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7 Lecture 7 — Limits of Functions. Left- and Right-Sided Limits

7.1 Limit of Functions via ¢ — § Approach
Let A be a subset of R. We recall that B(a,e) = (a —€,a + ) denotes the e-neighbourhood of a.

Theorem 7.1. (i) Let p be a real number and a € R be a limit point of A. Then lim f(x) = p is
Tr—a

equivalent to
Ve>030 >0Vz e ANB(a,0), z#a: |f(z)—p| <e.

it) If p =400 and a € R, then ligl f(z) = 400 is equivalent to
VC eR 36 >0Ve e AN B(a,d), v #a: f(x)>C.

iit) If p € R and a = 400, then lim f(x) = p is equivalent to

T——+00
Ve>03dDeRVYe>D: |f(x)—p|l <e.
i) If p=+4o00 and a = +oo, then lim f(z)= +oo is equivalent to
T—+00

VCeR3IDeRVz>D: f(x)>D.

Example 7.1. A =R\ {1}, a =1 and f(z) = 9;2:117 x € A. Then lim1 ’f:ll = 2. Indeed, let us fix
T—

an arbitrary € > 0. Then we can take § := € because for all x € AN B(1,d) we have
lt+1-2/=|z—1<d=c¢.

z—1

x2—1 2‘ —_

Example 7.2. We show that lim (1 + %)x =e.

T—+00
By the definition of the number e (see Section 4.2), we have

1 \" 1 \""n+1 1\
1+ =1+ — e and 1+ — — e, n— 0.
n+1 n+1 n+42 n
Hence, using the definition of the limit (see Definition 3.3), we obtain that for each £ > 0 there exists
N € N such that for each n > N

1 n 1 n+1
— 14 ——- 14— .
e 5<<+n—|—1> , <—|—n) <e+e

So, taking D := N, we can estimate for each x > D

1 lz] 1\ 1 |lz]+1
e—€<<1—|—) <<1+> <(1+> <e+teg,
lz] +1 x |z

where |z is the greatest integer number less than or equal to z, e.g. [1,7| =1, |[-3] = -1, |7] = 3.
Consequently, |(1 + %)x — e| < ¢ for all x > D. This implies lirf (1 + %)m = e, by Theorem 7.1 (iii).
T—r+00

Exercise 7.1. Compute the following limits
. 1Y, . 1
a) lim (asin L); b) lim (z |L]).
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Example 7.3. Let b > 1, A=R, m € Nand f(z) =2"b"" z € R.
We show that lim f(z)= lim %> =0.
T—+00 T—+00

Solution. Let € > 0 be given. According to Theorem 3.3, we have
n — 00. By the definition of the limit (see Definition 3.3), there exists N € N such that for all n > N

(n;})m < e. Thus, taking D := N, we obtain that for each x > D ‘i—? — O| = %—ZL < (Lxg;})m < e.

This implies lim %5 = 0, by Theorem 7.1 (iii).
r—+00

e =}

Exercise 7.2. Prove that lim 1“7:‘ =0.

T—+00
7.2 Properties of Limits
Let a be a limit point of a set A.
Theorem 7.2. If li_r}n f(x) =p1 and li_I>n f(x) = pa, then p1 = pa.

Proof. The theorem immediately follows from the uniqueness of limit for sequences (see Theorem 3.1).
Indeed, let {x,},>1 be an arbitrary sequence from A such that x,, # a, for alln > 1 and x,, — a, then
by the definition of the limit (see Definition 6.6), f(x,) — p1, n — oo, and f(z,) — p2, n — co. By
the uniqueness of limit for sequences (see Theorem 3.1), one has p; = po. O

Theorem 7.3. Let functions f,g : A — R satisfy the following properties: a) f(x) < g(x) for all
x€A; 2)lim f(x) =p and lim g(x) = q. Then p < g, that is, lim f(z) < lim g(z).
r—a r—a r—a r—a

Proof. The theorem immediately follows from Theorem 3.6. Ol
Exercise 7.3. Prove Theorem 7.3.
Theorem 7.4 (Squeeze theorem for functions). Let f,g,h : A — R satisfy the following conditions:
a) f(x) < h(z) <g(x) for allx € A;
b) lim f(x) = lim g(z) = p.
Then ilgz h(z) = p.
Proof. The theorem follows from the Squeeze theorem for sequences (see Theorem 3.7). O

Exercise 7.4. Prove Theorem 7.4.

