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Abstract

Introducing an interpolation method we estimate the spectral gap for Brownian motion on general
domains with sticky-reflecting boundary diffusion associated to the first nontrivial eigenvalue for the
Laplace operator with corresponding Wentzell-type boundary condition. In the manifold case our proofs
involve novel applications of the celebrated Reilly formula.

1 Introduction and statement of main results

Brownian motion on smooth domains with sticky-reflecting diffusion along the boundary has a long history,

dating back at least to Wentzell [34]. As a prototype consider a diffusion on the closure Ω of a smooth

domain Ω with Feller generator (D(A), A)

D(A) = {f ∈ C0(Ω) |Af ∈ C0(Ω)}

Af = ∆fIΩ + (β∆τf − γ ∂f
∂ν

)I∂Ω

(1.1)

where ∂
∂ν is the outer normal derivative, ∆τ is the Laplace-Beltrami operator on the boundary ∂Ω and

β > 0, γ ∈ R. The case of pure sticky reflection but no diffusion along the boundary corresponds to

the regime β = 0; models with β > 0 have appeared recently in interacting particle systems with singular

boundary or zero-range pair interaction [1, 7, 13, 19, 27]. The first rigorous process constructions on special

domains Ω were given in [16, 33, 37] and were later extended to jump-diffusion processes on general

domains [6] cf. [32]. An efficient construction in symmetric cases was given by Grothaus and Voßhall via

Dirichlet forms in [15]. Qualitative regularity properties of the associated semigroups were studied e.g.

in [14]. In this note we address the problem of estimating the spectral gap for such processes, which is a

natural question also in algorithmic applications. To our knowledge this question has been considered only

for β = 0 by Kennedy [17] and Shouman [30]. However, for β > 0 the properties of the process change
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significantly, which is indicated by the fact that the energy form ofA now also contains a boundary part and

which also constitutes the main difference to the closely related work [18].

In the sequel we treat the case when γ > 0 which corresponds to an inward sticky reflection at ∂Ω. Our

ansatz to estimate the spectral gap is based on a simple interpolation idea. To this aim assume that Ω and

∂Ω have finite (Hausdorff) measure so that we may choose α ∈ (0, 1) for which

α

1− α
|∂Ω|
|Ω| = γ.

Introducing λΩ and λ∂ as normalized volume and Hausdorff measures on Ω and ∂Ω and setting

λα = αλΩ + (1− α)λ∂ ,

we find that −A is λα-symmetric with first nonzero eigenvalue/spectral gap characterized by the Rayleigh

quotient

σα,β = inf
f∈C1(Ω)

Varλα (f)>0

Eα,β(f)

Varλα f
,

where

Varλα f =

∫
Ω

f2dλα −
(∫

Ω

fdλα

)2

and

Eα,β(f) = α

∫
Ω

‖∇f‖2dλΩ + (1− α)

∫
∂Ω

β‖∇τf‖2dλ∂ ,

and ∇τ denotes the tangential derivative operator on ∂Ω.

This representation of σα,β formally interpolates between the two extremal cases of the spectral gap for

reflecting Brownian motion on Ω when α = 1 and for Brownian motion on the surface ∂Ω when α = 0. As

our main result, in Proposition 2.1 we propose a simple method to estimate σα,β from below using only σ0

and σ1 and estimates for certain bulk-boundary interaction terms which are independent of α. The method

can lead to quite good results which is illustrated by the example when Ω = B1 ⊂ Rd is a d-dimensional

unit ball. When d = 2 and β = 1, for instance, it yields the estimate

σα ≥
8(1 + α)σΩ

8(1− α)σΩ + 16α+ 3α(1− α)σΩ
with α =

γ

2 + γ
,

where σ0 ≈ 3.39 is the spectral gap for the Neumann Laplacian on the 2-dimensional unit ball, c.f. Sec-

tion 3.1. – In case when Ω is a d-dimensional manifold with Ricci curvature bounded from below by kR > 0

and with boundary ∂Ω whose second fundamental form II∂Ω is bounded from below by k2 > 0 we obtain

