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SYSTEM OF STICKING DIFFUSION PARTICLES OF VARIABLE MASS

V. V. Konarovs’kyi UDC 519.21

We construct a mathematical model of an infinite system of diffusion particles with interaction
whose masses affect the diffusion coefficient.  The particles begin to move from a certain sta-
tionary distribution of masses.  Their motion is independent up to their meeting.  Then the par-
ticles become stuck and their masses are added.  As a result, the diffusion coefficient varies as a
function inversely proportional to the square root of the mass.  It is shown that the mass trans-
ported by particles is also characterized by a stationary distribution.

In the present paper, we construct a mathematical model for a collection of interacting diffusion particles on
a straight line.  As the main specific feature of the analyzed system, we can mention the fact the mass of particles
affects the diffusion coefficient.  As a result of collision, the particles become stuck and their masses are added.
In this case, the diffusion coefficient varies as a function inversely proportional to the square root of mass.  The
following theorem is the main result of the present paper: 

Theorem 1.  Let  ak xk k
δ

∈∑ Z   be a stationary point measure on  R  with finitely many atoms on each

segment  and let  μ ≠ 0 .  Then there exists a system of processes  x k t( , ){ ; k ∈Z , t ≥ }0   satisfying the fol-

lowing conditions:

(i) x k( , )⋅  – xk   is a continuous square-integrable local martingale with respect to

( ) ( , ); ,Ft t t
x k s s t k≥ ≥= ≤ ∈( )( )0 0

σ Z ;

(ii) x k xk( , )0 = , k ∈Z ;

(iii) x k t( , )  ≤ x k t( , )+ 1   ∀ ∈k Z   ∀ ≥t 0 ;

(iv) x k xk t( , )⋅ −  = 
ds

m k s

t

( , )0∫   ∀ ≥t 0 ,  where

m k t ai
i A k t

( , )
( , )

=
∈
∑ ,    A k t j s t x k s x j s( , ) : , ( , ) ( , )= ∈ ∃ ≤ ={ }Z ;

(v) the consistent characteristic
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x l x x k xl k t t l k
( , ) , ( , )

,
⋅ − ⋅ − =<{ }I τ 0 ,

where

τ l k t x l t x k t, inf : ( , ) ( , )= ={ } .

Here,  μ  is the initial distribution of the masses of particles.  Condition (i) means that particles participate
in the diffusion processes varying according to condition (iv).  Namely, as a result of sticking of particles, their
masses are added and the diffusion coefficient varies as a function inversely proportional to the square root of the
mass.  Conditions (ii) and (iii) are responsible for the start and ordering of particles in the process of motion and
condition (v) shows that the behavior of particles prior to the collision is independent.  Note that conditions (i)–
(v) do not contain the condition of sticking of particles after collision.  This property is obtained in what follows
as a corollary.  In the proof of the theorem, we use the martingale methods. 

Similar models with interaction have been also studied by the other authors (see, e.g., [1–5]).  Thus, the
flow constructed in [1] can be interpreted as the description of consistent motions of the Brownian particles on

R  originating at each point of the straight line and independent up to their collision as a result of which the par-

ticles become stuck and then move together.  In other words, the system of processes  x u t( , ){ ; u ∈R , t ≥ }0
constructed in the cited work satisfies the following conditions:

(i) x u( , )⋅   is a continuous square-integrable local martingale with respect to 

( ) ( , ); ,Ft t t
x u s s t u≥ ≥= ≤ ∈( )( )0 0

σ R ;

(ii) x u( , )0  = u, u ∈R ;

(iii) x u t( , )  ≤ x t( , )v   ∀ u , v ∈R ,  u < v , ∀ ≥t 0 ;

(iv) x u tt( , )⋅ =  ∀ ≥t 0 ;

(v) the consistent characteristic

x u x t t u
( , ), ( , )

,
⋅ ⋅ =<{ }v

v
I σ 0 ,

where

σu t x u t x t, inf : ( , ) ( , )v v= ={ } .

As follows from condition (iv), the diffusion of particles does not change.  The cases finitely and infinitely
many particles with masses and velocities are considered in [3].  Their motion obeys the laws of conservation of
mass and inertia.  The measure-valued equations are presented for the distributions of mass and inertia.  The
existence of weak solutions of these equations is proved.  In the analyzed model, the particles have masses and
velocities.  At the same time, in the present work, we assume that the velocity is equal to infinity (diffusion
case).  An empirical distribution of a family of  N  processes with interaction for fixed  t  is studied in [5].  It is



SYSTEM OF STICKING DIFFUSION PARTICLES OF VARIABLE MASS 99

shown that, under certain conditions, the density of the limit measure obtained as  N → ∞   is the solution of a
certain evolutionary equation. 

