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V. V. KONAROVSKYI

LARGE DEVIATIONS PRINCIPLE FOR FINITE SYSTEM OF HEAVY

DIFFUSION PARTICLES

The large deviation principle for a system of coalescing heavy diffusion particles is
proved. Some asymptotic properties of the distribution of the first moment of meeting

of two particles are described.

1. Introduction

The present paper is devoted to the large deviation principle (LDP) for the model
of interacting diffusion particles system. Suppose that particles start moving from the
finite set of points, move independently up to the moment of meeting, then coalesce
and move together. Masses of particles are added together at the moment of coalescing.
The random process which corresponds to the describing model is said to be the process
of heavy diffusion particles and denoted by X(t) = (X1(t), . . . , Xn(t)), t ∈ [0, 1]. It
was proved in [1, 2] that the distribution of such process is uniquely determined by the
following conditions

1◦) Xk is a continuous square integrable martingale with respect to the filtration

FXt = σ(X(s), s ≤ t);
2◦) Xk(0) = xk, k = 1, . . . , n;
3◦) Xk(t) ≤ Xl(t), k < l, t ∈ [0, 1];

4◦) 〈Xk〉t =
t∫

0

ds
mk(s) , where mk(t) = {j : ∃s ≤ t Xj(s) = Xk(s)}, t ∈ [0, 1];

5◦) 〈Xk, Xl〉tI{t<τk,l} = 0, where τk,l = inf{t : Xk(t) = Xl(t)}.
Here mk(t) is the mass of the particle k at time t. Condition 4◦) means that the

particle diffusion is inversely proportional to the mass. Condition 5◦) means that every
two particles move independently up to the moment of meeting. Note that this model
is similar to the Arratia model [3, 4, 5, 6]. In the Arratia model Brownian particles
move independently up to the moment of meeting, then coalesce and move together as
the Brownian motion. The diffusion coefficient of every particle equals one and is not
changing. The infinite system of heavy particles with mass addition at the moment of
coalescing was studied in [1, 2, 7]. Also some asymptotic results for such system were
obtained. In particular, for the evolution of one particle x(t), t ≥ 0

P
{

lim
t→+∞

|x(t)|√
2t ln ln t

= 0

}
= 1.

Since the interaction in our system is not smooth, we can not use the methods and tools
appropriate for the smooth flows described in [8, 9]. That is why we use some ideas
from [10], where the LDP for the coalescing Brownian particles is obtained. Some our
methods are close to [11], where the LDP for the discontinuous function from diffusion
process is proved. The article is organized as follows. In Section 2 we prove the LDP for
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the process which corresponds to the model of interacting diffusion particles system. In
Section 3 the asymptotic properties of the distribution of the first moment of meeting of
two particles are described.

2. Large deviations principle

The main result of this section is the LDP for the process of heavy diffusion particles.
For the fixed n ∈ N let [n] = {1, 2, . . . , n}.

Definition 2.1. A set π = {π1, . . . , πp} of non-intersecting subsets of [n] is said to be
the ordered partition of [n] if

1)
p⋃
i=1

πi = [n];

2) if l, k ∈ πi and l < j < k, then j ∈ πi for all i ∈ [p].

The set of all ordered partitions of [n] is denoted by Πn.
Every element π = {π1, . . . , πp} ∈ Πn generates equivalence between [n] elements. We

assume that i ∼π j if there exists a number k such that i, j ∈ πk. Denote by îπ an
equivalence class containing an element i ∈ [n], i.e.

îπ = {j ∈ [n] : j ∼π i}.

Put

iπ = min{j : j ∈ îπ}.
Consider f = (f1, . . . , fn) ∈ C ([0, 1];Rn) such that

(1) f1(0) ≤ . . . ≤ fn(0).

Suppose that π0 is an element of Πn such that

i ∼π0 j ⇔ fi(0) = fj(0).