(again with β = 1, for simplicity) that

σα ≥ min

(
dkR

CΩdkR + (1− α)(d− 1)
,
dkR
C∂Ω

2(1− α) + αk2C∂Ω

2(1− α)dkR + αdk2kRCΩ + α(1− α)(d− 1)k2

)
,

where CΩ and C∂Ω are the usual (Neumann) Poincaré constants of Ω and ∂Ω respectively. To derive this

result we combine Escobar’s lower bound [9] on the first Steklov eigenvalue [12, 20] of Ω with a novel

estimate on the optimal zero mean trace Poincaré constant of Ω [22, 26], for which we obtain that∫
Ω

f2dx ≤ d− 1

dkR

∫
Ω

|∇f |2,
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for all f ∈ C1(Ω) with
∫
∂Ω
fdS = 0, and which is of independent interest. The proof is based on a novel

application of Reilly’s formula [28] which is also used for a complementary lower bound of σ independent

of the interpolation approach stating that

σα ≥ min

(
dk2

3d− 1

α

1− α
|∂Ω|
|Ω| ,

d

d− 1
kR

)
,

but which is generally weaker for small values of α, c.f. Section 3.2.

The interpolation approach also yields a sufficient condition for the continuity of σα at α ∈ {0, 1},
which in general may fail. In Section 2.2 we present sufficient conditions for continuity and discontinuity

of σα at {0, 1} which hints towards a phase transition in the associated family of variational problems.

We conclude with the discussion of two applications of the method in non-standard or singular situa-

tions, c.f. Sections 3.3 and 3.4.

2 An interpolation approach

2.1 Generalized framework

It will be convenient to work with a slight generalisation of the setup above. To this aim let Ω be an open

domain in Rd or a Riemannian manifold with a piecewise smooth boundary ∂Ω. Let Σ be a smooth compact

and connected subset of ∂Ω. We denote by ∂Σ the boundary of Σ in the space ∂Ω, i.e. ∂Σ = Σ ∩ ∂Ω\Σ.

We consider two probability measures λΩ and λΣ with support Ω and Σ, which are absolutely continuous

with respect to the Lebesgue and the Hausdorff measure on Ω and Σ, respectively.

Let D : C1(Ω) 7→ Γ0(Ω) and Dτ : C1(∂Ω) 7→ Γ0(∂Ω) denote given first order gradient operators

mapping differentiable functions into (tangential) vector fields on Ω and on ∂Ω, respectively, and for α ∈
[0, 1] let

λα := αλΩ + (1− α)λΣ,

Eα(f) := α

∫
Ω

‖Df‖2dλΩ + (1− α)

∫
Σ

‖Dτf‖2dλΣ, f ∈ D0,

where D0 ⊂ C1(Ω) is dense in C0(Ω). We assume that for α ∈ [0, 1] the quadratic form (Eα,D0) is a

pre-Dirichlet form on L2(Ω, λα) whose closure we shall denote by (Eα,D), c.f. [15] for details. We wish

to estimate from above σ−1
α = Cα, where Cα is the optimal Poincaré constant given by

Cα := sup
f∈D0

Eα(f)>0

Varλα f

Eα(f)
. (2.1)

In the interpolation method presented below it is assumed that Cα are known or can be estimated at the

two extremals α ∈ {0, 1}. For instance, when D = ∇, Dτ = ∇τ are the standard gradient resp. tangential

gradient operators and λΩ and λΣ are normalized Lebesgue resp. Hausdorff measures on Ω and Σ ⊂ ∂Ω,

CΩ := C1 is the optimal Poincaré constant associated to the Laplace operator on Ω with Neumann boundary

conditions, whereas CΣ := C0 is the optimal Poincaré constant associated to the Laplace-Beltrami operator

on Σ with Neumann boundary conditions on ∂Σ.
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The following proposition establishes an estimate of Cα in terms of CΩ and CΣ.

Proposition 2.1. Assume there exists constants KΣ,Ω, K1,K2 such that for any f ∈ D0

VarλΣ
f ≤ KΣ,Ω

∫
Ω

‖Df‖2dλΩ, (2.2)

and (∫
Ω

fdλΩ −
∫

Σ

fdλΣ

)2

≤ K1

∫
Ω

‖Df‖2dλΩ +K2

∫
Σ

‖Dτf‖2dλΣ, (2.3)

then it holds for any α ∈ (0, 1),

Cα ≤ max

(
CΩ + (1− α)K1, αK2,

(1− α)KΣ,ΩCΣ + αCΩCΣ + α(1− α)(KΣ,ΩK2 + CΣK1)

(1− α)KΣ,Ω + αCΣ

)
.

