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7 Lecture 7 – Limits of Functions. Left- and Right-Sided Limits

7.1 Limit of Functions via ε− δ Approach

Let A be a subset of R. We recall that B(a, ε) = (a− ε, a+ ε) denotes the ε-neighbourhood of a.

Theorem 7.1. (i) Let p be a real number and a ∈ R be a limit point of A. Then lim
x→a

f(x) = p is

equivalent to
∀ε > 0 ∃δ > 0 ∀x ∈ A ∩B(a, δ), x 6= a : |f(x)− p| < ε.

ii) If p = +∞ and a ∈ R, then lim
x→a

f(x) = +∞ is equivalent to

∀C ∈ R ∃δ > 0 ∀x ∈ A ∩B(a, δ), x 6= a : f(x) > C.

iii) If p ∈ R and a = +∞, then lim
x→+∞

f(x) = p is equivalent to

∀ε > 0 ∃D ∈ R ∀x > D : |f(x)− p| < ε.

iv) If p = +∞ and a = +∞, then lim
x→+∞

f(x) = +∞ is equivalent to

∀C ∈ R ∃D ∈ R ∀x > D : f(x) > D.

Example 7.1. A = R \ {1}, a = 1 and f(x) = x2−1
x−1 , x ∈ A. Then lim

x→1

x2−1
x−1 = 2. Indeed, let us fix

an arbitrary ε > 0. Then we can take δ := ε because for all x ∈ A ∩ B(1, δ) we have
∣

∣

∣

x2−1
x−1 − 2

∣

∣

∣
=

|x+ 1− 2| = |x− 1| < δ = ε.

Example 7.2. We show that lim
x→+∞

(

1 + 1
x

)x
= e.

By the definition of the number e (see Section 4.2), we have

(

1 +
1

n+ 1

)n

=

(

1 +
1

n+ 1

)n+1
n+ 1

n+ 2
→ e and

(

1 +
1

n

)n+1

→ e, n → ∞.

Hence, using the definition of the limit (see Definition 3.3), we obtain that for each ε > 0 there exists
N ∈ N such that for each n ≥ N

e− ε <

(

1 +
1

n+ 1

)n

,

(

1 +
1

n

)n+1

< e+ ε.

So, taking D := N , we can estimate for each x > D

e− ε <

(

1 +
1

⌊x⌋+ 1

)⌊x⌋
<

(

1 +
1

x

)x

<

(

1 +
1

⌊x⌋

)⌊x⌋+1

< e+ ε,

where ⌊x⌋ is the greatest integer number less than or equal to x, e.g. ⌊1, 7⌋ = 1, ⌊−1
2⌋ = −1, ⌊π⌋ = 3.

Consequently,
∣

∣

(

1 + 1
x

)x − e
∣

∣ < ε for all x > D. This implies lim
x→+∞

(

1 + 1
x

)x
= e, by Theorem 7.1 (iii).

Exercise 7.1. Compute the following limits
a) lim

x→0

(

x sin 1
x

)

; b) lim
x→0

(

x
⌊

1
x

⌋)

.
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Example 7.3. Let b > 1, A = R, m ∈ N and f(x) = xmb−x, x ∈ R.
We show that lim

x→+∞
f(x) = lim

x→+∞
xm

bx
= 0.

Solution. Let ε > 0 be given. According to Theorem 3.3, we have (n+1)m

bn
= (n+1)m

bn+1 b → 0,
n → ∞. By the definition of the limit (see Definition 3.3), there exists N ∈ N such that for all n ≥ N
(n+1)m

bn
< ε. Thus, taking D := N , we obtain that for each x > D

∣

∣

xm

bx
− 0

∣

∣ = xm

bx
<

(⌊x⌋+1)m

b⌊x⌋
< ε.

This implies lim
x→+∞

xm

bx
= 0, by Theorem 7.1 (iii).

Exercise 7.2. Prove that lim
x→+∞

lnx
x

= 0.

7.2 Properties of Limits

Let a be a limit point of a set A.

Theorem 7.2. If lim
x→a

f(x) = p1 and lim
x→a

f(x) = p2, then p1 = p2.

Proof. The theorem immediately follows from the uniqueness of limit for sequences (see Theorem 3.1).
Indeed, let {xn}n≥1 be an arbitrary sequence from A such that xn 6= a, for all n ≥ 1 and xn → a, then
by the definition of the limit (see Definition 6.6), f(xn) → p1, n → ∞, and f(xn) → p2, n → ∞. By
the uniqueness of limit for sequences (see Theorem 3.1), one has p1 = p2.