As already indicated, we consider the model of diffusion particles whose motion originates from a certain
random point measure and is independent up to the collisions of particles.  As a result of collisions, the particles
become stuck, their masses are added, and they continue their subsequent motion together.  The principal prob-
lem encountered in the case of countably many starting points is connected with the fact that the motion of each
finite subsystem of particles cannot be described without taking into account the influence of the other particles.
In the case where the initial distribution of masses is specified in the form of the Lebesgue measure on the
straight line, we encounter an additional problem, namely, at the initial time, the particles must begin their mo-
tion with infinitely small masses and, hence, with infinitely large diffusion coefficients.  To solve this problem,
we propose to shift the origin of time by an infinitesimally small period  t0   and assume that, for any segment,
all particles originating from this segment have already been stuck to form a finite set of particles for the indic-
ated period of time.  In this case, it is necessary to construct the collection of processes for the description of this

model on  t0, +∞[ ) .  It is quite natural to assume that, in this case, the motion starts from a random point mea-
sure whose probability characteristics are invariant under shifts, i.e., from a stationary measure. 

The present paper is organized as follows: 
In the first section, we use the martingale methods to construct a collection of processes for the description

of the consistent motion of particles originating from a  σ-finite deterministic point measure.  This motion is in-
dependent up to the collisions of particles as a result of which the particles remain stuck, their diffusion coeffici-
ent changes, and the particles continue their motion together.  We present sufficient conditions that should be
imposed on the initial measure to guarantee the existence of this collection. 

In the second section, we analyze some properties of stationary point measures because later they are re-
garded as starting measures.  In conclusion, we construct a system of processes for the description of the motion
of particles changing their mass as a result of sticking and such that the distribution of masses at the initial time
is described by a stationary measure. 

1.  Deterministic Measure

Theorem 2.  Assume that the sequences of real numbers  x kk ; ∈{ }Z   and  a kk ; ∈{ }Z   satisfies the con-

ditions:

(1 )� x xk k< + 1 ,  ak > 0   ∀ ∈k Z ;

(2 )� there exist sequences  n ii; ∈{ }Z   and a constant  C  > 0  such that, for any  i ∈Z ,  ani + ∧1

ani
 ≥ C,  xni + 1  – xni

 ≥ C,  n0 0= .

Then there exists a system of random processes  x k t( , ){ ; k ∈Z , t ≥ }0   such that

(i) x k( , )⋅   is a continuous square-integrable local martingale with respect to

( ) ( , ); ,Ft t t
x k s s t u≥ ≥= ≤ ∈( )( )0 0

σ Z ;

(ii) x k xk( , )0 = , k ∈Z ;
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(iii) x k t( , )  ≤ x k t( , )+ 1   ∀ ∈k Z   ∀ ≥t 0 ;

(iv) x k t( , )⋅  = 
ds

m k s

t

( , )0∫   ∀ ≥t 0 ,

where

m k t ai
i A k t

( , )
( , )

=
∈
∑ ,    A k t j s t x k s x j s( , ) : , ( , ) ( , )= ∈ ∃ ≤ ={ }Z ;

(v) the consistent characteristic

x l x k t t l k
( , ), ( , )

,
⋅ ⋅ =<{ }I τ 0 ,

where

τl k t x l t x k t, inf : ( , ) ( , )= ={ } .

Conditions (i) – (v) uniquely define the distribution  … − ⋅( , ( , )x n , …  , x n( , ),⋅ … )   in the space

C( )R+ ∞( )⎛
⎝ , B C( )R+ ∞( )( )⎞⎠ .

Proof.  The proof of the theorem is split into several parts.  First, we construct a finite collection of pro-

cesses  x k tn ( , ){ ; k n n= − , , t ∈[ ]}0 1,   satisfying conditions (i) – (v).  Then we pass to the limit as  n → + ∞
and extend the limit transition from  0 1,[ ]   onto the entire half line.  Finally, we show that conditions (i)–(v)
indeed uniquely determine the distribution of the analyzed system. 

In a certain probability space  ( , , )Ω F P ,  we consider a collection of independent Wiener processes

w tk ( ){ ; k ∈Z , t ≥ }0 .  By using this collection, for any  n ∈N ,  we construct a system of processes  x k tn ( , ){ ;

k n n= − , , t ∈[ ]}0 1, . 

Let  τ( )0 0= ,  let  S( )0  = i{}{ ; i n n= − }, ,  and let 

w tk
( )( )0   =  xk  + 

1

a
w t

k
k ( ) ,     k = −n n, ,     t ∈[ ]0 1, .

By induction, we construct a system of processes  wk
p( ){ ; k n n= − }, , p n= 1 2, .  For  k n n= − −, 1 ,  we

consider

τk
p

k
p

k
pt w t w t( ) ( ) ( )inf : ( ) ( )= ={ } ∧−
+
−1
1

1 1

and set 
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τ τ τ( ) ( ) ( )inf ; ,p
k
p p k n n= > = − −{ } ∧− 1 1 1 .