Theorem 7.5. We assume that for functions f,g: A — R there exists limits lim f(z) =p € R and
T—a
lim g(x) = g € R. Then
r—a
a) li_r>n(C f(x))=C"- liin f(z) for all C € R;

b) lim (f(z) + g(x)) = lim f(x) + lim g(a);

¢) lim (f(x) - g(x)) = lim f(x) - lim g(a);
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flz) xﬁaf(z) .
4) lim S = oy 4 # 0.
Proof. The theorem follows from Theorem 3.8. Ol

Exercise 7.5. Prove Theorem 7.5.

Exercise 7.6. Let a ¢ {mn: n € Z}. Prove that lim cot x = cota. (Hint: Use Example 6.6)

Tr—a

Example 7.4. Let a € R, and b > 1. Show that lim %—: =0.

T—r—+00

Exercise 7.7. Show that for every a > 0 lim /z = \/a.

rT—a

Exercise 7.8. Compute the following limits:

a) lim Zfeossil ) i (90( 962+2x+2—33—1)>; ¢) lim(i.% - );

r—+oo Vai+l4z+3’ T—+00 7—0 \sin“zx 1—cosz
d) lim \3/1157;";71; e) hm (\/ax—I— — /), for some a > 0.

z—0 r—

7.3 Left- and Right-Sided Limits

Let A be a subset of R and a is a limit point of A satisfying the following property

there exists a sequence (xy)n>1 such that

(7)

T, €A, z,<a forall n>1 and z, > a, n— .

Definition 7.1. A number p € R is the left-sided limit of a function f : A — R at the point a if
for each sequence (x,,),>1 such that 1) z,, € A, z, < a for all n > 1; 2) x, — a, n — o0, it follows
that f(zn) = p, n — oo. We will use the notation p = f(a—) or p= lim f(z).

T—a—

Theorem 7.6. We assume that a € R and (a —~,a) C A for some v > 0. Thenp= lim f(x) iff

T—a—
Ve>030>0Vx € (a—d,a): |f(x)—p|<e.
Next, if @ is a limit point of A satisfying the following property

there exists a sequence (x,),>1 such that

Tp €A, x,>a forall n>1 and x, »>a, n— oo,
then we can introduce the right-sided limit of a function.

Definition 7.2. A number p € R is the right-sided limit of a function f : A — R at the point a if
for each sequence (x,,),>1 such that 1) z,, € A, z, > a for all n > 1; 2) x, = a, n — o0, it follows
that f(x,) = p, n — oo. We will use the notation p = f(a+) or p = 1im+ f(x).

T—a

Theorem 7.7. We assume that a € R and (a,a + ) C A for some v > 0. Thenp= lim f(x) iff

r—a+

Ve>030>0Vz € (a,a+96): |f(z)—p|<e.
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Example 7.5. For the function

1, if x>0,
sgn(z) =40, ifz=0,
-1, ifx <0,

one has sgn(0—) = —1, sgn(0) = 0 and sgn(0+) = 1.

Theorem 7.8. Let f : A — R and a be a limit point of A which satisfies properties (7) and (8).
Then the limit lim f(x) exists iff f(a—) and f(a+) exist and are equal to each other. In this case,
T—a

lim f(2) = f(a—) = f(at).