Theorem 7.3. Let functions f, g : A → R satisfy the following properties: a) f(x) ≤ g(x) for all
x ∈ A; 2) lim

x→a
f(x) = p and lim

x→a
g(x) = q. Then p ≤ q, that is, lim

x→a
f(x) ≤ lim

x→a
g(x).

Proof. The theorem immediately follows from Theorem 3.6.

Exercise 7.3. Prove Theorem 7.3.

Theorem 7.4 (Squeeze theorem for functions). Let f, g, h : A → R satisfy the following conditions:

a) f(x) ≤ h(x) ≤ g(x) for all x ∈ A;

b) lim
x→a

f(x) = lim
x→a

g(x) = p.

Then lim
x→a

h(x) = p.

Proof. The theorem follows from the Squeeze theorem for sequences (see Theorem 3.7).

Exercise 7.4. Prove Theorem 7.4.

Theorem 7.5. We assume that for functions f, g : A → R there exists limits lim
x→a

f(x) = p ∈ R and

lim
x→a

g(x) = q ∈ R. Then

a) lim
x→a

(C · f(x)) = C · lim
x→a

f(x) for all C ∈ R;

b) lim
x→a

(f(x) + g(x)) = lim
x→a

f(x) + lim
x→a

g(x);

c) lim
x→a

(f(x) · g(x)) = lim
x→a

f(x) · lim
x→a

g(x);
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d) lim
x→a

f(x)
g(x) =

lim
x→a

f(x)

lim
x→a

g(x) , if q 6= 0.

Proof. The theorem follows from Theorem 3.8.

Exercise 7.5. Prove Theorem 7.5.

Exercise 7.6. Let a 6∈ {πn : n ∈ Z}. Prove that lim
x→a

cotx = cot a. (Hint: Use Example 6.6)

Example 7.4. Let α ∈ R, and b > 1. Show that lim
x→+∞

xα

bx
= 0.

Exercise 7.7. Show that for every a ≥ 0 lim
x→a

√
x =

√
a.

Exercise 7.8. Compute the following limits:

a) lim
x→+∞

x2+cosx+1√
x4+1+x+3

; b) lim
x→+∞

(

x(
√
x2 + 2x+ 2− x− 1)

)

; c) lim
x→0

(

2
sin2 x

− 1
1−cosx

)

;

d) lim
x→0

x2+x
3
√
1+sinx−1

; e) lim
x→+∞

(
√
ax+ 1−√

x), for some a > 0.

7.3 Left- and Right-Sided Limits

Let A be a subset of R and a is a limit point of A satisfying the following property

there exists a sequence (xn)n≥1 such that

xn ∈ A, xn < a for all n ≥ 1 and xn → a, n → ∞.
(7)

Definition 7.1. A number p ∈ R is the left-sided limit of a function f : A → R at the point a if
for each sequence (xn)n≥1 such that 1) xn ∈ A, xn < a for all n ≥ 1; 2) xn → a, n → ∞, it follows
that f(xn) → p, n → ∞. We will use the notation p = f(a−) or p = lim

x→a−
f(x).

Theorem 7.6. We assume that a ∈ R and (a− γ, a) ⊂ A for some γ > 0. Then p = lim
x→a−

f(x) iff

∀ε > 0 ∃δ > 0 ∀x ∈ (a− δ, a) : |f(x)− p| < ε.

Next, if a is a limit point of A satisfying the following property

there exists a sequence (xn)n≥1 such that

xn ∈ A, xn > a for all n ≥ 1 and xn → a, n → ∞,
(8)

then we can introduce the right-sided limit of a function.

Definition 7.2. A number p ∈ R is the right-sided limit of a function f : A → R at the point a if
for each sequence (xn)n≥1 such that 1) xn ∈ A, xn > a for all n ≥ 1; 2) xn → a, n → ∞, it follows
that f(xn) → p, n → ∞. We will use the notation p = f(a+) or p = lim

x→a+
f(x).

Theorem 7.7. We assume that a ∈ R and (a, a+ γ) ⊂ A for some γ > 0. Then p = lim
x→a+

f(x) iff

∀ε > 0 ∃δ > 0 ∀x ∈ (a, a+ δ) : |f(x)− p| < ε.
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Example 7.5. For the function

sgn(x) :=











1, if x > 0,

0, if x = 0,

−1, if x < 0,

one has sgn(0−) = −1, sgn(0) = 0 and sgn(0+) = 1.

Theorem 7.8. Let f : A → R and a be a limit point of A which satisfies properties (7) and (8).
Then the limit lim

x→a
f(x) exists iff f(a−) and f(a+) exist and are equal to each other. In this case,

lim
x→a

f(x) = f(a−) = f(a+).

Proof. The necessity of the theorem immediately follows from the definition of the limit of f at a.
Next we prove the sufficiency. Setting p := f(a−) = f(a+), we are going to show that lim

x→a
f(x) = p.