We consider a class of subsets  S( )p   of the set  − …{ }n n, ,   with the following properties: 

(i) if  l ≤ i ≤ k,  then  i A∈   ∀ ∈A pS( )   ∀ k , l A∈ ;

(ii) wl
p p( ) ( )− ( )1 τ  = wk

p p( ) ( )− ( )1 τ   ∀ ∈A pS( )   ∀ k , l A∈ ;

(iii) wl
p p( ) ( )− ( )1 τ  ≠ wk

p p( ) ( )− ( )1 τ   ∀ ∈A pS( )   ∀ ∈k A ,  l n n∈ − …{ }, ,  \ A.

For  k A∈  ∈ S( )p ,  we take 

w t

w t t

w
k

p
k

p p

j
p p

( )

( ) ( )

( ) ( )
( )

( ) , ,

( )
=

≤ ≤−

−

1

1

0

1

τ

τ −−
⎛

⎝⎜
⎞

⎠⎟
+ < ≤

⎧

⎨
⎪⎪

⎩
⎪ −m

m

m

m
w t tj

p p1

2

1

2

1 1( ) ( )( ) , ,τ
⎪⎪

where  j A∈   and 

j
i i A A n n i

n n n

i i

i i

=
∈{ } + ∈{ } = ∅

+

min ; , , ; ,

min , ;

∩ 1

1

Z

ii i i in A A n n i, , , ; ,+ ∈{ } + ∈{ } ≠ ∅

⎧
⎨
⎪

⎩⎪ 1 1∩ Z

m aii A2 =
∈∑ ,  m aii B1 =

∈∑ ,  and  B p∈ −S( )1 ,  where  j B∈ .

We set  x kn ( , )⋅  = wk
n( )2 .

Remark 1.  By  Fn
n j   we denote the rule according to which the system  wk{ ; k n n= − },   is associated

with a system  x kn ( , )⋅{ ; k n n= − }, .  Then  Fn
n j   is a measurable mapping of the space  ( , )Cn nB   into

( , )Cn nB ,  where 

Cn   =  f C∈ [ ]({ 0 1, , R2 1 0n
n nf x x+

−) = … }: ( ) ( , , )      and     Bn   =  B C 0 1 2 1, ,[ ]( )( )+R n  ∩ Cn .

We now establish a property of the map  Fn
n j , n ∈N ,  guaranteeing the existence of the limit of the se-

quence  x kn n k( , )⋅{ } ≥ , k ∈Z ,  as  n → + ∞. 

Lemma 1.  Let  f kk ; ∈{ }Z  ⊂ C 0 1,[ ]   and let  fk ( )0  = xk .  Denote

g g ?F f fn
n

n
n

n
n

n n
j

− −…( ) = …( )( ) ( ), , , , ,    n ∈N .
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1. If, for some  m ∈N ,  there exist  C > 0  and  δ > 0  such that

max max ( ); , ; , , ,
,t

k i jf t k n n i m j m
∈[ ]

∈ + = = −{
0 1

1 0 0 1}}⎧
⎨
⎩

⎫
⎬
⎭

  <  C,

min ( )
,t

nf t C
m∈[ ] + > +

0 1
1 δ ,

then, for any  l nm>   and  k l nm= − , ,

max ( ) max ( )
,

( )

,

( )

t
k
l

t n
lg t g t
m∈[ ] ∈[ ]

≤
0 1 0 1

  <  C     and     min ( )
,

( )

t n
lg t C
m∈[ ] + > +

0 1 1 δ .

2. If, for some  − ∈m N ,  there exist  C < 0  and  δ < 0  such that

min min ( ); , ; , , ,
,t

k i jf t k n n i m j m
∈[ ]

∈ + = + ={
0 1

1 1 0 0}}⎧
⎨
⎩

⎫
⎬
⎭

  >  C,

max ( )
,t

nf t C
m∈[ ]

< +
0 1

δ ,

then, for any  l nm> −   and  k n lm= + 1, ,

min ( ) min ( )
,

( )

,

( )

t
k
l

t n
lg t g t
m∈[ ] ∈[ ] +≥

0 1 0 1 1   >  C     and     max ( )
,

( )

t n
lg t C
m∈[ ]

< +
0 1

δ .

Proof.  The proof of Lemma 1 directly follows from the construction of the maps  Fn
n j , n ∈N . 

 For all  k ∈Z ,  we show that the limit of the sequence  x kn n k( , )⋅{ } ≥   exists and take this limit as  x k( , )⋅ .

To this end, we formulate the following auxiliary lemma: 

Lemma 2.  Let  w kk ; ∈{ }N   be a family of independent standard Wiener processes and let the sequences

of real numbers  y kk ; ∈{ }N   and  b kk ; ∈{ }N   be such that

(i) y yk k< + 1   ∀ ∈k N ;

(ii) there exists  δ > 0  such that  bk ≥ δ   and  y yk k+ −1  ≥ δ  for any  k ∈N .