(2.4)

Proof. By definition of CΣ and by (2.2), for any f ∈ D0

VarλΣ f ≤ tKΣ,Ω

∫
Ω

‖Df‖2dλΩ + (1− t)CΣ

∫
Σ

‖Dτf‖2dλΣ,

for any t ∈ [0, 1]. Let α ∈ (0, 1). For any f ∈ D0 and any t ∈ [0, 1]

Varλα f = αVarλΩ f + (1− α) VarλΣ f + α(1− α)

(∫
Ω

fdλΩ −
∫

Σ

fdλΣ

)2

≤
(
CΩ +

(1− α)t

α
KΣ,Ω + (1− α)K1

)
α

∫
Ω

‖Df‖2dλΩ

+ ((1− t)CΣ + αK2) (1− α)

∫
Σ

‖Dτf‖2dλΣ.

Therefore,

Cα ≤ inf
t∈[0,1]

max

(
CΩ +

(1− α)t

α
KΣ,Ω + (1− α)K1, (1− t)CΣ + αK2

)
.

For any positive constants a, b, c, d, we have

inf
t∈[0,1]

max (a+ bt, c− dt) =


a if c− a < 0,

c− d if c− a > b+ d,
bc+ad
b+d if 0 ≤ c− a ≤ b+ d.

Therefore

Cα ≤


CΩ + (1− α)K1 if αK2 − (1− α)K1 + CΣ − CΩ < 0,

αK2 if αK2 − (1− α)K1 − CΩ > 1−α
α KΣ,Ω,

(1−α)KΣ,ΩCΣ+αCΩCΣ+α(1−α)(KΣ,ΩK2+CΣK1)
(1−α)KΣ,Ω+αCΣ

if 0 ≤ αK2 − (1− α)K1 + CΣ − CΩ

≤ CΣ + 1−α
α KΣ,Ω.

The last term is equivalent to the announced result.
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2.2 Continuity of Cα

In general, the function α 7→ Cα might have discontinuities at α ∈ {0, 1} in which cases an upper bound

for Cα which interpolates continuously between C0 and C1 cannot exist. For example, when Ω = (0, b)×
(0, 1) ⊂ R2 and Σ = [0, b]× {0}, straightforward computations yield

lim
α→0

Cα = max

{
CΣ,

4

π2

}
,

where CΣ = b2

π2 . Hence α 7→ Cα is discontinuous at α = 0 if and only if b < 2. – To generalize this to the

framework of Section 2.1 let C1
0(Ω) = {f ∈ C1(Ω) : f = 0 on Σ} and

C̃0 := sup
f∈C1

0(Ω)
f non constant

∫
Ω
f2dλΩ∫

Ω
‖Df‖2dλΩ

.

(If D = ∇, C̃0 is the inverse of the spectral gap for Brownian motion on Ω with killing on Σ and normal

reflection at ∂Ω \ Σ. ) We can then record the following statement as a partial corollary to Proposition 2.1.

Proposition 2.2. In the setting of proposition 2.1 it holds that

lim
α→0

Cα ≥ C̃0.

In particular, if CΣ < C̃0, then α 7→ Cα is discontinuous at α = 0. Conversely, if CΣ ≥ CΩ + K1 then

α 7→ Cα is continuous at 0. If CΩ ≥ K2 continuity at 1 holds.

Proof. To prove the second statement, take a non constant function g ∈ C1
0(Ω) and estimate

lim
α→0

Cα = lim
α→0

sup
f∈C1(Ω)

f non constant

Varλα f

Eα(f)
≥ lim
α→0

Varλα g

Eα(g)

= lim
α→0

αVarλΩ
g + (1− α) VarλΣ

g + α(1− α)
(∫

Ω
gdλΩ −

∫
Σ
gdλΣ

)2
α
∫

Ω
‖Dg‖2dλΩ + (1− α)

∫
Σ
‖Dτg‖2dλΣ

.