Let (xn)n≥1 be as in Definition 6.6, i.e. it satisfies the properties: 1) xn ∈ A, xn 6= a for all n ≥ 1;
2) xn → a, n → ∞. If all elements of the sequence are from one hand side of a starting from some
number N , that is, xn < a for all n ≥ N or xn > a for all n ≥ N , then f(xn) → f(a−) = p, n → ∞, or
f(xn) → f(a+) = p, n → ∞, respectively. Next, we assume that infinitely many elements of (xn)n≥1

are from both hand sides of a. We construct two subsequences (yn)n≥1 and (zn)n≥1 of (xn)n≥1, where
(yn)n≥1 consists of all elements of (xn)n≥1 which are less than a and (zn)n≥1 consists of all elements
of (xn)n≥1 which are grater than a. Then f(yn) → f(a−) = p, n → ∞, and f(zn) → f(a−) = p,
n → ∞. This implies f(xn) → p, n → ∞.

Exercise 7.9. Compute the following limits:

a) lim
x→π

2
−

x−π

2√
1−sinx

; b) lim
x→π

2
+

x−π

2√
1−sinx

; c) lim
x→0+

e−
1

x ; d) lim
x→0+

e−
1
x

x
.

7.4 Existence of Limit of Function

Let A be a subset of R.

Definition 7.3. A function f : A → R is said to be increasing (decreasing) on A if for all x1, x2 ∈ A

the inequality x1 < x2 implies f(x1) ≤ f(x2) (f(x1) ≥ f(x2)).

Example 7.6. The function f(x) = x2, x ∈ R, decreases on (−∞, 0] and increases on [0,+∞).

Definition 7.4. A function f : A → R is called a monotone function on A if it is either increasing
or decreasing on A.

Definition 7.5. A function f : A → R is said to be bounded on A if the set f(A) is bounded, that
is, there exists C > 0 such that |f(x)| ≤ C for all x ∈ A.

Theorem 7.9. (i) If f : A → R be a monotone and bounded function, then for each limit point a
of A which satisfies (7) the left-sided limit lim

x→a−
f(x) exists and belongs to R.

(ii) If f : A → R be a monotone and bounded function, then for each limit point a of A which
satisfies (8) the right-sided limit lim

x→a+
f(x) exists and belongs to R.
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Proof. We will prove only Part (i). Let f : A → R increase and be bounded. We consider the set
B := {x ∈ A : x < a}. By (7), it is non-empty. Consequently, the set f(B) is also non-empty.
Moreover, it is bounded, by the boundedness of the function f . We set

p := sup f(B) = sup
x<a

f(x),

which exists according to Theorem 2.2.
We are going to show that f(a−) = p. Let (xn)n≥1 be an arbitrary sequence such that 1) xn ∈ A,

xn < a for all n ≥ 1; 2) xn → a, n → ∞. Since for each n ≥ 1 xn < a, we have f(xn) ≤ p for each
n ≥ 1, by the definition of supremum (see Definition 2.6).

Next, we fix ε > 0 and show that there exists N ∈ N such that |p− f(xn)| = p− f(xn) < ε for all
n ≥ N . By Theorem 2.1 (i), there exists b < a such that p − ε < f(b). Since xn → a, n → ∞, for
ε1 := a−b > 0 there exists N such that for all n ≥ N |a−xn| = a−xn < ε1 = a−b. Hence, xn > b for
all n ≥ N . Consequently, using the increasing of f , we obtain |p− f(xn)| = p− f(xn) ≤ p− f(b) < ε.
This proves that f(xn) → p, n → ∞, and, thus, f(a−) = p.

If the function f decreases and is bounded, then f(a−) := inf
x<a

f(x). The proof is similar.

Exercise 7.10. Prove Part (ii) of Theorem 7.9.

Exercise 7.11. Let f be an increasing function on an interval [a, b].
a) For each c ∈ (a, b) show that the one-sided limits f(a+), f(c−), f(c+), f(b−) exist.
b) Check the inequalities

f(a) ≤ f(a+) ≤ f(c−) ≤ f(c) ≤ f(c+) ≤ f(b−) ≤ f(b),

for all c ∈ (a, b).
c) Prove that lim

x→c+
f(x−) = f(c+) and lim

x→c−
f(x+) = f(c−) for all c ∈ (a, b).

Theorem 7.10 (Cauchy Criterion). Let a ∈ R be a limit point of A and f : A → R. A (finite) limit
of f at the point a exists iff

∀ε > 0 ∃δ > 0 ∀x, y ∈ A ∩B(a, δ), x 6= a, y 6= a : |f(x)− f(y)| < ε.
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