University of Leipzig — WS18/19
10-PHY-BIPMA1 — Mathematics 1 / Vitalii Konarovskyi

UNIVERSITAT LEIPZIG

3 Lecture 3 — Convergence of Sequences

3.1 Limits of Sequences

For more details see [1, Section 2.7].

In this section, we will study some properties of sequences of real numbers which do not depend on
finite numbers of their elements. So, we will call a sequence any enumerated collection of objects (in
our case, real numbers) in which repetitions are allowed. It is often convenient to write the sequence
as (@, Gmt1, Gm+2, - - -)y (An)n>m or (an),,, where m is some integer number. Usually, m equals 1.

Definition 3.1. A sequence (an)n>1 = (a1,a2,...,0an,...) is called bounded if there exists C' > 0
such that |a,| < C for all n > 1. In another words, if all elements of the sequence belong to some
interval [—C, C].

Example 3.1. 1. Thesequence ((—1)"),>1 = (—1,1,—1,1,...) is bounded and its elements belong
to [_17 1]7

2. The sequence (sinn),>1 is bounded and its elements also belong to [—1,1];

3. The sequence (n),>1 = (1,2,3,...,n,...) is unbounded, since for each C' > 0 one can find a
number n € N larger than C.

Exercise 3.1. Prove the boundedness of the following sequences:

a) (4),51 b) an:\/2+\/2+...+\/2+ﬁ ;

n square roots
— 2 3 n
C) (an 1 2 22 st 27171)

n>1
n>1 (Hint: Use the equality %an = an — %an)
Exercise 3.2. Prove that a sequence (a,),>1 is bounded iff (a2 — a,)n>1 is.

Definition 3.2. Let x € R and € > 0 be given. A neighbourhood or e-neighbourhood of the
point z is the interval (z —e,x +¢) ={y e R: |y —z| <¢e}.

Exercise 3.3. Check that: a) intersection of a finite number of neighbourhoods of z is again a
neighbourhood of z; b) intersection of two neighbourhoods is either () or a neighbourhood.

Definition 3.3. A sequence (ay,),>1 of real numbers is said to converge to a real number a provided
that
for each € > 0 there exists a number N such that n > N implies |a, — a| < ¢,

or, shortly,
Ve>03INeRV>N: |a,—al<e.

If (ap)n>1 converges to a, we will write lim a, = a or a, — a, n — oo. The number a is called
- n—,oo

the limit of the sequence (a,)n>1. A sequence that does not converge to some real number is said to
diverge.

Remark 3.1. We note that a,, — a, n — oo, provided that any e-neighbourhood of point a contains
elements a,, for all n > N, where N is some number depending on €.
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Exercise 3.4. For which sequences (a,)n>1 the number N from Definition 3.3 could be taken inde-
pendent of €.
Answer: f 3m e NVn > m : an = a.

Exercise 3.5. Prove the following statements:

) ap —>a, n—00 & ay,—a—0, n—>00 & |a, —al =0, n— oo;

) ap =0, n =00 & |ay| = 0, n — o0;

c) apb —a, n—>o00 & Ve>03INeN: {an,an+1,...} C(x—¢g,x+¢);
) an — 0, n =00 & sup{lax|: k>n} — 0, n — oc;

) an —a, n— 00 = |ay| — |a|, n — oc.

Theorem 3.1. A sequence can have only a unique limit.

Proof. Let a, — a, n — oo, and a, — b, n — co. Then by the definition, Ve > 0 dN; € R Vn > Ny :
|ap, —a| < eand Ve >0 3Ny, € RVYn > No: |a, — b <e. Thus, using the triangular inequality (see
Theorem 2.5 1)), we obtain Ve > 0 Vn > max{Ny, No} : |a—0b| = |[a—an+a,—b| < |a—ay|+]a,—b] <
2e. So, la—b| < 2¢ foralle > 0. If a # b, we set ¢ = @ > 0. Then |a—b| < 2la—b| = tla—b| <0,
that is impossible. O

3.2 Some Examples

For more examples see [1, Section 2.8].

