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3 Lecture 3 – Convergence of Sequences

3.1 Limits of Sequences

For more details see [1, Section 2.7].
In this section, we will study some properties of sequences of real numbers which do not depend on

finite numbers of their elements. So, we will call a sequence any enumerated collection of objects (in
our case, real numbers) in which repetitions are allowed. It is often convenient to write the sequence
as (am, am+1, am+2, . . .), (an)n≥m or (an)

∞
n=m, where m is some integer number. Usually, m equals 1.

Definition 3.1. A sequence (an)n≥1 = (a1, a2, . . . , an, . . .) is called bounded if there exists C > 0
such that |an| ≤ C for all n ≥ 1. In another words, if all elements of the sequence belong to some
interval [−C,C].

Example 3.1. 1. The sequence ((−1)n)n≥1 = (−1, 1,−1, 1, . . .) is bounded and its elements belong
to [−1, 1];

2. The sequence (sinn)n≥1 is bounded and its elements also belong to [−1, 1];

3. The sequence (n)n≥1 = (1, 2, 3, . . . , n, . . .) is unbounded, since for each C > 0 one can find a
number n ∈ N larger than C.

Exercise 3.1. Prove the boundedness of the following sequences:

a)
(
2n

n!

)

n≥1
; b)







an =

√

2 +

√

2 + . . .+

√

2 +
√
2

︸ ︷︷ ︸

n square roots








n≥1

;

c)
(
an = 1 + 2

2
+ 3

22
+ . . .+ n

2n−1

)

n≥1
(Hint: Use the equality 1

2
an = an − 1

2
an)

Exercise 3.2. Prove that a sequence (an)n≥1 is bounded iff (a3n − an)n≥1 is.

Definition 3.2. Let x ∈ R and ε > 0 be given. A neighbourhood or ε-neighbourhood of the
point x is the interval (x− ε, x+ ε) = {y ∈ R : |y − x| < ε}.

Exercise 3.3. Check that: a) intersection of a finite number of neighbourhoods of x is again a
neighbourhood of x; b) intersection of two neighbourhoods is either ∅ or a neighbourhood.

Definition 3.3. A sequence (an)n≥1 of real numbers is said to converge to a real number a provided
that

for each ε > 0 there exists a number N such that n ≥ N implies |an − a| < ε,

or, shortly,
∀ε > 0 ∃N ∈ R ∀n ≥ N : |an − a| < ε.

If (an)n≥1 converges to a, we will write lim
n→∞

an = a or an → a, n → ∞. The number a is called

the limit of the sequence (an)n≥1. A sequence that does not converge to some real number is said to
diverge.

Remark 3.1. We note that an → a, n → ∞, provided that any ε-neighbourhood of point a contains
elements an for all n ≥ N , where N is some number depending on ε.
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Exercise 3.4. For which sequences (an)n≥1 the number N from Definition 3.3 could be taken inde-
pendent of ε.

Answer: If ∃m ∈ N ∀n ≥ m : an = a.

Exercise 3.5. Prove the following statements:

a) an → a, n → ∞ ⇔ an − a → 0, n → ∞ ⇔ |an − a| → 0, n → ∞;

b) an → 0, n → ∞ ⇔ |an| → 0, n → ∞;

c) an → a, n → ∞ ⇔ ∀ε > 0 ∃N ∈ N : {aN , aN+1, . . .} ⊂ (x− ε, x+ ε);

d) an → 0, n → ∞ ⇔ sup{|ak| : k ≥ n} → 0, n → ∞;

e) an → a, n → ∞ ⇒ |an| → |a|, n → ∞.

Theorem 3.1. A sequence can have only a unique limit.

Proof. Let an → a, n → ∞, and an → b, n → ∞. Then by the definition, ∀ε > 0 ∃N1 ∈ R ∀n ≥ N1 :
|an − a| < ε and ∀ε > 0 ∃N2 ∈ R ∀n ≥ N2 : |an − b| < ε. Thus, using the triangular inequality (see
Theorem 2.5 1)), we obtain ∀ε > 0 ∀n ≥ max{N1, N2} : |a−b| = |a−an+an−b| ≤ |a−an|+|an−b| <
2ε. So, |a− b| < 2ε for all ε > 0. If a 6= b, we set ε = |a−b|

3
> 0. Then |a− b| < 2

3
|a− b| ⇒ 1

3
|a− b| < 0,

that is impossible.

3.2 Some Examples

For more examples see [1, Section 2.8].

Theorem 3.2. The equality lim
n→∞

1
n
= 0 holds.

