

Problem sheet 1

Tutorials by Dr. Michael Schnurr <michael.schnurr@mis.mpg.de> and Ikhwan Khalid <ikhwankhalid92@gmail.com>.
Solutions will be collected during the lecture on Monday October 29.

1. [1+1 points] List elements of the following sets:

a)
$$\{n \in \mathbb{N} : (n-4)^2 < 5^2\};$$
 b) $\{n \in \mathbb{N} : n^3 > 4n\}.$

2. [2+2+2 points] Check the following relations:

a)
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$
; b) $(A \cup B)^c = A^c \cap B^c$; c) $\left(\bigcap_{t \in T} A_t\right)^c = \bigcup_{t \in T} A_t^c$

- 3. **[2+2+2 points]** Prove that
 - a) $\sqrt{6} \notin \mathbb{Q}$; b) $\sqrt{2} + \sqrt{3} \notin \mathbb{Q}$; c) for each $n \in \mathbb{N}$ either $\sqrt{n} \in \mathbb{N}$ or $\sqrt{n} \notin \mathbb{Q}$.
- 4. [3+3 points] Using mathematical induction prove that:
 - a) $1^3 + 2^3 + \ldots + n^3 = (1 + 2 + \ldots + n)^2$ for each $n \in \mathbb{N}$;
 - b) $11^n 4^n$ is divisible by 7 for each $n \in \mathbb{N}$.
- 5. [2+2+3 points] Prove that a) $\sup A = -\inf(-A)$, where A is a subset of \mathbb{R} bounded from above and $-A := \{-a : a \in A\}$;
 - b) Let A and B be subsets of \mathbb{R} bounded from above. Show that $\sup(A \cup B) = \max\{\sup A, \sup B\}$;
 - c) Let $A = \{0, \alpha_1 \alpha_2 ... \alpha_n ... : \forall n \in \mathbb{N} \ \alpha_n \in \{1, 2, 3, 4, 5, 6, 7, 8\}\}$. Find inf A and sup A.