Proof. The necessity of the theorem immediately follows from the definition of the limit of f at a.
Next we prove the sufficiency. Setting p := f(a—) = f(a+), we are going to show that li_I>n flz) =np.
x a

Let (2 )n>1 be as in Definition 6.6, i.e. it satisfies the properties: 1) z, € A, z,, # a for all n > 1;
2) &, — a, n — oo. If all elements of the sequence are from one hand side of a starting from some
number N, that is, z, < a foralln > N or x,, > a for alln > N, then f(z,) — f(a—) = p, n = oo, or
f(xn) = f(a+) = p, n — oo, respectively. Next, we assume that infinitely many elements of (xy,)n>1
are from both hand sides of a. We construct two subsequences (y,)n>1 and (2p)n>1 of (25 )n>1, where
(Yn)n>1 consists of all elements of (xy,),>1 which are less than a and (z,),>1 consists of all elements
of (n)n>1 which are grater than a. Then f(y,) — f(a—) = p, n — oo, and f(z,) — f(a—) = p,

n — oo. This implies f(z,) — p, n — oc. O
Exercise 7.9. Compute the following limits:

i i 3 i : *%. : e_%
a) rg%l— Vi-sinz’ b) 1:2%1-0- Vi—sina’ C) x1—1>r(1)1+e ’ d) xli>r(r)l+ z

7.4 Existence of Limit of Function

Let A be a subset of R.

Definition 7.3. A function f : A — R is said to be increasing (decreasing) on A if for all 1,22 € A
the inequality 1 < xe implies f(x1) < f(x2) (f(z1) > f(x2)).

Example 7.6. The function f(z) = 22, x € R, decreases on (—00,0] and increases on [0, +0c0).

Definition 7.4. A function f : A — R is called a monotone function on A if it is either increasing
or decreasing on A.

Definition 7.5. A function f: A — R is said to be bounded on A if the set f(A) is bounded, that
is, there exists C' > 0 such that |f(z)| < C for all z € A.

Theorem 7.9. (i) If f: A — R be a monotone and bounded function, then for each limit point a
of A which satisfies (7) the left-sided limit lim f(z) exists and belongs to R.
r—a—

(i) If f + A — R be a monotone and bounded function, then for each limit point a of A which
satisfies (8) the right-sided limit lim+ f(z) exists and belongs to R.
Tr—ra
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Proof. We will prove only Part (i). Let f : A — R increase and be bounded. We consider the set
B :={x € A:x < a}. By (7), it is non-empty. Consequently, the set f(B) is also non-empty.
Moreover, it is bounded, by the boundedness of the function f. We set

p = sup f(B) = sup f(x),
which exists according to Theorem 2.2.

We are going to show that f(a—) = p. Let (z,,)n>1 be an arbitrary sequence such that 1) z,, € A,
xn < a for all n > 1; 2) x, — a, n — co. Since for each n > 1 x,, < a, we have f(x,) < p for each
n > 1, by the definition of supremum (see Definition 2.6).

Next, we fix ¢ > 0 and show that there exists NV € N such that |p — f(z,)| = p — f(zn) < € for all
n > N. By Theorem 2.1 (i), there exists b < a such that p —e < f(b). Since z, — a, n — oo, for
€1 := a—>b > 0 there exists N such that foralln > N |a —x,| = a—x, < &1 = a—b. Hence, z,, > b for
all n > N. Consequently, using the increasing of f, we obtain [p— f(z,)| =p — f(z,) <p— f(b) <e.
This proves that f(z,) — p, n — oo, and, thus, f(a—) = p.

If the function f decreases and is bounded, then f(a—) := ;Llf; f(z). The proof is similar. O

Exercise 7.10. Prove Part (ii) of Theorem 7.9.

Exercise 7.11. Let f be an increasing function on an interval [a, b].
a) For each ¢ € (a,b) show that the one-sided limits f(a+), f(c—), f(c+), f(b—) exist.
b) Check the inequalities

fla) < flat) < fle=) < fle) < flet) < f(b=) < f(D),
for all ¢ € (a,b).

c¢) Prove that mlggr f(z=) = f(c+) and lim f(x+) = f(c—) for all ¢ € (a,b).

Tr—rCc—

Theorem 7.10 (Cauchy Criterion). Let a € R be a limit point of A and f: A — R. A (finite) limit
of f at the point a exists iff

Ve>030 >0Ve,y e ANB(a,0), x#a, y#a: |f(x)— fy)] <e.
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