Denote

ξk
t

k
k

ky
b

w t=
∈[ ]

+
⎧
⎨
⎩⎪

⎫
⎬
⎭⎪

max ( )
,0 1

1
,
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ηk
t

k
k

ky
b

w t=
∈[ ]

+
⎧
⎨
⎩⎪

⎫
⎬
⎭⎪

min ( )
,0 1

1
.

Then, for any  δ
δ

1 0
2

∈⎛
⎝⎜

⎞
⎠⎟, ,

P lim sup max ,
,n k n

k n n ny y
→∞ =

+≤ + > + +⎧
⎨
⎩ 1

1 1
2 2

ξ
δ

η
δ

δ ⎫⎫
⎬
⎭

⎧
⎨
⎩⎪

⎫
⎬
⎭⎪

= 1.

Lemmas 1 and 2 imply that, for any  k ∈Z ,

P N∃ ∈ ∀ ≥ ⋅ = ⋅{ } =N n N x k x kn N: ( , ) ( , ) 1,

i.e., for any integer  k,  the sequence  x kn n k( , )⋅{ } ≥   is stabilized with probability 1.  As  x k( , )⋅ ,  we take the

limit of  x kn n k( , )⋅{ } ≥ .

Further, it follows from the construction of  x kn ( , )⋅   that

x k t x
dw s

m k s
n k

k
n

n

t

( , )
( )

( , )

( )

= + ∫
�

0

,

where  �wk
n( ){ ; k n n= − },   is the family of standard Wiener processes such that 

� �w w tl
n

k
n

t t l k
n

l k
n

( ) ( )
,

( ),
,

( )= −( )≥{ }I τ τ ,

τl k
n

n nt x l t x k t,
( ) inf : ( , ) ( , )= ={ } .

As for the sequence  x kn n k( , )⋅{ } ≥ ,  we arrive at the equality 

P N∃ ∈ ∀ ≥ ={ } =N n N w wk
n

k
N: ( ) ( )� � 1.

As  �w ,  we take the limit of the sequence  �wk
n

n k

( ){ } ≥
. 

It is clear that  �w kk ; ∈{ }Z   is the family of standard Wiener processes such that 

� �w w tl k t t l kl k
,

, ,= −( )≥{ }I τ τ .

Moreover, 
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x k t x
dw s

m k s
k

k
t

( , )
( )

( , )
= + ∫

�

0

.

This means that the system  x k t( , ){ ; k ∈Z , t ∈[ ]}0 1,   satisfies conditions (i)–(v).

By  x k tT ( , ){ ; k ∈Z , t T∈[ ]}0,   we denote a collection of processes constructed in the same way as the

system  x k t( , ){ ; k ∈Z , t ∈[ ]}0 1, .  Note that 

x k t x k tT T1 2( , ) ( , )=     ∀ ∈k Z ,    t T T≤ ∧1 2 .

This enables us to conclude that  x k( , )⋅   can be extended from  0 1,[ ]   onto  R+ .

We now prove the second part of Theorem 2.  Assume that  y k t( , ){ ; k ∈Z , t ≥ }0   satisfies conditions

(i)–(v).  Hence, by the Doob theorem [6], there exist a family of Wiener processes  ′ ∈{ }w kk ; Z   such that

y k t x
dw s

m k s
k

k
t

( , )
( )

( , )
= + ′

∫
0

and

′ ′ = −( )≥{ }w w tl k t t l kl k
,

, ,I τ τ .

It is clear that

x l t x k t t l t
( , ) ( , )

,
−( ) =≥{ }I τ 0 .

Further, by using the system  ′ ∈{ }w kk ; Z ,  we can construct a family of standard independent Wiener pro-

cesses  w kk ; ∈{ }Z   such that

y k y k
n

n( , ) lim ( , )⋅ = ⋅
→ ∞

,

where

y n y n F w wn n n
n

n n
j− ⋅( ) … ⋅( )( ) = …( ){ }

−, , , , , , .

The second part of the theorem is proved.

2.  Stationary Point Measures

In the present section, we study some properties of stationary point measures.  For the detailed analysis of
these measures, see, e.g., [7].
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Definition 1. A measure  μ  = ak xk I k
δ

∈∑ ,  w h e r e   ak > 0 , xk ∈R ,  x xl k≠   f o r   l k≠ ,  a n d

I ⊆ Z ,   is called a point measure on R.

Parallel with  μ,  we consider the measure  μ∗  = δxk I k∈∑ .

Let  N  be a set of point measures  μ  on  R  such that  μ∗ < ∞( )B   for any bounded set  B ∈B( )R .