Proof. We note that for each ε > 0 we have
∣
∣ 1
n
− 0

∣
∣ = 1

n
< ε iff n > 1

ε
. Thus, ∀ε > 0 ∃N :=

(
1
ε
+ 1

)
∈

R ∀n ≥ N :
∣
∣ 1
n
− 0

∣
∣ < ε.

Corollary 3.1. The equality lim
n→∞

1
nα = 0 holds for each α > 0.

Theorem 3.3. Let a ∈ R, |a| > 1, b ∈ R. Then lim
n→0

nb

an
= 0.

Proof. We choose k ∈ N such that k ≥ b + 1. By Bernoulli’s inequality (see Theorem 2.6), |a|n =
(

|a|nk
)k

=
((

1 +
(

|a| 1k − 1
))n)k

> nk
(

|a| 1k − 1
)k

. Hence,
∣
∣
∣
nb

an
− 0

∣
∣
∣ = nb

|a|n ≤ nk−1

|a|n < 1

n

(

|a|
1
k −1

)k < ε.

So, n > 1

ε

(

|a|
1
k −1

)k . Consequently, one can claim

∀ε > 0 ∃N :=
1

ε
(

|a| 1k − 1
)k

+ 1 ∀n ≥ N :

∣
∣
∣
∣

nb

an
− 0

∣
∣
∣
∣
< ε.

Theorem 3.4. The equality lim
n→∞

n
√
n = 1 holds.
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Proof. By Exercise 3.5 a), it is enough to show that an := n
√
n − 1 → 0, n → ∞. Since (1 + an)

n =
( n
√
n)n = n, one has

n = (1 + an)
n ≥ 1 + nan +

1

2
n(n− 1)a2n >

1

2
n(n− 1)a2n,

by the binomial formula. Thus, an <
√

2
n−1

for n ≥ 2. Next using the standard argument, one has

an → 0.

Exercise 3.6. Check the following equalities:
a) lim

n→∞
an = 0 for all 0 < a < 1; b) lim

n→∞
n
√
a = 1 for all a > 0; c) lim

n→∞
lgn
nα = 0 for all α > 0, where

lg := log10.

Definition 3.4. 1. lim
n→∞

an = +∞ ⇔ ∀C ∈ R ∃N ∈ R ∀n ≥ N : an ≥ C.

2. lim
n→∞

an = −∞ ⇔ ∀C ∈ R ∃N ∈ R ∀n ≥ N : an ≤ C.

Exercise 3.7. Prove that for a sequence (an)n≥1 with an 6= 0 the equality lim
n→∞

|an| = +∞ is equivalent

to lim
n→∞

1
an

= 0.

Exercise 3.8. Let (an)n≥1 be a sequence such that an
n

→ 0, n → ∞. Prove that max{a1,a2,...,an}
n

→ 0,
n → ∞.

Exercise 3.9. Assume that an → a, n → ∞, and bn → b, n → ∞. Show that max{an, bn} →
max{a, b}, n → ∞.

3.3 Limit Theorems for Sequences

See also [1, Section 2.9].
In this section, we will prove some properties of convergent sequences and their limits. We recall

that a sequence (an)n≥1 of real numbers is said to be bounded if there exists a constant C such that
|an| ≤ C for all n.

Theorem 3.5. Any convergent sequence is bounded.

Proof. Let an → a, n → ∞. We have to show that (an)n≥1 is bounded. By the definition of convergence
(see Definition 3.3), for each ǫ > 0, in particular for ε = 1, there exists a number N , which can be taken
from N, such that |an − a| < ε = 1 for all n ≥ N . Thus, setting C := max{|a1|, . . . , |aN−1|, |a| + 1},
one trivially obtains for n ∈ {1, 2, . . . , N − 1}

|an| ≤ C.

Next, using the triangular inequality (inequality 1) of Theorem 2.5), we have

|an| = |an − a+ a| ≤ |an − a|+ |a| < 1 + |a| ≤ C,

for all n ≥ N .

Exercise 3.10. Give an example of a bounded divergent sequence.
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Theorem 3.6. Let an → a ∈ R, n → ∞, bn → b, n → ∞, and let an ≤ bn for all n ≥ 1. Then a ≤ b.

Exercise 3.11. Prove Theorem 3.6.

Remark 3.2. We note that replacing the inequality an ≤ bn by the strong one, i.e. an < bn, it does
not imply a < b. Indeed, for an := 0 and bn := 1

n
, n ≥ 1, one has an < bn but an → 0, bn → 0, n → ∞.

