ) f@) =In(1 + ).

5. [242 points] Find the formulas for the following implicitly defined functions. What are their
domains?
a) y = f(x) is the solution to the equation 23y + 2y = 5;
b) y = f(z) is the largest solution to the equation 3? = 322 — 2zy.
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B.4

1.

Problem sheet 4

[14+141 points] Let f : X — Y. Check that
a) f(A1NAz) C (f(A1)N f(Ag)) for A C X, As C X

b) f71(31 U BQ) = fﬁl(Bl) U fﬁl(Bg) for BiCY, By CY;

¢) f(f~Y(B)) =Bn f(X)for BCY.

. [2 points] Show that the set of all limit points of the set A = {r € [0,1] :

with the interval [0, 1]. (Hint: Use Theorem 2.3)

[2 point] Prove that the limit of the function f(z) = cos 1, z € R\ {0}, does not exist at the

point a = 0.

[2+2 point]| Using £ — ¢ definition, show that
a) lim \/z =2 b) lim nz — .
T—r

T—>+00

. [242+2 points] Compute the following limits:

. l—coszx. : 3 —zsinaz+x. x2—zx
a) hII(l) z2 b) xll)l’_il_loo 1-3z3+lnz ’ 2 —-3x+2"

c¢) lim
T— rz—1

r is rational} coincides

[2 points| Let a be a limit point of A C R and f,g: A — R satisfy the following properties:
1) f is bounded on A4; 2) g(z) — 0, © — a. Show that liLn (f(x)-g(z)) =0.

(Hint: Use Squeeze theorem for functions)
[242+42 points] Compute the following limits:

b) lim c) lim e s

a) lim ——Z—; —L
2—0— V1—cosZx z—04+ V1—cos?x 2—0—+
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B.5

1.

Problem sheet 5

[141 points] Let a,b be a real numbers, f(z) =2+ 1, x <0 and f(z) =ax+b, x > 0. a) For
which a, b the function f is monotone on R? b) For which a,b the function f is continuous on
R?

[1+1 points] Compute the following limits:
a) linr(l)(tana: —e%); b) lim =37+
T—

pso T—SINTT

[2 points| Let f(z) = |z|sinmz, x € R. Prove that f is continuous on R and sketch its graph.
(Hint: If z € [k, k+1) for some k € Z, then |z] =k and f(z) = ksinmz. Find f(k—) and f(k+) at the points k.)

. [2 points] Prove that the function f(z) =sin 2, z # 0, and f(0) = 0, is discontinuous at 0.

[2x6 points] Compute the following limits:
. 1
(In(1+ ) —Inz); d) lim (M) z

. 1
a) lim &NZ- h) lim(cosz)=2; c¢) lim =z
) 750 Tz ) x—>0( ) ’ ) 5+ o0 o0 \ €OS2x

. K -1 .
e) lim =22 f) lim ©
x—0 V1+z2-1 z—0

sin 2x 7etan x

[2 points] Prove that the function P(z) = 23 + 722 — 1, x € R, has at least one root, that is,
there exists o € R such that P(zg) = 0.

[3 points| Let f : [a,b] — R strictly increase on [a,b] and for each yo € [f(a), f(b)] there exist
zo € [a,b] such that f(xg) = yo. Prove that f is continuous on [a, b].

[2 points] Using the definition, show that the function f(z) = \/z, x € [1,4+00), is uniformly
continuous on [1, 400).
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B.6 Problem sheet 6

1.

[141+41 points] Express through f’(a) the following limits:

. f(a+2h)—f(a) . . f(la+h)—f(a—h) . .
a) lim HEEZIE ) fim HEFREEZ, o) tim n (f ("a) - f(a).

[2 points] Using the definition of derivative, check that (z|z|)" = 2|z|, x € R.

. [3 points] For the function f(x) = |22 — z|, * € R, compute f’(x) for each z € R\ {0,1}.

Compute left and right derivatives at points 0 and 1.

2

xe, r <1,
flx) =

ax +0b, x>1

[1+2 points| Let

For which a,b € R the function f:
a) is continuous on R; b) is differentiable on R? Compute also f’.

[2x3 points] Check whether the following functions are differentiable at 0. Justify your answer.

cosz—1
a)f(x):{o z iig b)f(z) = Va2, z €R; c¢) f(z) = |sinz|, z € R,

[1x8 points] Compute derivatives of the following functions:

1/‘2 x —T
a) f(z) = 2’sinz; b) f(z) =e” 7 cosa; c¢) f(z) = 5 d) fl2) = Gie;
e) f(x) =221 ) f(x) = sin(cos?(tan®)); g) f(x) = §/155;

h) f(z) = e . asinbe_beosbr where g, b are some constants.

Va2+b?
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B.7 Problem sheet 7

1.

[1x6 points] Compute derivatives of the following functions:

a) f(z) = 1l 2= b) f(z) = In (a:+\r2+1); ¢) f(z) = Intan Z;

x2+17
d) f(x) = arcsin I_T;; e) f(x) = arctan if—;; f) f(z) = /x.

[2 points| Let a function f : (a,b) — R be differentiable on (a,b) and there exists L € R such
that |f/(z)| < L for all x € (a,b). Show that f is uniformly continuous on (a, b).