Definition 2.   A mapping

μ : ( )B R R× → ∞{ }+Ω ∪

is called a stationary point measure  μ  on  R  if it has the following properties:

(i) for any  B ∈B( )R ,  μ( , )B ⋅   is a random variable;

(ii) μ ω( , )⋅ ∈N   ∀ ∈ω Ω ;

(iii) for any  B Bn1, ,…  ∈ B( )R   and  h ∈R ,

μ μ μ μ( ), , ( ) ( ), , ( )B B B h B hn n1 1…( ) = + … +( )d

Remark 2.  In Definition 2, condition (iii) is equivalent to the condition

(3′ ) for any disjoint semiopen intervals  B Bn1, ,…  ∈ B( )R   and any  h ∈R ,

μ μ μ μ( ), , ( ) ( ), , ( )B B B h B hn n1 1…( ) = + … +( )d

We now present some examples of stationary measures: 

1.  Let  x u u( , );⋅ ∈{ }R   be an Arratia flow.  We take  μ λt tB B( ) ( )= ,  where  Bt  = u{  : x (u, t) ∈  B}   and

λ  is the Lebesgue measure on  R.  Then  μt   is a stationary point measure. 

For the proof of the fact that  μt   satisfies conditions (i) and (ii) of Definition 2, see, e.g., [8].  We now
check condition (iii).

Let  x u t( , ){ ; u ∈R , t ≥ }0   be an Arratia flow.  Then, for any  h ,  y u t( , ){ ; u ∈R , t ≥ }0   is also an Ar-

ratia flow, where  y u t( , )  = x (u – h, t) + h.  We take  B Bn1, ,…  ∈ B( )R   and consider 

μ μt t nB B( ), , ( )1 …( )   =  λ λu x u t B u x u t Bn: ( , ) , , : ( , )∈{ } … ∈{ }( )1   

=  λ λu x u t h B h u x u t h B hn: ( , ) , , : ( , )+ ∈ +{ } … + ∈ +{ }( )1   

=  λ λu y u h t B h u y u h t B hn: ( , ) , , : ( , )+ ∈ +{ } … + ∈ +{ }( )1   
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=  λ λu h y u t B h u h y u t B hn− ∈ +{ } … − ∈ +{ }( ): ( , ) , , : ( , )1   

=  λ λu y u t B h u y u t B hn: ( , ) , , : ( , )∈ +{ } … ∈ +{ }( )1   

=d   μ μt t nB h B h( ), , ( )1 + … +( ) .

2.  Let  μ  be a measure satisfying the conditions: 

(i) μ( )B   is a Poisson random variable with intensity  λ( )B ;

(ii) the random variables  μ μ( ), , ( )B Bn1 …   are jointly independent for any disjoint system of sets
B1 , … , Bn ∈B( )R .

Then  μ  is a stationary measure.  (The existence of a measure with the indicated properties is established,
e.g., in [9].) 

Further, we prove the following lemma according to which there exists a collection of particles of variable
mass with sticking such that the initial distribution of masses of these particles is a stationary measure: 

Lemma 3.  Let  μ = ak xk I k
δ

∈∑   be a stationary point measure such that  μ ≠ 0   almost surely and, for

any  l, k ∈ I,  the facts that  l < k  and  l ≤ i ≤ k  imply that  x xl k<   and  i ∈  I.  Then, with probability 1,

I = Z   and the sequences  x kk ; ∈{ }Z   and  a kk ; ∈{ }Z   satisfy conditions (1 )�  and (2 )�  of Theorem 2.

Proof.  Let 

C mn m nn
m( ) , ( )= +[ )1 .

We consider 

X n CN
m

n
m

a
Nk x C

C
k

k n
m n

m
( ) ( )

:

( )
( )

(= ( )
≥{ }∈

∏ ∗μ μI I1 ))( ) >{ }1 .

The quantity  X nN
m( )( )   admits a representation 

X nN
m( )( )   =  lim

( )( )k
GG k Cn

m→∞ >
⎧
⎨
⎩

⎫
⎬
⎭

>{ }∈ ( )∑
I

I μ 0 1A

μ
μ μ( )

( ) ( )
( )G

G C
G

N
G

k n
m∈ ( ) ≥{ } ={∑

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

+
A

I I1 0}}
∈ ( )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟∏

G Ck n
mA ( )

,

where  Ak a b,[ )( )   is a finite imbedded division of  a b,[ )   by half intervals open form the right and such that 

max
,A a bk

A
∈ [ )( )

→
A

diam 0      as    k → + ∞.
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It is easy to see that  XN
m( )   is a stationary process in the restricted sense.  From  XN

m( ) ,  we form a new sta-
tionary process 

Y n X nN
m

N
m

X n NN
m

( ) ( )
( )

( ) ( ) ( )= ≤{ }I .

Further, since  EY nN
m( )( ) < ∞ ,  by the Birkhoff–Khinchin theorem [10], we get 

lim ( )( )

K M N
m

n M

K

K M
Y n

− → ∞ = +− ∑1

1

  =  E Y nN
m

YN
m

( )( ) ( )S( ) ,

where 

S S
Y N

m

N
m Y( )

( ) ( )= ( )−1
,    S B= ∈ ={ }∞ −B T B B( ) : ( )R 1 ,

and  T  is the operator of shift in  R∞ . 