Let us define the mapping Φ0 in C([0; 1];Rn) by the rule Φ0(f) = (g0
1 , . . . , g

0
n), where

g0
k(t) =

∑
i∈k̂π0

fi(t)

|k̂π0 |
, t ∈ [0, 1], k ∈ [n].

If (1) does not hold then one can consider the permutation {σ1, . . . , σn} of the set [n]
such that

fσ1
(0) ≤ . . . ≤ fσn(0)

and define

Φ0(f) = σ−1Φ0(σf),

where

σf = (fσ1
, . . . , fσn).

It is obvious that Φ0 is well defined for all f ∈ C ([0, 1];Rn). Set

Ĉ[0, 1] = Φ0 (C ([0, 1];Rn)) .

For some f ∈ Ĉ[0, 1] such that

(2) f1(0) ≤ . . . ≤ fn(0)

let us construct Φ(f) by induction. Denote by

τ1 = τ1(f) = inf{t > 0 : ∃i, fi(t) = fi+1(t)} ∧ 1.

Consider π1 = π1(f) ∈ Πn such that

i ∼π1 j ⇔ fi(τ
1) = fj(τ

1).
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Let

g1
k(t) =


fk(t), t ≤ τ1,∑
i∈k̂π1

fi(t)

|k̂π1 |
, t > τ1,

k ∈ [n]. Suppose that τp−1, πp−1 and gp−1 are defined. Then denote by

τp = τp(f) = inf{t > τp−1 : ∃i, gp−1
i (t) = gp−1

i+1 (t)} ∧ 1.

For πp = πp(f) ∈ Πn such that

i ∼πp j ⇔ gp−1
i (τp) = gp−1

j (τp)

define

gpk(t) =

 gp−1
k (t), t ≤ τp,∑
i∈k̂πp

fi(t)

|k̂πp |
, t > τp,

k ∈ [n]. Put

Φ(f) = (gn−1
1 , . . . , gn−1

n ).

If (2) does not hold then as in the case of Φ0 we define Φ by the formula

Φ(f) = σ−1Φ(σf).

Denote by

En = {x ∈ Rn : xi ≤ xi+1, i ∈ [n− 1]}.

Lemma 2.1. Let w(t), t ∈ [0, 1], be a Wiener process in Rn starting from x ∈ En. Then
Φ ◦ Φ0(w) is the process of heavy diffusion particles.

The proof of the lemma follows from the construction of the maps Φ0 and Φ.
Suppose that H is the set of absolutely continuous functions g ∈ C ([0, 1];Rn) such

that ġk ∈ L2[0, 1], k ∈ [n]. For x ∈ Rn define the rate function Ĩx on C ([0, 1];Rn) as
follows

Ĩx(g) =

 1
2

1∫
0

‖ġ(t)‖2dt, g(0) = x, g ∈ H ∩ C ([0, 1]; En) ,

+∞ otherwise.

The main result of this section is the following statement.

Theorem 2.1. Let X(t), t ∈ [0, 1], be the process of heavy diffusion particles, X(0) =
x ∈ En. Then the family {X(ε·), ε > 0} satisfies the LDP in the space C ([0, 1];Rn) with

the good rate function Ĩx.

Set

Ix(g) =

 1
2

1∫
0

‖ġ(t)‖2dt, g(0) = x, g ∈ H ∩ Φ(Ĉ[0, 1]),

+∞ otherwise.

Note that a function f belongs to the set Φ(Ĉ[0, 1]) iff for all k, l ∈ [n], fk(s) = fl(s),
s ∈ [t, 1], whenever fk(t) = fl(t).