[2 points] Prove the equality

11
3arccosx — arccos(3z — 42%) =7, x € [—2’ 2} )

(Hint: Compute derivatives of the left and right hand sides of the equality)

. [3 points] Let functions f, g : (a,b) — (0, +00) be differentiable on (a, b) and for every x € (a, b)

&l((j)) = g((:‘f)). Prove that there exists L > 0 such that f(z) = Lg(z) for all z € (a,b).

(Hint: Consider the functions In f and Ing)

[3 points| (Generalised Bernoulli inequality) For each o > 1, prove that (1 4+ z)* > 1 + ax for
all x > —1. Moreover, (1 +z)* =1+ az iff z = 0.

[2x4 points] Identify the intervals on which the following functions are monotone.
a) fl@)=3z—2%, 2 €R b)f(x) =125, 2€R; ¢ f(a) =%, R
d) f(z) =2+ /|1 —2?|, z € R.
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B.8 Problem sheet 8
1. [1x4 points]| Using L'Hospital’s Rule, show that

a_(z\P
a) liH(l) lns(ilnff) =1; b)lim % = O‘Tfﬁ, where o, 3 are some real numbers;
T— r—e
¢) lim BZ=0foralle>0; d) lim (In(l+z))" =1
T—+00 z—+0

2. [3x3 points] Using L’Hospital’s Rule, compute the following limits:

1 1

. zr__ _sinx . In(1 T . 1 T —

a) lim ©=%—:; b) lim (#) ; ¢) lim %
z—0 x—0+ z—0

3. [2x3 points] Compute the n-th derivative of the following functions:
a) f()=2""1, z€R; b) flz)=v2z—-T,2>1%; o (z2e®)™) z € R,

(Hint: Use the Leibniz Formula in c))

4. [3 points] Write Taylor’s expansion of the function e22=2* 1 € R at the point xg = 0 up to the

term with 2.

5. [2x2 points] Use Taylor’s formula to compute the limits
2
. —e T, . ePsinz—z(l+x)
o) lip SSE b) fi St
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B.9 Problem sheet 9

1. [1x3 points] Find points of local extrema of the following functions:
a) f(z) =22, 2 €R; b) fz)=z+1,2>0; ¢ fx) =|zle™, z €R.

2. [1x3 points] Identify intervals on which the following functions are convex or concave:
a) f(z) =2, 2>0; b) f(z) =arctanz, z € R,

3. [3 points](Young’s inequality) Let p > 1, ¢ > 1 and % + % =1.
Prove that oy < %p + y—; for all z,y € (0,400).

(Hint: Consider the function f(z) = —Inz, x > 0, and use its convexity on (0, +00))

4. [2x9 points] Compute the following indefinite integrals:
a) :Bcllraf:p’x>0. f j%’ ER; C) f cgg;fdx’xe (O’g)’
d) [ ze (-5,5); e [cos’zsin’adr, v € R; f) [ 33— 2 eR;

cos T’ z24z+17

g) [2?sinzdz, x € R; h) [(Inz)%dz, x > 0; i) [e** coszdz, x € R.
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B.10 Problem sheet 10

1. [3 points] Using the definition of the integral, prove that the function f(x) = z, x € [0,1], is
integrable on [0, 1] and compute fo xdz.

2. [2 points] Let f : [a,b] — R be a function and ¢ € (a,b). Show that f is integrable on [a, b], if
it is integrable on [a, ¢| and [c, b].

(Hint: Use the integrability criterion (Theorem 16.2))

3. [3 points] Let f : [a,b] — R be a continuous function on [a, b] and g be a non- negative integrable
function on [a,b]. Show that there exists 6 € [a, b] such that ff f(z)g(z)dx = f g(z

4. [2 points] Let f:[0,1] — R be integrable on [0, 1]. Prove the equality

lim f dac—/f

n—oo

5. [2x5 points] Compute the following integrals:
a) Jo? sin2ede; b) [71—aldr; <) [7Ta%cosuda; d) [, g o) [ Ve~ Tda

6. [3 points] Compute the area of the region bounded by the graphs of the following functions:
y=xz?and x+y=2.

7. [3 points] Compute the length of the cycloid, the continuous curve defined by the following
functions: = = a(t —sint), y = a(1 — cost), t € [0, 27|, where a > 0.
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B.11 Problem sheet 11

1.

[2x3 points| Compute the followmg improper integrals:

+o00 de . . o0 2 —x
a) Jo  aTTs fo ﬂ’ 0 dx.

[3 points| Identify all p € R for which the improper integral f1+°° zPe™"dx converges. Justify
your answer.

[2x4 points| Show that the following improper integrals converge:

+o0 42 + + +
a) fl e ¥ dx; b) 1 > :c:ﬁ&-xz—l—ldx c) fo > ffxﬁd d) fl > CS/SEI r

[2 points] Show that <& + 555 + 2 +... + jt+=1

1
n(n+1

(Hint: Use the equality m =1- k%-l)

[3 points] Identify all p > 0 for which the series Z converges. Justify your answer.

lnn

[2x3 points| Prove the convergence of the following series:

(o ¢] o0 2
a) 3 kg b) z SR (m_n) .
n—= n=
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B.12 Problem sheet 12

1.