Theorem 3.2. The equality li_}In % =0 holds.

Proof. We note that for each € > 0 we have |%—O|:%<5iﬁn>%. Thus, Ve > 0 AN := (%—I—l) €
RVn>N: |+ -0 <e. O

. . 1 o
Corollary 3.1. The equality nll_)Ing ~5 = 0 holds for each o > 0.

Theorem 3.3. Let a € R, |a| > 1, b€ R. Then lim % = 0.
n—0 @

Proof. We choose k € N such that k¥ > b+ 1. By Bernoulli’s inequality (see Theorem 2.6), |a|™ =

N ny\ k k —
(|a|ﬁ) =<(1—|—(|a|%—1>) ) > nk (|a|%—1) . Hence, Q—Z—O‘:%gﬁfml < 11 5 <€
)
So, n > % Consequently, one can claim
5(|a|E—1>
1 nb
Ve>03dN:i=————F+1Vn>N: | - -0/ <e
an

e (lal* —1

Theorem 3.4. The equality lim /n =1 holds.
n—oo
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Proof. By Exercise 3.5 a), it is enough to show that a, := {Yn —1 — 0, n — oco. Since (1 + ay)" =
(¥/n)™ = n, one has

1 1
n=(1+a,)" >1+na,+ in(n —1)a? > in(n —1)a2,

by the binomial formula. Thus, a, < 4/ % for n > 2. Next using the standard argument, one has
an — 0. O

Exercise 3.6. Check the following equalities:

a) lim a" =0forall0<a<1; b) lim Ya=1foralla>0; c) limlrng:Oforalla>0,Where
g = 10g10-

Definition 3.4. 1. lima,=+00 & VCeRIANeRVI>N: a,>C.

n—oo

2. lima,=—-0 & VCeRIANeRVNR>N: a, <C.
n—oo
Exercise 3.7. Prove that for a sequence (ay,),>1 with a,, # 0 the equality lim |a,| = +o0 is equivalent
- n—oo

to lim -+ = 0.
n—oo °'n

Exercise 3.8. Let (a,)n>1 be a sequence such that %= — 0, n — co. Prove that max{a1,02,...,0n}

n — 0.

— 0,

Exercise 3.9. Assume that a, — a, n — oo, and b, — b, n — oo. Show that max{an,b,} —
max{a, b}, n — oco.

3.3 Limit Theorems for Sequences

See also [1, Section 2.9].

In this section, we will prove some properties of convergent sequences and their limits. We recall
that a sequence (an)n>1 of real numbers is said to be bounded if there exists a constant C' such that
lap| < C for all n.

Theorem 3.5. Any convergent sequence is bounded.

Proof. Let a,, — a, n — oco. We have to show that (ay,)n>1 is bounded. By the definition of convergence
(see Definition 3.3), for each € > 0, in particular for e = 1, there exists a number N, which can be taken
from N, such that |a, —a| < e =1 for all n > N. Thus, setting C' := max{|a1],...,|an—1]|,|a|] + 1},
one trivially obtains for n € {1,2,..., N — 1}

la,| < C.
Next, using the triangular inequality (inequality 1) of Theorem 2.5), we have
lan| = lan —a+a| <|a, —a|l+|a| <1+]a] <C,
for alln > N. L]

Exercise 3.10. Give an example of a bounded divergent sequence.

10
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Theorem 3.6. Leta, — a € R, n — oo, b, = b, n — 00, and let ap, < by, for alln > 1. Then a <b.
Exercise 3.11. Prove Theorem 3.6.

Remark 3.2. We note that replacing the inequality a,, < b, by the strong one, i.e. a, < b,, it does
not imply a < b. Indeed, for a, := 0 and b,, := %, n > 1, one has a,, < b, but a,, — 0, b, = 0, n — oo.