It must be mentioned that the function Ix is not lower semicontinuous but the family
{X(ε·), ε > 0} satisfies the LDP in the space C ([0, 1];Rn) with the rate function Ix, i.e.
for any open set G in C ([0, 1];Rn)

(3) lim
ε→0

ε lnP{X(ε·) ∈ G} ≥ − inf
G
Ix

and for any closed set F

(4) lim
ε→0

ε lnP{X(ε·) ∈ F} ≤ − inf
F
Ix.
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Since Ĩx ≤ Ix, then for every closed set F and open set G the following relations hold

inf
F
Ĩx ≤ inf

F
Ix, inf

G
Ĩx = inf

G
Ix. That is why to prove the theorem it suffices to check (3)

and (4). Since the function Φ is discontinuous, one can not use the contraction principle
as in the case of Φ0. Let us modify the contraction principle for discontinuous functions
described in [11] to our case. To prove the theorem, we need the following lemmas.

Lemma 2.2. Let wx(t), t ∈ [0, 1], be a Wiener process in Rn with wx(0) = x ∈ En. Let

X0 = Φ0(wx). Then the family {X0(ε·), ε > 0} satisfies the LDP in Ĉ[0, 1] with the rate
function

I0
x(g) =

 1
2

1∫
0

‖ġ(t)‖2dt, g(0) = x, g ∈ H ∩ Ĉ[0, 1],

+∞ otherwise.

Proof of Lemma 2.2. For a fixed x ∈ En denote by

Cx[0, 1] = {f ∈ C ([0, 1];Rn) : f(0) = x}.

Since Cx[0, 1] is a closed subspace of C ([0, 1];Rn) and {wx(ε·), ε > 0} satisfies the LDP
in C ([0, 1];Rn) with the rate function

Iwx (g) =

 1
2

1∫
0

‖ġ(t)‖2dt, g(0) = x, g ∈ H,

+∞ otherwise,

then by Lemma 4.1.5 [12] the family {wx(ε·), ε > 0} satisfies the LDP in Cx[0, 1] with

the rate function Îwx = Iwx
∣∣
Cx[0,1]

.

Note that Φ0 is a continuous function in Cx[0, 1]. By Theorem 27.11 [13] the family
{X0(ε·), ε > 0} satisfies the LDP in Cx[0, 1] with the rate function

I0
x(g) = inf

Φ−1
0 (g)

Îwx , g ∈ Cx[0, 1].

It is obvious that I0
x(g) = +∞ if g 6∈ H ∩ Φ0 (Cx[0, 1]). Therefore, let g ∈ H ∩

Φ0 (Cx[0, 1]). Take f ∈ H ∩ Cx[0, 1] such that Φ0(f) = g and estimate Îwx (f) as follows

Îwx (f) =
1

2

1∫
0

n∑
l=1

ḟ2
l (t)dt =

1

2

1∫
0

∑
α∈π0

∑
i∈α

ḟ2
i (t)dt ≥ 1

2

1∫
0

∑
α∈π0

|α|

(∑
i∈α

ḟ2
i (t)

|α|

)2

dt =

=
1

2

1∫
0

n∑
l=1

∑
i∈l̂π0

ḟ2
i (t)

|l̂π0 |

2

dt =
1

2

1∫
0

n∑
l=1

ġ2
l (t)dt =

1

2

1∫
0

‖ġ(t)‖2dt.

Since Φ0(g) = g and Îwx (g) = 1
2

1∫
0

‖ġ(t)‖2dt, then

inf
Φ−1

0 (g)
Îwx =

1

2

1∫
0

‖ġ(t)‖2dt.

Lemma 4.1.5 [12] ends the proof. �

Lemma 2.3. For any open set G and closed set F in C ([0, 1];Rn) the following relations
hold

inf
G
Ix = inf

Φ−1(G)◦
I0
x, inf

F
Ix = inf

Φ−1(F )
I0
x,

where A◦ and A denote an interior and a closure of A in the space Ĉ[0, 1].
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Proof. For an open set G in C ([0, 1];Rn) let us prove that

inf
G
Ix = inf

Φ−1(G)◦
I0
x.

First, let us check that inf
G
Ix ≥ inf

Φ−1(G)◦
I0
x. If f ∈ G such that I(f) < +∞, then

f ∈ Ĉ[0, 1] and Φ−1(f) 6= ∅. Moreover, Φ(f) = f . Since the set G is open in Ĉ[0, 1] and
f ∈ G, then G contains an open ball B(f, ε) with center f and radius ε > 0.