Remark 3.3. Theorem 3.6 remains valid, if the inequality an ≤ bn holds only for all n ≥ M , where
M is some number N .

Theorem 3.7 (Squeeze theorem). Let sequences (an)n≥1, (bn)n≥1 and (cn)n≥1 satisfy the following
conditions:

a) an ≤ bn ≤ cn for all n ≥ 1;

b) an → a, n → ∞, and cn → a, n → ∞.

Then bn → a, n → ∞.

Proof. According to Remark 3.1, for each ε > 0 there exists N1 and N2 from R such that an belongs
to the ε-neighbourhood (a− ε, a+ ε) of the point a for all n ≥ N1 and cn belongs to (a− ε, a+ ε) for
all n ≥ N2. Thus, for all n ≥ max{N1, N2} elements bn also belong to (a − ε, a + ε) due to property
a).

Example 3.2. Show that lim
n→∞

n

√

1 + 1
2
+ 1

3
+ . . .+ 1

n
= 1.

Solution. We take an := n
√
1 = 1 and cn := n

√
1 + 1 + 1 + . . .+ 1

︸ ︷︷ ︸

n times

= n
√
n. Then

an ≤ n

√

1 +
1

2
+

1

3
+ . . .+

1

n
≤ cn

for all n ≥ 1. Moreover, an → 1, n → ∞, and cn → 1, n → ∞, by Theorem 3.4. Hence, Theorem 3.7

implies lim
n→∞

n

√

1 + 1
2
+ 1

3
+ . . .+ 1

n
= 1.

Theorem 3.8. Let an → a ∈ R, n → ∞, and bn → b ∈ R, n → ∞. Then

a) lim
n→∞

(c · an) = c · lim
n→∞

an for all c ∈ R;

b) lim
n→∞

(an + bn) = lim
n→∞

an + lim
n→∞

bn;

c) lim
n→∞

(an · bn) = lim
n→∞

an · lim
n→∞

bn;

d) lim
n→∞

an
bn

=
lim

n→∞

an

lim
n→∞

bn
, if b 6= 0.

Proof. For proof of the theorem see Section 2.9 [1].
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Example 3.3. Compute the limit lim
n→∞

2n2+lgn
3n2+n cosn+5

.

Solution. We cannot apply Theorem 3.8 directly, since the numerator and denominator of 2n2+lgn
3n2+n cosn+5

tend to infinity. So, first we rewrite them as follows:

2n2 + lg n

3n2 + n cosn+ 5
=

n2 ·
(

2 + lgn
n2

)

n2 ·
(
3 + cosn

n
+ 5

n2

) =
2 + lgn

n2

3 + cosn
n

+ 5
n2

.

Now, we can use Theorem 3.8 d) to the right hand side of the latter equality. Indeed, we first compute

lim
n→∞

(

2 +
lg n

n2

)

= 2 + lim
n→∞

lg n

n2
= 2,

by, Theorem 3.8 b) and Exercise 3.6 c). Next, due to the inequality

− 1

n
≤ cosn

n
≤ 1

n
, n ≥ 1,

theorems 3.7 and 3.2, one has lim
n→∞

cosn
n

= 0. Thus, by Theorem 3.8 a), b)

lim
n→∞

(

3 +
cosn

n
+

5

n2

)

= 3 + lim
n→∞

cosn

n
+ 5 lim

n→∞
1

n2
= 3 6= 0.

So, we can apply Theorem 3.7 d) and obtain

lim
n→∞

2n2 + lg n

3n2 + n cosn+ 5
= lim

n→∞
2 + lgn

n2

3 + cosn
n

+ 5
n2

=
2

3
.

Exercise 3.12. Compute the following limits:
a) lim

n→∞
sin2 n√

n
; b) lim

n→∞
n2+sinn
n2+n cosn

; c) lim
n→∞

n
√
n22n + 3n; d) lim

n→∞
2n+n3

3n+1
; e) n+1

√
n.

Exercise 3.13. Let (an)n≥1 be a bounded sequence and bn → 0, n ≥ ∞. Prove that anbn → 0,
n → ∞.

Exercise 3.14. Let (an)n≥1 be a bounded sequence and bn → +∞, n ≥ ∞. Prove that an+bn → +∞,
n → ∞.

Exercise 3.15. Let an ≥ 0 for all n ≥ 1 and an → a, n → ∞. Show that for all k ∈ N one has
k
√
an → k

√
a, n → ∞.

Exercise 3.16. Let an → a ∈ R, n → ∞. Prove that a1+...+an
n

→ a, n → ∞.
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