[2x4 points] Investigate the convergence of the following series:

S SR 0 (2 o/ \n(ntD)
a) > 50 b) 21 g ©) 21 E2n))!; d) 21 (Wl) :

n=1

[3x2 points] Investigate the absolute and conditional convergence of the following series:
[e.°]

a) 3 (~1)"sin®J,, where a > 05 b) 3, .
n=1

n=1

[2 points] Show that for each z € R

T S
S TR TR TR AT
(Hint: Use Taylor’s formula with Lagrangian remainder term (see Theorem 14.1 and Example 14.1) to show that

the remainder term converges to 0)

[1x3 points] Express the following complex numbers in the form = + yi for z,y € R:

a) (2+3i)%(1+2i); b) 32 o) 1 — ;L.

[2 points] Compute the real and imaginary parts of Z%, where z = x 4+ 1y, z,y € R.

[2 points] Compute (—3 + @)21.

[2x2 points] Solve the following equations:
a) 22 +24+3=0; b)22—-i=0.

. [2 points] Let z,w € C. Prove the parallelogram law |z — w|? + |z + w|? = 2(|z|> + |w|?).
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B.13 Problem sheet 13

1. [2 points] For a complex number « show that the coefficients of the polynomial

p(z) = (z = a)(z - Q)

are real numbers.

2. [3 points] Let p(z) be a polynomial with real coefficients and let o be a complex number. Prove
that p(a) = 0 if and only if p(a) = 0.

3. [3 points] Prove that any polynomial p(z) with real coefficients can be decomposed into a
product of polynomials of the form az? 4 bz + ¢, where a,b,c € R.

(Hint: Use the fundamental theorem of algebra and exercises 1., 2.)

4. [6x2 points| For each of the following sets, either show that the set is a vector space over F or
explain why it is not a vector space.

a)
b)

The set R of real numbers under the usual operations of addition and multiplication, F = R.
The set R of real numbers under the usual operations of addition and multiplication, F = C.

The set {f € C[0,1] : f(0) = 2} under the usual operations of addition and multiplication
of functions, F = R.

The set {f € C[0,1] : f(0) = f(1) = 0} under the usual operations of addition and
multiplication of functions, F = R.

The set {(z,y,2) € R* : 2 — 2y + z = 0} under the usual operations of addition and
multiplication on R3, F = R.

The set {(z,y,2) € C3 : 20 + 2z +4 = 0} under the usual operations of addition and
multiplication on C3, F = C.
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B.14 Problem sheet 14

1.

10.

11.

[1 point] Let V be a vector space over F. Then, given a € F and v € V such that av = 0, prove
that either a = 0 or v = 0.

[2x3 points] Prove or give a counterexample to the following claim:

1) Let V be a vector space over F and suppose that Wi, Wy and W3 are subspaces of V' such
that W7 + W3 = Wo + W3. Then Wy = Wh.

2) Let V be a vector space over F and suppose that W, Wy and W3 are subspaces of V' such
that W7 @ W3 = Wy @ W3. Then Wy = Wh.

[2 points] Let F[z] denote the vector space of all polynomials with coefficients in F and let
U={az*+b": a,becF}.
Find a subspace W of F[z] such that F[z] =U @& W.

[2x2 points] Consider the complex vector space V = C? and the list {v, v, v3} of vectors in
V', where v; = (¢,0,0), v2 = (3,1,0) and vz = (7,4, —1).

a) Prove that span{vy, ve,v3} = V.

b) Prove or disprove that {vi,v2,v3} is a basis of V.

[2 points] Let V be a vector space over F, and suppose that vy, vs,...,v, € V are linearly
independent. Let w be a vector from V such that the vectors v; + w,v9 + w,...,v, + w are
linearly dependent. Prove that w € span{vi,va,...,v,}.

[3 points] Let po,p1,...,pn € Fylz] satisfy p;(2) = 0 for all j = 0,1,...,n. Prove that

D0, P1, - - -, P, must be a linearly dependent in F,,[z].

[3x1 points] Define the map T : R? — R? by T'(z,y) = (z + y, 7).
a) Show that 7" is linear; b) show that T is surjective; c¢) find dim(kerT').

. [3 points] Show that the linear map T : R* — R? is surjective if

ker T = {(x1,x2,x3,14) € R*: 21 = bxg, 23 = Txg}.

[3 points] Let V and W be vector spaces over F with V finite-dimensional, and let U be
any subspace of V. Given a linear map S € L(U,W), prove that there exists a linear map
T € L(V,W) such that, for every u € U, S(u) = T (u).

[3 points] Let V' and W be vector spaces over F with V' finite-dimensional. Given T € L(V, W),
prove that there is a subspace U of V such that U NkerT = {0} and rangeT = {T'(u) : uwe€ U}.

[3 points] Let U, V and W be finite-dimensional vector spaces over F with S € L(U,V) and
T € L(V,W). Prove that

dim(ker(7'S)) < dim(ker T') + dim(ker S).
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C

1.

10.

11.

12.