Since g = 0 on Σ, we obtain

lim
α→0

Cα ≥ lim
α→0

αVarλΩ
g + α(1− α)

(∫
Ω
gdλΩ

)2
α
∫

Ω
‖Dg‖2dλΩ

=

∫
Ω
g2dλΩ∫

Ω
‖Dg‖2dλΩ

.

Taking the supremum over g ∈ C1
0(Ω) yields the first statement.

To prove the second assertion note that α 7→ Cα is the pointwise supremum of a family of continuous

functions and therefore lower semi continuous. Thus CΣ = C0 ≤ limα→0 Cα. If CΣ ≥ CΩ + K1, the

r.h.s. of inequality (2.4) converges to CΣ as α goes to 0, which implies that limα→0 Cα ≤ CΣ. Similarly, if

CΩ ≥ K2, the r.h.s. of (2.4) converges to CΩ as α goes

Remark 2.3. For smooth enough boundary the constant K2 can always be taken equal to zero, hence by

proposition 2.2 continuity at α = 1 holds. An example where a phase transition appears at α = 0 is given

in section 3.3. In section 3.4 we present an example where CΩ < K2 but continuity of at α = 1 can be

established via Mosco-convergence [23] of the associated Dirichlet forms, see also [24].
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3 Examples

3.1 Brownian motion on balls with sticky boundary diffusion

As our first example let Ω := B1 be the unit ball in Rd, Σ = ∂Ω and D = ∇ and Dτ =
√
β∇τ with

D0 = C1(Ω).

Proposition 3.1. In the case when Ω = B1 ⊂ Rd the optimal Poincaré constant of the generator (1.1) is

bounded from above by

Cα ≤ max

(
CΩ + (1− α)

d+ 1

4d2
,

4(1− α)d+ 4αd2CΩ + α(1− α)(d+ 1)

4d(αd+ (1− α)β(d− 1))

)
, (3.1)

where α = γ
d+γ and CΩ is the optimal Poincaré constant for reflecting Brownian motion on B1 ⊂ Rd.

Proof. In order to apply Proposition 2.1, it is sufficient to compute the constants CΣ, KΣ,Ω, K1 and K2.

We claim that inequalities (2.2) and (2.3) holds with

CΣ =
1

β(d− 1)
, KΣ,Ω =

1

d
, K1 =

d+ 1

4d2
, K2 = 0.

First, according to [31, Theorem 22.1], the first eigenvalue of the Laplace-Beltrami operator on the unit

sphere of dimension d− 1 is equal to d− 1, thus CΣ = 1
β(d−1) .

Moreover, according to [3, Theorem 4], for every f ∈ C1(∂Ω) one has(∫
∂Ω

|f |qdλΣ

) 2
q

≤ q − 2

d

∫
Ω

‖∇u‖2dλΩ +

∫
∂Ω

f2dλΣ,

for 2 ≤ q < ∞ if d = 2 and 2 ≤ q < 2d−2
d−2 if d ≥ 3, where u is the harmonic extension of f to the unit

ball Ω. It implies the logarithmic Sobolev inequality EntλΣ
(f2) ≤ 2

d

∫
Ω
‖∇u‖2dλΩ. Repeating the proof

of Proposition 5.1.3 in [2], we get VarλΣ f ≤ 1
d

∫
Ω
‖∇u‖2dλΩ. Moreover, since the harmonic extension of

f is minimizing the energy functional E1 under any function with boundary condition f , the last inequality

implies for any f ∈ C1(Ω)

VarλΣ f ≤
1

d

∫
Ω

‖∇f‖2dλΩ, (3.2)

which implies KΣ,Ω = 1
d .

Furthermore, note that
∫
∂Ω
f(y)λΣ(dy) =

∫
Ω
f(πx)λΩ(dx), where πx = x

‖x‖ , x 6= 0. Hence, using

Jensen’s inequality and polar coordinates(∫
Ω

fdλΩ −
∫
∂Ω

fdλΣ

)2

≤
∫

Ω

(f(x)− f(πx))2λΩ(dx)

=
1

|Ω|

∫
∂Ω

∫ 1

0

(f(ry)− f(y))
2
rd−1drdy

=
1

|Ω|

∫
∂Ω

∫ 1

0

(∫ 1

r

d

ds
f(sy)ds

)2

rd−1drdy
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≤ 1

|Ω|

∫
∂Ω

∫ 1

0

(1− r)
(∫ 1

r

(
d

ds
f(sy)

)2

ds

)
rd−1drdy

=
1

|Ω|

∫
∂Ω

∫ 1

0

[∫ s

0

(1− r)rd−1dr

](
d

ds
f(sy)

)2

dsdy.