We now denote  ξN
m( )  = E Y nN

m
YN

m
( )( ) ( )S( )   and consider  BN

m( )  = ξN
m( ) ={ }0   and  A BN

m
N
m( ) ( )\= Ω .

Note that, on  AN
m( ) ,  there exists a sequence of integers  n jj ; ∈{ }Z   such that 

N  ≥  Y nN
m

j
( )( )   ≥  

1

N

Thus, it follows from the structure of  YN
m( )   that conditions (1 )�  and ( )2�  of Theorem 2 are satisfied on  AN

m( ) .
We now show that

P AN
m

m N

( )

, =

∞⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
=

1

1∪ ,

which is equivalent to the fact that 

P BN
m

m N

( )

, =

∞⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
=

1

0∩ .

Assume that this is not true and consider 

Y n dN
m

BN
m

( )( ) ( )
( )

P ω∫   =  ξ ωN
m

B

n d

N
m

( )( ) ( )
( )

P∫   =  0.
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Hence,  Y nN
n( )( )  = 0  on  BN

m( )   and, therefore,  YN
m( )  = 0  for any  n, m,  and  N  on  BN

m
m N

( )
, =

∞
1∩ .  How-

ever, this means that, either on  R+   or on  R− ,  there exists exactly one point at which the measure  μ  is con-

centrated on(   BN
m

m N
( )

,
.

=
∞ )1∩ .

We set 

Y n n n( ) ,= +[ )( )∗μ 1 ,    n ∈Z .

According to the remark presented above, one can find  α > 0  and  n ∈Z   such that 

α = = = ≠{ }P Y n Y m n m( ) , ( ) ,1 0 .

Since  μ  is a stationary measure,  μ∗   is also stationary and, hence,  Y  is a stationary process in the restricted
sense.  This yields 

α = = = ≠{ }P Y n Y m n m( ) , ( ) ,1 0   

=  lim ( ) , , ( ) , , ( )
m

Y m Y n Y m
→∞

− = … = … ={ }P 0 1 0   

=  lim ( ) , , ( ) , , ( )
m

Y m Y n Y m
→∞

− + = … + = … + ={ }P 1 0 1 1 1 0   

=  P Y n Y m n m( ) , ( ) ,+ = + = ≠{ }1 1 1 0 ,

which is impossible.  This contradiction proves Lemma 3. 

3.  Stationary Measure

Proof of Theorem 1.  Let  μ  be a stationary point measure given in a probability space  ( , , )′ ′ ′Ω F P .  In a
different probability space  ( , )′′ ′′ ′′Ω F , P ,  we consider a countable collection of independent Wiener processes

w kk ; ∈{ }Z .  For any fixed  ′ ∈ ′ω Ω ,  by virtue of Lemma 3, the sequences  x kk ( );′ ∈{ }ω Z   and  { ak ( );′ω

k ∈Z }  satisfy conditions ( )1�  and ( )2�  of Theorem 2.  By Theorem 2, there exists a collection of processes

with sticking and the initial distribution  μ ω( )′  = a
k xk

( ) ( )′∈ ′∑ ω δ ωZ .  We denote this collection by  X  =

x k t( , , , )′ ′′{ ω ω ; k ∈Z , t ≥ }0 .  It is necessary to show that  X  is the required system of processes. 

As in Sec. 1, one can show that  x k( , )⋅   is a random process for any  k ∈Z .  It is necessary check that
x k( , )⋅  – xk   is a square integrable local martingale. 

Let 

σn
k

kt x k t x n n( ) inf : ( , )= − ≥{ } ∧ .
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Since  x k( , )⋅  – xk   is a continuous process consistent with  

( )Ft   =  σ(ak( , xk , w sk ( ) ; s ≤ t, k ∈ )Z) ,

σn
k( )   is a Markov moment with respect to  ( )Ft t ≥ 0 .  By the theorem on transformation of the free choice [11],

for any  ′ ∈ ′ω Ω ,  x k( , ⋅ ∧ σ ωn
k( ), ′)  – xk ( )′ω   is a square integrable martingale with the following characteris-

tic: 

x k xk t( , , ) ( )⋅ ′ − ′ω ω   =  
ds

m k s

t n
k

( , , )

( ) ( )

′

∧ ′

∫ ω

σ ω

0

.