. Let (an)n>1 be a sequence such that %= — 0, n — oco. Prove that

. Compute the limit lim (1 + arcsin

. Investigate the absolute and conditional convergence of the series »_ (—1)"In (1 +

Exam

Show that for every n € N

1)(2 1
124921524 yp2o 0F )6( ntl)

max{ai,a2,...,an } 5 0.1 — 00
—_— , .

. Is the function

l—cosz
fl@)=q "* r70 z € (—m,m),
0, z =0,

continuous on (—m,m)? Is f differentiable on (—m, 7)? Compute the derivative of f at each point
where it exists.

1
x) tan2 z .

2
z—0

. Find points of local maximum and minimum of the function f(z) = 2?(x — 5)3, z € R.

. Compute the length of continuous curve defined by the function y = :1:%, x € [0,4].

Compute the improper integral f;oo 12—2”” dx.
o0

5)

n=1

12
1++/3i
. Compute (T’Ll) .

Show that there does not exist any linear map 7" : R% — R? with

ker T = {(x1,x2, 3,4, T5) 1 T1 = X9, T3 = T4y = —T5}.

Write the Taylor formulas with the Peano remainder term and the Lagrangian remainder term
(indicate also conditions on the function under which the Taylor formulas are true).

Give definitions of linearly independent set of vectors, linear span and basis.
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D Exam Solutions

1. Show that for every n € N

D(2n+1
12+22+32+...+n2:n(n+ )6(n+ ). (49)

Solution. To prove equality (49), we use the mathematical induction. For n = 1 we have
12 = 123 We assume that (49) is true for n € N and check it for n + 1. So,

n(n + 1)6(2n +1) +(n+1)?

nin+1)(2n+1)+6(n+1)>  (n+1)(n(2n+1)+6(n+ 1))

6 6
In order to finish the proof, we have to check that n(2n+1)4+6(n+1) = (n+2)(2(n+1)+1). For
this, we compute n(2n+1)+6(n+1) = 2n2+Tn+6 and (n+2)(2(n+1)+1) = (n+2)(2n+3) =
2n% + Tn + 6.

PP4+22 43+ 402+ (n+1)?2=

2. Let (an)n>1 be a sequence such that %= — 0, n — oo. Prove that max{a,az,..an}

— 0, n — oco.
Solution. Let € > 0 be fixed. Since %= — 0, n — oo, there exists N1 € N such that for all

n > Ni ‘%" —0‘ = |a;L—”| < . We next choose Ny € N such that % <eforall k=1,...,N;.
Thus, taking N := max{Nj, No}, we can estimate for every n > N and k =1,...,n

lak|

|a7:|§]\72<€’ if k<N,
and
|| _’C;:’<€, if Ny<k<n.
Hence, we have
max{ai,as,...,an} < max{|ai|, |az|, ..., |an|} e
n n

This implies that w — 0, n — oo.

3. Is the function

l—cosz

=Bt 0

f(ZC) — sinz * <L 7& T e (771_77_[_)7
0, z =0,

continuous on (—m,m)? Is f differentiable on (—7, 7)? Compute the derivative of f at each point
where it exists.

Solution. Since sin and cos are continuous functions and sinz # 0 for all x € (—m,7) \ {0}, the
function f is continuous at each point of (—m,7) \ {0}. To check the continuity of f at 0, we

compute
1 — cos 2(1 — cos
z—0 z—0 Sin x x—0 resmax
T 1—-cosx 1
=1 - i - i =0-1-—-=0= .
A M e T 0 =00
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Hence, the function f is continuous at 0 and, consequently, it is continuous on (—m, 7).

Similarly, f is differentiable at each point of (—m, )\ {0} because sin and cos are differentiable
and sinx # 0 for all x € (—m,7) \ {0}. Moreover, for every x € (—m,7) \ {0}

sin? x

1—cosz\  (1—cosz) sinz— (1—cosz)(sinz)
sinx

e = (

sin?z — (1 —cosw)cosx  sinz +cos’x —cosx 1 —cosx
sin? z sin? z sin? x
We next compute
. x) — f(0 . 1 —cosx . x(1l —cosx
P0) =t JO SO 1 cos (1 cosz)
z—0 x—0 z—=0 xsinx x—0 z*sinx
. x . 1—coszx 1
= lim — - lim 5 = —,
z—=0sinx =x—0 T 2

Hence the function f is differentiable on (—m,7) and

l—cosz
==L 0
f,(:C) = { sin?g 0 ¥ 70, r € (—m, 7),

1 —
bR :U—O,

1
4. Compute the limit lim (1 + arcsin® x) tana
z—0

Solution.