Let γδ : [0, 1]→ [0, δ] be a continuously differentiable function satisfying the properties

1) γδ(0) = 0;
2) γδ(t) = δ, for all t ∈ [δ, 1];
3) |γ̇δ(t)| ≤ 2, for all t ∈ [0, 1].

For sufficiently small 0 < δ < ε, i 6∼π0(f) j and t ∈ [0, δ] we have |fi(t) − fj(t)| > δ.
Put

hρi (t) = γ ρi
π0
n

(t) + fi(t), t ∈ [0, 1], i ∈ [n], ρ ∈ (0, δ].

It is clear that the family of functions hρ = (hρ1, . . . , h
ρ
n) satisfies the following properties

1) B
(
hρ, ρ2n

)
⊆ G, for all ρ ∈ (0, δ];

2) Φ(h) = h, for all h ∈ B
(
hρ, ρ2n

)
and ρ ∈ (0, δ];

3) hρ → f in Ĉ[0, 1] as ρ→ 0;
4) Ix(hρ)→ Ix(f) as ρ→ 0.

From properties 1) and 2) we conclude that B
(
hδ, δ2n

)
⊆ Φ−1(G). Hence Φ−1(G)◦ 6=

∅. Since hρ ∈ Φ−1(G)◦, ρ ∈ (0, δ], then it follows from 3), 4) that

Ix(f) ≥ inf
Φ−1(G)◦

I0
x.

Further let us prove that inf
G
Ix ≤ inf

Φ−1(G)◦
I0
x. It must be noted that inf

G
Ix = inf

G∩Φ(Ĉ[0,1])
Ix.

For g ∈ Φ(Ĉ[0, 1]) ∩H and f ∈ Ĉ[0, 1] ∩H such that Φ(f) = g we have

I0
x(f) =

1

2

1∫
0

n∑
l=1

ḟ2
l (t)dt =

1

2

n∑
k=1

τk∫
τk−1

n∑
l=1

ḟ2
l (t)dt =

=
1

2

n∑
k=1

τk∫
τk−1

∑
α∈πk

∑
i∈α

ḟ2
i (t)dt ≥ 1

2

n∑
k=1

τk∫
τk−1

∑
α∈πk

|α|

(∑
i∈α

ḟ2
i (t)

|α|

)2

dt =

=
1

2

n∑
k=1

τk∫
τk−1

n∑
l=1

∑
i∈l̂

πk

ḟ2
i (t)

|l̂πk |


2

dt =
1

2

1∫
0

n∑
l=1

ġ2
l (t)dt =

1

2

1∫
0

‖ġ(t)‖2dt.

It implies that
inf

Φ−1(G)◦
I0
x ≥ inf

Φ−1(G)
I0
x ≥ inf

G
Ix.

For a closed set F in C ([0, 1];Rn) let us prove that

inf
F
Ix = inf

Φ−1(F )
I0
x.

Suppose that f ∈ Φ−1(F ) such that I0
x(f) <∞. Let us check that f ∈ Φ−1(F ). Con-

sider a sequence {fn, n ≥ 1} ⊆ Φ−1(F ) converging to f . Using the relative compactness
of {fn, n ≥ 1} ⊆ Φ−1(F ), the Arzela-Ascoli theorem and the properties of the map Φ one
can check that the sequence {Φ(fn), n ≥ 1} contains the subsequence {Φ(fni), i ≥ 1}
which converges to an element g ∈ F . Since Φ(fni) → g and fni → f , then one can
conclude that f ∈ Φ−1(F ).
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As in the case of the function Φ0

Ix(g) = inf
Φ−1(g)

I0
x.

Therefore,

inf
F
Ix = inf

Φ−1(F )
I0
x = inf

Φ−1(F )
I0
x.