We now show that  x k n
k, ( )⋅ ∧( )σ  – xk   is a square integrable martingale on  ′Ω  × ′′Ω .  To do this, it suf-

fices to check that 

x k t x dn
k

k
A A

, ( )∧( ) −( ) ′ ⊗ ′′
′ × ′′
∫ σ P P   =  x k s x dn

k
k

A A

, ( )∧( ) −( ) ′ ⊗ ′′
′ × ′′
∫ σ P P ,

where  s ≤ t,  ′A  ∈ σ a x kk k, ; ∈{ }Z ,  and  ′′A  ∈ σ w r r sk ( ); ≤{ } . 
Thus, 

x k t x dn
k

k
A A

, ( )∧( ) −( ) ′ ⊗ ′′
′ × ′′
∫ σ P P   =  d x k t x d

A
n
k

k
A

′ ∧( ) −( ) ′′
′ ′′
∫ ∫P P, ( )σ   

=  d x k s x d
A

n
k

k
A

′ ∧( ) −( ) ′′
′ ′′
∫ ∫P P, ( )σ   

=  x k s x dn
k

k
A A

, ( )∧( ) −( ) ′ ⊗ ′′
′ × ′′
∫ σ P P .

Further, we consider 

M k t x k t x
ds

m k s
n n

k
k

t n
k

( , ) ,
( , )

( )

( )

= ∧( ) −( ) −
∧

σ
σ

2

0
∫∫ .

By using the same reasoning for  M n ,  we conclude that  M n   is a square integrable martingale.  By the
Doob–Meyer theorem [6], this yields 

x k x
ds

m k s
k t

t n
k

( , )
( , )

( )

⋅ − =
∧

∫
0

σ

.
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It remains to show that 

x l x x k xl k t t l k
( , ) , ( , )

,
⋅ − ⋅ − =<{ }I τ 0 .

Denote 

τ τ σ σn l k n
l

n
k= ∧ ∧,

( ) ( ) .

We take

M t x l t x x k t xn n l n k( ) , ,= ∧( ) −( ) ∧( ) −( )τ τ .

It is easy to see that  M n   is a square integrable martingale.  By the Doob–Meyer theorem, 

x l t x x k t xn
l

n
k

l n
l

n
k, ,( ) ( ) ( ) ( )∧ ∧( ) −( ) ∧ ∧( ) −σ σ σ σ kk( )   

=  M t x l x x kn n
l

n
k

l n
l

n
� ( ) , , ,( ) ( ) ( ) (+ ⋅∧ ∧( ) − ⋅ ∧ ∧σ σ σ σ kk

k
t

x)( ) − .

In the last equality, we replace  t  by  t l k∧ τ ,   and obtain 

x l t x x k t xn l n k, ,∧( ) −( ) ∧( ) −( )τ τ   

=  M t x l x x kn n n
l

n
k

l n
l� ( ) , , ,( ) ( ) ( )∧ + ⋅∧ ∧( ) − ⋅ ∧ ∧τ σ σ σ σσ

τn
k

k
t

x
n

( )( ) − ∧
.

By the theorem on transformation of the free choice,  M n n
� ( )⋅ ∧ τ   is a martingale and, hence,  M n  =

M n n
� ( )⋅ ∧ τ .  This yields 

x l x x k xn
l

n
k

l n
l

n
k

k, , ,( ) ( ) ( ) ( )⋅ ∧ ∧( ) − ⋅ ∧ ∧( ) −σ σ σ σ
tt n∧ τ

  =  0.

Therefore, 

x l x x k xl k t n
( , ) , ( , )⋅ − ⋅ − ∧ τ   =  0.

The theorem is proved. 

Remark 3.  By the second part of Theorem 2, the distribution of the constructed family of processes

… − ⋅( , ( , )x n , … , x n( , ),⋅ … )   is independent of the choice of the system of Wiener processes  w kk ; ∈{ }Z . 

We prove that the distribution of the processes  … − ⋅( , ( , )x n , … , x n( , ),⋅ … )   depends solely on the dis-

tribution of the stationary measure  μ . 
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Assume that the measures  μ  and  ν  satisfy the conditions of Theorem 1 and are such that  μ ν=d ,  i.e., for
any collection of Borel sets  B Bn1, ,… ,  we have 

μ μ ν ν( ), , ( ) ( ), , ( )B B B Bn n1 1…( ) = …( )d
.

As in the proof of Theorem 1, we construct the systems of processes  x k t( , ){ ; k ∈Z , t ≥ }0   and

y k t( , ){ ; k ∈Z , t ≥ }0   with initial distributions  μ  and  ν,  respectively.  The following theorem is true: 

Theorem 3.  The random elements  … − ⋅ … ⋅ …( ), ( , ), , ( , ),x n x n   and  …( − ⋅, ( , )y n , … , y n( , ),⋅ … )   are

identically distributed.