1 1n(1+arcsin2 w)
2 m) tan2 x —

1 .
lim (1 + arcsin? :c) tan?z = |im eln(l"'arcsm = lime~ tanZa

z—0 z—0 z—0
. In (1 + arcsin® x)
lim 5
e x—0 tan“x

9

by the continuity of the exponential function. So, we compute

~In (1 + arcsin® x) ~arcsin’z - In (1 + arcsin® x) o In (1 + arcsin? $) ~arcsin?z
im 3 = lim — 5 = lim — - lim 3
x—0 tanc x z—0 arcsin® ¢ - tan® x x—0 arcsin® z—0 tan“x
. x2? - arcsin®x . aresin?z . x?
:1-hm272:hm 5 - lim 5
z—0 x*-tan“x z—0 x x—0 tan“

. arcsinz 2 . r \2
=(lim —] -(lim =1.
x—0 €T z—0 tanx

1
Hence, lim (1 + arcsin? 1:) wnZs = el = ¢,
z—0

5. Find points of local maximum and minimum of the function f(z) = 2?(x —5)3, z € R.

Solution. We first compute critical points of f:

f(z) = (2*(z — 5)3)/ = (mz)/ (. —5)° +2* ((x — 5)3)/ = 22(z — 5)° + 32%(z — 5)*
=z(x —5)%(2(z — 5) + 3x) = 2(x — 5)*(5z — 10) = 0.
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Hence, the points x = 0, x = 2, x = 5 are critical.

The point 0 is a point of strict local maximum because the derivative changes its sign from “4”
to “~7, passing through 0.

W o

The point 2 is a point of strict local minimum because the derivative changes its sign from
to “+”, passing through 2.

The point 5 is not a point of local extrema because the derivative stays positive, passing
through 5.

6. Compute the length of continuous curve defined by the function y = x%, x € 10,4].

Solution. The length of the curve I' defined by the function y = xg, x € [0,4], can be computed
by the formula

=1+ %x,
§ 3 ; 4
/ 1+ x2 d$—/ 5 T2 dl‘—/ \/H-ixdx— r=g(y—1),
de = 2dy
1
4 1 4 y§
= — 2dy = — -
9/1 YT %—Fll

7. Compute the improper integral f oo l“"””d

(10\ﬁ0— 1).

Solution. First we change the variable and then use the integration by parts formula:

=Ilnx
+oo Inz Yy ) +o0 ey +oo +oo
/ —dr=|z=¢, = / y?dy = / ye Ydy = —/ yde Y
2 x dz = evdy 2 €% In2 In2

M o 2 1+1n2
:_ye_y +/ e_ydy:1n2.€_ln2_€_y n _‘_e_IHQZl‘
1

In2 n?2

In2

Another way of the computation without change of variable:

too] +oo 1 17 +oo ] In2 too g
/ nfdx / Inzd— = —Inxz— +/ dlnm—n—i—/ —dx
2 Z 2 € x 2 2 2 x

2 xz
In2 1|7 1+In2

T2 x|, T2

(&)
8. Investigate the absolute and conditional convergence of the series > (—1)"In (1 + ﬁ)

n=1

1 (—1)"In (1+\}ﬁ)‘ :g:lln <1+\}ﬁ>
1

n
diverges because In (1 + %> ~ \}, n — 0o, and Z = diverges.

Solution. The series
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10.

. Compute

Since the sequence In (1 + ﬁ), n > 1, is monotone and converges to 0, the series

= 1
> (=1)"In <1 - >
n=1 \/ﬁ
converges, according to Leibniz’s test. This implies the conditional convergence of the series.
(1-}—\/51’) 12
1—2 .

Solution. We first write the numbers 1 4+ v/3i and 1 — ¢ in the polar form. We compute the
absolute volume r and the argument 6 of 1+ v/3i. So, r = /12 + (v/3)2 = 2 and cosf = 1

2
sinf = @ Thus, 6 = §. So, we obtain

1+\/§i:2<cosg+ising).

1—i=v2 (cos (=7 ) +isin (- 7)).

Similarly,

Hence

V3i 2 2cos% i8in T 2 T T m m\\ L
() - (gpimirimi) ) < e (§ e ]) (5 4)”

7 7\ " 12-7 12-7
:64<cos7r+isin7r> :64<cos 127T+isin 7T>:—64.

12 12 12

Show that there does not exist any linear map 7" : R — R? with

ker T' = {(z1, 22,23, %4,%5) : T1 = T, T3 = Ty = —T5}. (50)

Solution. We assume that there exists a map 7 : R — R? with the kernel given by (50). We
first note that

ker T = {(z1,z2, 23,24, 25) : 1 = T2, T3 =24 = —x5} = {(a,a,b,b,—b) : a,b € R}.

Thus, the vectors v; = (1,1,0,0,0) and vy = (0,0,1,1,—1) form a basis of ker T', since they are
linearly independent and span ker T'. Hence, dim(ker T') = 2. Since 5 = dim(R%) = dim(ker T') +
dim(rangeT') = 2+dim(range T'), we have that dim(rangeT") = 3. But that is impossible because
rangeT C R? and dim(R?) = 2.
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E Retake

1. For which n € N the following inequality holds?

3" > 5n + 2.

2. Compute the following limit

lim V/n®5" 4+ n3n.

n—oo
3. Show that a sequence (ay)n>1 of real numbers is a Cauchy sequence if and only if
sup |ap — am| — 0, k — 4o00.
n>km>k

4. For which a € R the following function f is differentiable on R?

f(z) = {61_1’ z#0, r eR.

a, x =0,

Compute the derivative of f.