�

Proof of Theorem 2.1. Since X = Φ(X0) is the process of heavy diffusion particles, then
using Lemma 2.3 and the LDP for the family {X0(ε·), ε > 0} (see Lemma 2.2) one can
conclude that for every open set G in C ([0, 1];Rn) the following relation holds

lim
ε→0

ε lnP{X(ε·) ∈ G} = lim
ε→0

ε lnP{X0(ε·) ∈ Φ−1(G)} ≥

≥ lim
ε→0

ε lnP{X0(ε·) ∈ Φ−1(G)◦} ≥ − inf
Φ−1(G)◦

I0
x = − inf

G
Ix.

Similarly, for every closed set F

lim
ε→0

ε lnP{X(ε·) ∈ F} = lim
ε→0

ε lnP{X0(ε·) ∈ Φ−1(F )} ≤

≤ lim
ε→0

ε lnP{X0(ε·) ∈ Φ−1(F )} ≤ − inf
Φ−1(F )

I0
x = − inf

F
Ix.

�

3. Some asymptotic behaviour of the distribution function of the meeting
time of two particles

For fixed k, l ∈ [n], x ∈ En put r = min{j : xj = xk∧xl}, R = max{j : xj = xk∨xl}.
Let

S2
x =

1

R− r + 1

R∑
j=r

(
R∑
i=r

xi
R− r + 1

− xj

)2

.

The main result of this section is the following theorem.

Theorem 3.1. Let X(t), t ∈ [0, 1], be the process of heavy diffusion particles starting
from x ∈ En. Let τk,l = inf{t : xk(t) = xl(t)} ∧ 1. Then

lim
ε→0

ε lnP{τk,l ≤ ε} = −Ak,l
2
S2
x,

where Ak,l is the number of elements of {xr, . . . , xR}.

To prove the theorem we need the following statement.

Lemma 3.1. Let X be the process of heavy diffusion particles starting from x ∈ En.
Then for all t ∈ [0, 1] and k, l ∈ [n],

Px{Xk(t) = Xl(t)} ≥ P
{
|w(t)| > |xl − xk|

√
n

2

}
≥ C1e

−C2(xl−xk)2

t ,

where w is a Wiener process and C1, C2 are positive constants.

To prove the statement we use the ideas of the paper [1].

Proof of Lemma 3.1. Assume that xk < xl. Denote by

σ = inf{t : Xk(t) = Xl(t)} ∧ 1.

Consider

y(t) = Xl(t)− xl −Xk(t) + xk, t ∈ [0, 1].
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Let us note that y(t), t ∈ [0, 1] is a square integrable martingale with

〈y〉t ≥
2t

n
, t ∈ [0, σ].

It follows from the theorem 2.7.2 [14] that there exists a Wiener process ŵ such that
y(t) = ŵ(〈y〉t). Denote by

σ̃ = inf

{
t : ŵ

(
2t

n

)
= xl − xk

}
.

Then

xl − xk = y(σ) = ŵ(〈y〉σ) = ŵ

(
2σ̃

n

)
.

Using the monotonicy of 〈y〉t, t ∈ [0, 1], we have

2σ̃

n
= 〈y〉σ ≥

2σ

n
or

σ̃ ≥ σ.
Hence

P{σ < t} ≥ P{σ̃ < t} = P
{

max
s∈[0,t]

ŵ

(
2s

n

)
≥ xl − xk

}
=

= P
{

max
s∈[0,t]

ŵ(s) ≥
√
n

2
(xl − xk)

}
= P

{
|ŵ(t)| ≥

√
n

2
(xl − xk)

}
≥ C1e

−C2(xl−xk)2

t .

�

Proof of Theorem 3.1. Suppose that xk < xl. Denote by

F = {f ∈ C ([0, 1];Rn) : ∃t ∈ [0, 1] fk(t) = fl(t)}.