Remark 3.3. Theorem 3.6 remains valid, if the inequality a,, < b, holds only for all n > M, where
M is some number N.

Theorem 3.7 (Squeeze theorem). Let sequences (an)n>1, (bn)n>1 and (cn)n>1 satisfy the following
conditions:

a) ap < by, <c, foralln>1;
b) ap, — a, n — oo, and ¢, — a, n — 0.
Then b, — a, n — oo.

Proof. According to Remark 3.1, for each £ > 0 there exists V] and Ny from R such that a,, belongs
to the e-neighbourhood (a — ¢,a + €) of the point a for all n > Ny and ¢, belongs to (a —e,a + ¢) for
all n > Ny. Thus, for all n > max{Nj, No} elements b,, also belong to (a — €,a + €) due to property
a). O

Example 3.2. Show that li_>rn ’\’/1—1—%4—%—1—...—1—%: 1.
Solution. We take a,, := \"ﬁzlandcn =V1l+1+14... +1= n. Then

n times

<T\L/1+1+1+ +1<
an < —+-+...+=<e,
2 3 n

for all n > 1. Moreover, a, — 1, n — oo, and ¢, — 1, n — 0o, by Theorem 3.4. Hence, Theorem 3.7
implies lim ’\‘/14—%—&-%—1-...—1—%:1.
n—oo

Theorem 3.8. Leta, > a €R, n— o0, and b, > b€ R, n = co. Then
a) lim (c¢-ay,)=c- lim a, for all c € R;
n—oo n—oo
b) lim (ap + b,) = lim a, + lim b,;
n—00 n—00 n—00
% g (an - Bn) = Jif3,Gn

im by;
n—oo

lim an
d) lim 9 == i 20,

b lim by’
n—00 o On

Proof. For proof of the theorem see Section 2.9 [1]. O

11
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— . o2n2+1
Example 3.3. Compute the limit nh_}rrgo %.
Solution. We cannot apply Theorem 3.8 directly, since the numerator and denominator of #%

tend to infinity. So, first we rewrite them as follows:

1
2n? +lgn nz.(2+%) 2_1_17%1
3n? +ncosn+5 _n2-(3+7cofln+%) _3+%+%'

Now, we can use Theorem 3.8 d) to the right hand side of the latter equality. Indeed, we first compute

1 1
lim (2+g2”>:2+ lim =2 =2,
n

n—oo

by, Theorem 3.8 b) and Exercise 3.6 c¢). Next, due to the inequality

cosn

<

1
Sia n217
n n

Sl

theorems 3.7 and 3.2, one has li_)m €2 —= 0. Thus, by Theorem 3.8 a), b)

1
lim <3+COS”+5> =34 lim 2" 45 lim — =3 £0.
n n n—o00

n—o00 2 n—oo N n? N

So, we can apply Theorem 3.7 d) and obtain

202 4 1 24 8} 2
lim n+emn = lim —— " =2

n—oo 3n2 +ncosn +5  nooo 34 Sn 4 5 37

Exercise 23.12. Compute the following limits:
5 2 : n 3
a) lim —Sl\nf”' b) lim 218 . o) nli_r)rolo Vn22n + 37; d) nll_{glo 7237:_”1 ;e) "HYn.

) 2 s, )
n—o00 n n—oo M-tncosn

Exercise 3.13. Let (ap)n>1 be a bounded sequence and b, — 0, n > oco. Prove that a,b, — 0,
n — oo.

Exercise 3.14. Let (a,),>1 be a bounded sequence and b,, — 400, n > co. Prove that a,+b, — +o0,
n — oo.

Exercise 3.15. Let a,, > 0 for all n > 1 and a,, — a, n — oo. Show that for all ¥ € N one has
¥a, — ¥a, n — oo.

Exercise 3.16. Let a,, - a € R, n — oco. Prove that % — a, n — oo.

References

[1] K.A. Ross. Elementary Analysis: The Theory of Calculus. Undergraduate Texts in Mathematics.
Springer New York, 2013.

12