5. Prove that the function f(x) = x* is increasing on (%, 00). Is it convex on (é, 00)?

6. Compute the area of the region bounded by the graphs of the following functions 2z = 3? and
2y = 2.
7. Compute the improper integral fooo |z — 1|e”*dx.
8. Does the following series converges?
= 1
nZ::l n(ln*n+1)

9. Write the following complex numbers in algebraic form: ﬁ, (1 —/3i)".

10. Let Ry[z] denotes the vector space of all polynomials of degree at most 4 with coefficients in R
and let the linear operator T' : Ry[z] — Ry[z] is defined as follows (T'p)(z) = p”(z) (Tp is the
second order derivative of polynomial p). Identify kerT" and range7. Find a subspace W of
R4[z] such that ker T'® W = Ry|z].

11. Formulate the Fermat theorem and the Lagrange (mean value) theorem.

12. Give the definition of subsequential limit of a sequence and the definitions of upper and lower
limits.
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F Retake Solutions

1. For which n € N the following inequality holds?

3" > 5n+ 2. (51)

Solution. We first we note that inequality (51) is not true forn =1 (3! <5-1+2) and n = 2
(32 < 5-2+2). If n = 3, then the inequality holds because 3% = 27 > 5.3 +2 = 17. In order to
show that inequality (51) is true for all n > 3, we will use the mathematical induction. Let us
assume that (51) holds for n = k for some k > 3, i.e. 3¥ > 5k + 2, and prove it for n = k + 1.
So, 37+l =3".3 > (5k+2)-3 =15k +6 = 5(k+ 1) + 2+ 10k — 1 > 5(k + 1) + 2. Hence, the
inequality 3™ > 5n + 2 is true for all n > 3.

2. Compute the following limit
lim /nd5" + n3n.
n—oo
Solution. In order to compute the limit we will use the squeeze theorem. For this, we estimate

5(3/n)° = Vnb5m < /nd5m 4 n3n < ¥/nd5n 4 nd5n = 53205 = 592 (3/n)°

Since limy_00 5 ({/n)° = 5-1% = 5 and limpy_ee 52 (/1) = 5limp_ee V2 - limpoo (/n)° =
5-1-1% = 5, the squeeze theorem implies that

lim 3/nd5" 4+ n3® = 5.

n—oo

3. Show that a sequence (ay)n>1 of real numbers is a Cauchy sequence if and only if
sup |ap — am| — 0, k — 4o00.
n>km>k
Solution. Let (a,)n>1 be a Cauchy sequence and let € > 0 be fixed. By the definition of Cauchy
sequence, there exists a number IV such that
€

Vn,m >N |ap, — am| < 5

Thus, sup |a, —am| < § < e for all kK > N. This implies that sup |a, — am| — 0,
n>km>k n>km>k
k — +o0.
Next, we assume that sup |a, — am| — 0, & — +o0o. Then, by the definition of the conver-
n>km>k
gence, we have that there exists a number N such that

Vk>N  sup |an —am| <e.
n>k,m>k

In particular, this yields that for all n,m > N |a, — am| < . So, (an)n>1 is a Cauchy sequence.
4. For which a € R the following function f is differentiable?

F(z) = {1 70 Ler

a, z =0,
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Compute the derivative of f.

Solution. Tt is clear that the function f is differentiable on R\ {0}. So, we have to check whether
f is differentiable at x = 0. For this we first find a for which f is continuous. Only for that a
the function could be differentiable. We compute

. . sin x . rsinx . sinx . x
lim f(z) = lim = lim ———— = lim - lim =1.
x—0 z—0e® — 1 z—0 I(Gx - 1) z—0 x z—=0 e — 1

So, only for a = 1 lim,_, f(z) = f(0). This implies that f is continuous on R for a = 1. Let us
check that f is differentiable at x = 0 for a = 1.

We compute for a =1

— Sgicn$ 1 . o )
f'(0) = lim M — lim &=L " — im simy —e” + 1
z—0 x—0 z—0 T 20 (er — 1)$
=li £ %?‘Fo(x?’)_ A- ﬁ?—%f—o(xQ)jL/I
+0 (L+z+o(x)— A)x
o(z? o 22
I #5551
= lim
z—0 42 (1 + O(a:)) 21 9

Consequently, f/(0) = —% for a = 1. If @ # 1, then the function f is not differentiable at z = 0
because it is not continuous.

It remains to compute

. / .
< sin x > cosz (e —1) —e"sinx

f/(l‘) = et _ 1 (" — 1)2 )

x # 0.

5. Prove that the function f(z) = 2% is increasing on (%, oo). Is it convex on (é, oo)?

Solution. In order to show that f is increasing, it is enough to show that its derivative is positive.
So, we compute

fl(z) = (%) = (elnzx>/ = (e”thm)/ = erhne (lnx + g) =z"(lnz+1) >0

for x € (%, oo). Hence the function f is strictly increasing on (%, oo). To check the convexity,
we compute the second derivative:

1
f(z)=@"(ne+1) =@ (nz+1) +2"(nz+1) =2"(nz+1)*+ 2= >0
x
on (%, oo) Thus, the function f is strictly convex on (%, oo)

6. Compute the area of the region bounded by the graphs of the following functions 2z = y? and

2y = 2.