We separately estimate ∫ s

0

(1− r)rd−1dr =

(
s

d
− s2

d+ 1

)
sd−1 ≤ d+ 1

4d2
sd−1.

for any s ∈ [0, 1]. Hence,(∫
Ω

fdλΩ −
∫
∂Ω

fdλΣ

)2

≤ d+ 1

4d2|Ω|

∫
∂Ω

∫ 1

0

(∇f(sy) · y)
2
sd−1ds

=
d+ 1

4d2|Ω|

∫
∂Ω

∫ 1

0

‖∇f(sy)‖2 sd−1dsdy

=
d+ 1

4d2

∫
Ω

‖∇f(x)‖2λΩ(dx). (3.3)

which implies K1 = d+1
4d2 and K2 = 0.

For illustration, in d = 2, we compare the bound from Proposition 3.1 for β = 1, γ > 0 to the optimal

constant Cα which will be computed numerically. To evaluate the bound (3.1), note that in this case

CΩ =
1

σΩ
≈ 1

3.39
, (3.4)

where σΩ is the smallest positive eigenvalue of the Laplace operator with Neumann boundary condition on

the circle. It is given as the minimal positive solution to the equation J ′m(
√
γ) = 0, m ∈ N0, where Jm is

the Bessel function of the first kind of parameter m, defined by Jm(x) = 1
π

∫ π
0

cos(mt− x sin t)dt, x ≥ 0.

As a consequence, inequality (3.1) becomes

Cα ≤
8(1− α)σΩ + 16α+ 3α(1− α)σΩ

8(1 + α)σΩ
. (3.5)

For the numerical computation of Cα one notes that the generator Aα associated with Eα is defined on

D(Aα) ⊂ C2(Ω) as

Aαf = IΩ∆f + I∂Ω

(
∆τf − 2α

1− α
∂f

∂ν

)
,

where ∆τ and ∂
∂ν denote the Laplace-Beltrami operator and the outer normal derivative on the circle ∂Ω.

Hence, an eigenvector of −Aα for eigenvalue λ ≥ 0 is a function f ∈ D(Aα) such that

Aαf = −λf in Ω.

This equation is equivalent to the system of partial differential equations{
∆f = −λf in Ω,

∆τf − 2α
1−α

∂f
∂ν = −λf on ∂Ω,



Spectral gap for domains with boundary diffusion 8

which by the continuity of f can be rewritten as{
∆f = −λf in Ω,

∆f = ∆τf − 2α
1−α

∂f
∂ν on ∂Ω.

Passing to polar coordinates (x1, x2) = (r cos θ, r sin θ) ∈ Ω in d = 2 and separating variables, we obtain

the set of eigenfunctions {f cm,l, fsm,l}m,l∈N0
,

f cm,l(x1, x2) = Jm(
√
λm,lr) cos(mθ), m, l ∈ N0,

fsm,l(x1, x2) = Jm(
√
λm,lr) sin(mθ), m ∈ N, l ∈ N0,

where λm,l, l ∈ N0, are countable family of positive solutions to the equation

√
λJ ′′m(

√
λ) +

1 + α

1− αJ
′
m(
√
λ) = 0 (3.6)

for every m ∈ N0. Since the family {f cm,l, m, l ∈ N0} ∪ {fsm,l, m ∈ N0, l ∈ N0} is dense in L2(Ω, λα)

and the operator Aα is symmetric, the standard argument implies

Cα =
1

λα,?
, (3.7)

where λα,? = min
m,l∈N0

λm,l. The resulting curves are plotted in Figure 1.

0 0.2 0.4 0.6 0.8 1

0.2

0.8

0.4

0.6

1

α

Figure 1: The blue curve represents α 7→ Cα the optimal Poincaré constant when Ω is the unit ball of R2

with full boundary diffusion. The red curve is the upper estimate given by (3.5).