Proof.  We use the same notation as in the proof of Theorem 1.  It suffices to show [12] that, for almost all
fixed  ′′ω ,  the distributions 

… − ⋅ ′′ … ⋅ ′′ …( ), ( , , ), , ( , , ),x n x nω ω      and     … − ⋅ ′′ … ⋅ ′′ …( ), ( , , ), ( , , ),,y n y nω ω

coincide.  To this end, it suffices to establish the existence of sequences of the collections of processes 

x k tm j
( , ){ ; k m mj j∈− , , t T

j
∈[ ]} ≥

0
0

,      and     y k tm j
( , ){ ; k m mj j∈− , , t T

j
∈[ ]} ≥

0
0

,

satisfying the following conditions (for fixed  ′′ω ): 

(i) x mm jj
( , )− ⋅( , … , x mm jj

( , )⋅ )   and  y mm jj
( , )− ⋅( , … , y mm jj

( , )⋅ )   are identically distributed in the

space  C 0, T
m j[ ]( )( )( , B C 0, T

m j[ ]( )( )( )) ;

(ii) for any  k km1, ,…  ∈ Z, 

x k x km m mj j
( , ), , ( , )1 ⋅ … ⋅( )  → x k x km( , ), , ( , )1 ⋅ … ⋅( ) ,

y k y km m mj j
( , ), , ( , )1 ⋅ … ⋅( )  → y k y km( , ), , ( , )1 ⋅ … ⋅( )      as    j → ∞

in the uniform topology of the space  C 0, T
m[ ]( )( ) .

For any  n ∈N ,  we construct a collection of processes  x k tn n2 ( , ){ ; k = −n nn n2 2, , t T∈[ ]}0,   from

the system of continuous functions  w kk ( );′′ ∈{ }ω Z .  Here,  w kk ; ∈{ }Z   is a family of independent standard

Wiener processes used to construct  x k t( , ){ ; k ∈Z , t ≥ }0   and  y k t( , ){ ; k ∈Z , t ≥ }0 .  We introduce the
notation 
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Δk
n

n n

k k
=

+⎡
⎣⎢

⎞
⎠⎟2

1

2
, ,

ak
n

k
n� ( )

= ( )μ Δ ,

x
k

k
n

n
� ( )

=
2

,    k n nn n= − 2 2, .

Further, from the sets 

ak
n� ( ){ ; k = − }n nn n2 2,      and     xk

n� ( ){ ; k = − }n nn n2 2, ,

we extract the numbers  k  for which  ak
n� ( )

 = 0.  Moreover, if the number of elements remaining after this proce-
dure is even, then we additionally extract the maximum number.  Redenoting the remaining elements, we obtain

the sequences  ak
n( ){ ; k = l l, }   and  xk

n( ){ ; k = − }l l, .  For the sake of convenience, we set 

ak
n( ) = 1,    k n n l ln n∈ − …{ } − …{ }2 2, , \ , , ,

x xi
n

i
n( ) ( )= +− 1 1,    i l n n= + 1 2, ,

x xj
n

j
n( ) ( )= −+ 1 1 ,    j n ln= − − −2 1, .

As in the proof of Theorem 2, from the sequences  ak
n( ){ ; k = − }n nn n2 2, ,  xk

n( ){ ; k = − }n nn n2 2,   and

wk ( )′′{ ω ; k ∈ }Z ,  we construct  x k tn n2 ( , ){ ; k = −n nn n2 2, , t T∈[ ]}0, ,  i.e., we set

x n x nn
n

n
n

n n2 22 2− ⋅( ) … ⋅( )( ), , , ,   =  F w w
n

n
n nn

j
n n

2 2 2( ), , ( )′′ … ′′( )ω ω ,

where  F
n

n
n

j

2
  is the map constructed in Theorem 2. 

Similarly, we construct a collection of processes  y k tn n2 ( , ){ ; k = −n nn n2 2, , t T∈[ ]}0, .

Since 

μ μ ν νΔ Δ Δ Δ− −( ) … ( )( ) = ( ) … ( )( )n
n

n
n

n
n

n
n, , , ,

d
    ∀ ∈n N ,

condition (i) is satisfied. 
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Note that, by virtue of Lemmas 2 and 3, for sufficiently large numbers  n,  one can find  N   such that

x kn n2 1, ⋅( )( , … , x kn mn2 , ⋅( ))   depends only on the collections  wk ( )′′{ ω ; k = − }N N, ,  ak
n( ){ ; k = − }N N, ,  and

xk
n( ){ ; k = − }N N, .  Further, since the measure  μ  has finitely many atoms on each segment and Wiener paths

were used for the construction of  x k tn n2 ( , ){ ; k = −n nn n2 2, , t T∈[ ]}0, ,  the sequence  x kn n2 1, ⋅( )( , … ,

x kn mn2 , ⋅( ))   converges to  x k1, ⋅( )( , … , x km , ⋅( ))   as  n → ∞.

The theorem is proved. 

Corollary 1.  For any  t ≥ 0,  the measure  μt  = ak x k tk
δ ( , )∈∑ Z   is stationary.

It follows from the corollary that the probability distribution of the measure  μt   is independent of the shift

by an arbitrary number  h ∈R ,  i.e.,  μt  =d  μt h( )⋅ + .
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useful discussions. 
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