Solution. We have to compute the region between two parabolas which intersect each other at

points = 0 and = = 2 (the points of intersection can be found from the equation 2z = (%) )

Thus, the area can be computed by the formula

2 x2 2, 1 [2 2 3
/ <v2m—> dw:\/ﬁ/ :B?da:—/ 22dr = V2522
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7. Compute the improper integral fooo |z — 1|e”*dx.

Solution.

oo 1 00 1 00
/ |z — 1le *dx = / |z — 1le *dx +/ |z — 1le *dx = —/ (x —1)e *dx + / (x —1)e *dux.
0 0 1 0 1

Let us compute the indefinite integral
/(a: —1)e *dx = — /(m —1de ™ =—(z—1)e "+ /exd(x -1)
=—(r—1)" —I—/e_xdm =—(r—1e*—e®+C=—-xe"+C.

By the fundamental theorem of calculus,

> L * 1 1 12
/ |z — 1le"*dx = — (—ze™™) ’ + (—ze™®)| =e'-04+0+e " =2e""=".
0 0 1 e
8. Does the following series converges?
o 1
E ——
—n (ln n + 1)

Solution. Since the sequence j decreases, we can use the integral criterion. According

1
n(ln2 n+1

to that criterion, the convergence of the series > >, m is equivalent to the convergence

of the improper integral

o0 d.fU o0 dlnl‘ y=Inzx o0 dy o ™
— = ——— = 3 = arctany| = — < oo.
1 x(ln x—i—l) 1 Infz+1 o y-+1 0 2

Hence, the series > 7, m converges.

i

9. Write the following complex numbers in algebraic form: 7=z, (1 —+/3i)1°.
Solution.
1 1 1 ] 1

1—9)2 1-2+i¢ 1-2i—1 -2 2

In order to compute (1 — /3i)'®, we will use de Moivre’s formula. For this, we need to rewrite
the complex number 1 — /3i in polar form. So, the absolute value 7 of 1 — v/3i is given by the

formula r = /12 + (\/3)2 = 2. The argument @ of 1 — v/3i can be found from the equalities
cosf = % and sinf = @ Hence, § = —%. Consequently, we can compute

(= = (2 o (<5) o (<5))) =2 (s (557 0 (<157)

= 215 (cos(—5m) + isin(—5m)) = —21°.
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10. Let Ry4[z] denotes the vector space of all polynomials of degree at most 4 with coefficients in R
and let the linear operator T : Ry[z] — Ry[z] is defined as follows (T'p)(z) = p”(2) (Tp is the
second order derivative of polynomial p). Identify ker T and rangeT. Find a subspace W of
Ry4[z] such that ker T'd W = Ry|z].

Solution. We take p € R,,[2]. Then p can be written as p(z) = asz* + az2® + a22? 4+ a1z + ao,
where a; € R, ¢ =0,...,4. So, by the definition of T',

(Tp)(2) = 12a42* + 6azz + 2as € Ry[z]. (52)
This implies that Tp = 0 if and only if as = a3 = a4 = 0. Hence,
kerT ={p € Ry[z] : Tp=0} ={p(2) =a1z+ap: ap,a; € R} =Ry[z].
Next, we compute
range T = {q € Ry[z] : Ip € Ry[z] such that Tp = q} = Ryz].

Indeed, if q(z) = baz? + b1z + by € Ra[z], then for p(z) = %Z4 + %123 + %zQ we trivially have
Tp = q. So, range T D Ry[z]. Moreover, equality (52) implies range 7' C Ra[z].

In order to find a vector subspace W of Ry[z] such that kerT' @ W = Ry[z]|, we recall that it
should be a vector subspace such that ker 7'+ W = Ry[z] and ker TN W = {0}. We set

W = {q(z) = b424 + 5323 + 522’2 2 by, b3, by € R} .

It is easily to see that W is a vector subspace of Ry[z] and ker T+ W = Rg[z] + W = Ry[z].
Moreover, only zero polynomial belongs to both ker T' = Ry [z] and W. Hence, ker T&W = Ry|z].
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G Some Important Limits

G.1 Limits of sequences
1

o lim —%
n
n—o0o

=0, a > 0; (Corollary 3.1)

e lim lz =0, a€R, \a| > 1, b €R; (Theorem 3.3)

n—oo @

e lim lrgl% =0, a > 0; (Ezercise 3.6 c))

n— o0
e lim Yn =1; (Theorem 3.4)
n—oo

e lim %4 =0, a > 0; (Evample 4.2 for a = 10)

n—oo ™

e lim (1 + %)n = e; (Section 4.2)

n—oo

e lim nln (1 + %) = 1. (Ezercise 4.9)
n—oo

(.2 Limits of functions

. b
e lim a% =0,a €R, |a| > 1, b € R; (Example 7.3 for b € N and Ezercise 7.6 for the general case)

T—+00

e lim 12% =0, a > 0; (Ezercise 7.2 fora=1)