3.2 Smooth manifold with boundary

Let Ω be a smooth compact Riemannian manifold of dimension d with piecewise smooth boundary ∂Ω.

We denote by Ric the Ricci curvature of Ω and by II the second fundamental form on the boundary ∂Ω.
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Assume in this section that:

Assumption (M) : ∃kr > 0, k2 > 0, Ric |Ω ≥ kR id and II|∂Ω ≥ k2 id .

As before we consider Σ = ∂Ω, D = ∇ and Dτ = ∇τ with D0 = C1(Ω).

Proposition 3.2. Under assumption (M), it holds that

Cα ≤ max

(
CΩ +

(1− α)(d− 1)

dkR
,
CΣ

dkR
· 2(1− α)dkR + αdk2kRCΩ + α(1− α)(d− 1)k2

2(1− α) + αk2CΣ

)
=: M1.

(3.8)

This statement is obtained via Proposition 2.1 and the two statements below.

Proposition 3.3. Under assumption (M), inequality (2.3) is satisfied with K2 = 0 and

K1 =
d− 1

dkR
.

Proof. Our goal is to obtain an lower bound of

inf
f∈C1(Ω)

∫
Ω
‖∇f‖2dλΩ(∫

Ω
fdλΩ −

∫
Σ
fdλΣ

)2 ,
where we recall that Σ = ∂Ω. We note that

inf
f∈C1(Ω)

∫
Ω
‖∇f‖2dλΩ(∫

Ω
fdλΩ −

∫
Σ
fdλΣ

)2 = inf
f∈C1(Ω)∫
Σ
fdλΣ=0

∫
Ω
‖∇f‖2dλΩ(∫
Ω
fdλΩ

)2 ≥ inf
f∈C1(Ω)∫
Σ
fdλΣ=0

∫
Ω
‖∇f‖2dλΩ∫
Ω
f2dλΩ

=: σ.

Let f ∈ C1(Ω) be a minimizer for σ. Then
∫

Σ
fdλΣ = 0 and∫

Ω

∇f · ∇ξdλΩ = σ

∫
Ω

fξdλΩ

for each ξ ∈ C1(Ω) with
∫

Σ
ξdλΣ = 0. By integration by parts, the latter equality is equivalent to

−
∫

Ω

∆fξdλΩ +
|Σ|
|Ω|

∫
Σ

∂f

∂ν
ξdλΣ = σ

∫
Ω

fξdλΩ

for each ξ ∈ C1(Ω) satisfying
∫

Σ
ξdλΣ = 0. In particular, choosing ξ ∈ C∞0 (Ω) (which obviously satisfies∫

Σ
ξdλΣ = 0), we get that f should satisfy −∆f = σf in Ω. Hence

∫
Σ
∂f
∂ν ξdλΣ = 0 for each ξ with zero

mean, so it follows that
∫

Σ
∂f
∂ν

(
ξ −

∫
Σ
ξdλΣ

)
dλΣ = 0 for every ξ ∈ C1(Ω), which is equivalent to∫

Σ

(
∂f

∂ν
−
∫

Σ

∂f

∂ν
dλΣ

)
ξdλΣ = 0

for every ξ ∈ C1(Ω). It follows that ∂f∂ν is constant on Σ. Therefore, f satisfies
∆f = −σf in Ω,
∂f
∂ν ≡ c on ∂Ω,∫
Σ
fdλΣ = 0,

(3.9)
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for some constant c.

Moreover, recall Reilly’s formula (see [28])∫
Ω

(
(∆f)2 − ‖∇2f‖2

)
dx =

∫
Ω

Ric(∇f,∇f)dx

+

∫
Σ

(
H(

∂f

∂ν
)2 + II(∇τf,∇τf) + 2∆τf

∂f

∂ν

)
dS

(3.10)

where dx and dS denote the Riemannian volume resp. surface measure on Ω and ∂Ω, ∇2f is the Hessian

of f and H is the mean curvature of Σ (i.e. the trace of II). Since f satisfies (3.9),∫
Ω