Note that F is a closed set. To estimate inf
F
Ix let us take f ∈ F ∩ Φ(Ĉ[0, 1]) ∩H such

that f(0) = x. Then

(fj(1)− xj)2 =

 1∫
0

ḟj(t)dt

2

≤
1∫

0

ḟ2
j (t)dt.

Hence
R∑
j=r

(fj(1)− xj)2 ≤ 2Ix(f).

Since the function h(z) =
R∑
j=r

(z − xj)2, r ∈ R, reaches its minimum at z =
R∑
i=r

xi
R−r+1

and fj(1) = fi(1), i, j = r, . . . , R, then

1

2

R∑
j=r

(
R∑
i=r

xi
R− r + 1

− xj

)2

≤ Ix(f).

Consequently

1

2

R∑
j=r

(
R∑
i=r

xi
R− r + 1

− xj

)2

≤ inf
F
Ix.
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Using the LDP for the process of heavy diffusion particles we have

lim
ε→0

ε lnP{τk,l ≤ ε} = lim
ε→0

ε lnP{X(ε·) ∈ F} ≤

≤ − inf
F
Ix ≤ −

1

2

R∑
j=r

(
R∑
i=r

xi
R− r + 1

− xj

)2

.

For an open set

Gδ = {f ∈ C ([0, 1];Rn) : ∃t ∈ [0, 1] |fl(t)− fk(t)| < δ}
let us estimate inf

Gδ
Ix. To do that consider f ∈ C ([0, 1];Rn) of the following form

fj(t) =

(
R∑
i=r

xi
R− r + 1

− xj

)
t+ xj , t ∈ [0, 1], j = r, . . . , R,

with

fj(t) = xj , t ∈ [0, 1], j 6= r, . . . , R.

Then for small δ > 0, f ∈ Gδ ∩ Φ(Ĉ[0, 1]) ∩H and f(0) = x. Hence

inf
Gδ
Ix ≤ Ix(f) =

1

2

R∑
j=r

(
R∑
i=r

xi
R− r + 1

− xj

)2

.

Denote by

τδ = inf{t : Xl(t)−Xk(t) < δ} ∧ 1.

Using the LDP for the process of heavy diffusion particles one can get

lim
ε→0

ε lnP{τδ < ε} = lim
ε→0

ε lnP{X(ε·) ∈ Gδ} ≥

≥ − inf
Gδ
Ix ≥ −

1

2

R∑
j=r

(
R∑
i=r

xi
R− r + 1

− xj

)2

.

Using the strong Markov property of the process of heavy diffusion particles [7] and
Lemma 3.1 one can conclude that

P{τk,l ≤ ε} ≥ P{τk,l − τδ < (1− λ)ε, τδ < λε} =

= E
(
P
{
τk,l − τδ < (1− λ)ε, τδ < λε|FXτδ

})
=

= E
(
I{τδ<λε}P

{
τk,l − τδ < (1− λ)ε|FXτδ

})
=

= E
(
I{τδ<λε}PX(τδ) {Xk((1− λ)ε) = Xl((1− λ)ε)}

)
≥

≥ P {τδ < λε}C1e
− C2δ

2

(1−λ)ε , λ, ε ∈ (0, 1).

Therefore,

lim
ε→0

ε lnP{τk,l ≤ ε} ≥
1

λ
lim
ε→0

λε lnP{τδ < λε} − C2δ
2

(1− λ)
≥

≥ − 1

2λ

R∑
j=r

(
R∑
i=r

xi
R− r + 1

− xj

)2

− C2δ
2

(1− λ)
.

Passing to the limit as δ → 0 and λ→ 1 we obtain

lim
ε→0

ε lnP{τk,l ≤ ε} ≥ −
1

2

R∑
j=r

(
R∑
i=r

xi
R− r + 1

− xj

)2

.
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�

Corollary 3.1. If the process of heavy diffusion particles starts from (1, . . . , n), then

lim
ε→0

ε lnP{τ1,n ≤ ε} = −n
3 − n
24

.
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