T—+00

° lir%ﬂ% = 1; (Ezample 6.5)
z—

o lim tanz — 1; (Ezample 7.8 a))
z—0 T

) hII%)% = 1; (Ezercise 8.11 ¢))
T

° lir%m% = 1; (Ezercise 8.11 ¢))
z—

o lim 1=¢gsz — %; (Ezxercise 7.8 d))
z—0 F

1
o lim (1+1)"=1lim(1+2)* =e; (Ezample 7.2
14)4’00( +I) z—>0( + ) b (Brample 7.2)
o lim &=L = 1; (A partial case of Theorem 8.7)
z—0

e lim % =Ina, a > 0; (Theorem 8.7)

z—0
s In(l4x) _ 4. .
e lim ——— = 1; (A partial case of Theorem 8.6)
z—0 x
e lim log,(1+2) _ log, e, a >0, a # 1; (Theorem 8.6)
z—0 z
o lim (F2=1 a, o € R. (Theorem 8.8)
z—0 z
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G.3 Derivatives of Elementary Functions
b $a)/ = 04$a71, x > 0, for o € R; (Bzample 10.6)
b mn)/ = mxm—l’ T E R\ {0}, for m € Z; (Ezercise 10.6)

.’L‘”)/ = nxn—l’ x € R, for n € N; (Ezercise 10.6)

e (sinz) = cosz, x € R; (Ezample 10.8)

o (cosx) = —sinz, x € R; (Example 10.8)

o tan$)/:ﬁ,$€R\{g—|—ﬂ'k: kEZ}; (Ezample 10.8)
e (cotx) = —ﬁ7 x € R\ {nk: k €Z}; (Evample 10.8)

o (log, x) = ﬁ, x>0, for a >0, a# 1; (Evample 11.1)

(Inz) = %, x > 0; (Ezample 11.1)

1

. (arcsinx)’ =i x € (—1,1); (Ezample 11.3)
. (arccosx)/ = —ﬁ, WS (—1, 1); (BEwercise 11.3)
e (arctan x) = H—ﬁ’ x € R; (Example 11.2)

arccot x) = x € R; (Ezercise 11.2)

1
14a2°

(

° (Sinh x)' = coshz, x € R; (Ezercise 10.9)
(
(

e (coshz) =sinhx, x € R; (Ezercise 10.9)
1 . ;
e (tanhz) = oZa TE R; (Ezercise 10.9)
1 .
e (cothz) = “annZs TE R\ {0}. (Ezercise 10.9)

146



University of Leipzig — WS18/19
10-PHY-BIPMA1 — Mathematics 1 / Vitalii Konarovskyi

UNIVERSITAT LEIPZIG

G.4 Taylor’s Expansion of Elementary Functions

° ele—i—x—l—z—?—l—...—i—%—i—o(x”), x — 0; (Ezample 13.5)

e ln(l+z)=x-— %2 + ‘%3 — ..+ (—1)"‘1% +o(z™), x — 0; (Ezxample 13.6)

a(a—l)...(o'z—n—s—l)x”

+...+

ala—1)x?
T

e (1+x)*=1+azx+ ( 5 +o(z"), x—0, «a€cR; (Example 13.7)

. 3 5 2n+1
e sinr =z — % + gg—' — ...+ (—l)n(;ni_:l)! + o(w2n+2), x — 0; (Ezercise 13.8)
2 4 2n
e cosr=1— % + % — ...+ (—1)n(§n)! + 0(1,271—&—1)’ x — 0; (Ezercise 13.8)

. 3 5 2n-+1
e sinhzx =z + % + % + ...+ W + 0(1’2n+2), x — 0; (BEzercise 15.9)

e coshz =1+ %? + % +.. .+ % + 0(:62n+1), x — 0. (Ezercise 13.9)
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G.5 Indefinite Integrals of Elementary Functions

° fxadaf; = 9;0:11 +C, x € (0,+00), for all &« € R\ {—1}; (Ezample 10.6)

[ a"dx = nx—:l +C,z €R, for all n € NU{0}; (Ezercise 10.6)
e [L1dz =In|z|+ C on each interval (—oo,0) and (0, +00); (Ezample 11.1)
o [a®dx = % +C,xeRforall a>0,a#1; (Ezample 10.7)

o [e"dx =e"+ C, x € R; (Bzample 10.7)

o [coszdr =sinz+ C, x € R; (Ezample 10.8)

o [sinzdr = —cosz + C, x € R; (Ezample 10.8)

dr_ — tanz + C on each interval (—% +nm, 5+ mr), n € Z; (Ezample 10.8)

cos? x
o [ Siz‘;:x = —cotz + C on each interval (nm, 7 + nw), n € Z; (Example 10.8)
o [ 119;2 = arctanz 4+ C, © € R; (Ezample 11.2)
o [ \/% =arcsinz + C, z € (—1,1); (Ezample 11.3)
° fa;fxz = %arctan%—i—c, r€R, a#0;
o [ a2d_xm2 =5 In |2} + C on (—o0, —a), (—a,a) and (a,+00), a > 0;
o [ a;lfiggz =arcsin? + C, x € (—a,a), a > 0;
o [ \/g;dff(ﬂ =In|z 4+ V22 — a?| + C on (—o0, —a) and (a,4+0o0), a > 0;
o [ s =z +Va2+a?|+C,z€R, a#0.
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