(∆f)2dx = −σ
∫

Ω

f∆fdx = σ

∫
Ω

‖∇f‖2dx− σ
∫

Σ

∂f

∂ν
fdS

= σ

∫
Ω

‖∇f‖2dx− σc
∫

Σ

fdS = σ

∫
Ω

‖∇f‖2dx,

because
∫

Σ
fdS = |Σ|

∫
Σ
fdλΣ = 0. Furthermore, note that ‖∇2f‖2 =

∑
i,j(∂

2
ijf)2 ≥ ∑d

i=1(∂2
iif)2 ≥

1
d (
∑d
i=1 ∂

2
iif)2 = 1

d (∆f)2. Therefore, the l.h.s. of (3.10) is bounded by∫
Ω

(
(∆f)2 − ‖∇2f‖2

)
dx ≤ d− 1

d

∫
Ω

(∆f)2dx ≤ d− 1

d
σ

∫
Ω

‖∇f‖2dx.

On the other hand, by assumption (M), H ≥ 0, II(∇τf,∇τf) ≥ 0 and∫
Ω

Ric(∇f,∇f)dx ≥ kR
∫

Ω

‖∇f‖2dx.

Since ∫
Σ

∆τf
∂f

∂ν
dS = c

∫
Σ

∆τfdS = 0

the r.h.s. of (3.10) is bounded from below by kR
∫

Ω
‖∇f‖2dx. It turns out that

d− 1

d
σ

∫
Ω

‖∇f‖2dx ≥ kR
∫

Ω

‖∇f‖2dx,

which implies that σ ≥ d
d−1kR. It follows that inequality (2.3) holds with K1 = d−1

dkR
.

Remark 3.4. Instead of using K1 from Proposition 3.3 another admissible choice is

K ′1 =
|Ω|
|∂Ω|B

2(1 + CΩ) <∞,

where B is the optimal Sobolev trace constant of Ω, i.e. the norm of the embedding H1,2(Ω) ↪→ L2(∂Ω).

B−2 is the first nontrivial eigenvalue of a Steklov-type eigenvalue problem{
−∆f + f = 0 in Ω
∂f
∂ν = σf on ∂Ω,

for which however explicit lower bounds in terms of the geometry of Ω seem yet unknown [4, 5, 11, 21, 29].

Proposition 3.5. Under assumption (M), inequality (2.2) holds with KΣ,Ω = 2
k2

.



Spectral gap for domains with boundary diffusion 11

Proof. The optimal choice for KΣ,Ω is σ−1, where σ given by

σ = inf
f∈C1(Ω)∫
Σ
fdλΣ=0

∫
Ω
‖∇f‖2dλΩ(∫
Σ
f2dλΣ

)2
is the first nontrivial eigenvalue of the Steklov-problem c.f. [12]{

∆f = 0 in Ω,
∂f
∂ν = σf on ∂Ω.

Escobar [9] showed σ ≥ k2

2 in this case.

Alternatively, we obtain another upper bound for Cα by a direct application of Reilly’s formula.

Proposition 3.6. Under assumption (M) it holds that

Cα ≤ max

(
(3d− 1)(1− α)

dαk2

|Ω|
|∂Ω| ,

d− 1

dkR

)
=: M2. (3.11)

Proof. We estimate equivalently from below the first nontrivial eigenvalue σ = C−1
α for the problem{

∆f + σf = 0 in Ω

∆τf − γ ∂f∂ν + σf = 0 on ∂Ω,

where γ = α
1−α

|∂Ω|
|Ω| . As in the proof of Proposition 3.3 we apply Reilly’s formula (3.10) to the correspond-

ing eigenfunction f . In this case, for the l.h.s. we estimae∫
Ω

(
(∆f)2 − ‖∇2f‖2

)
dx ≤ d− 1

d

∫
Ω

(∆f)2dx = −d− 1

d
σ

∫
Ω

f∆fdx

=
d− 1

d
σ

∫
Ω

‖∇f‖2dx− d− 1

d
σ

∫
Σ

∂f

∂ν
fdS

=
d− 1

d
σ

∫
Ω

‖∇f‖2dx− d− 1

d

σ

γ

∫
Σ

(∆τf + σf)fdS

=
d− 1

d
σ

∫
Ω

‖∇f‖2dx+
d− 1

d

σ

γ

∫
Σ

‖∇τf‖2dS − d− 1

d

σ2

γ

∫
Σ

f2dS

≤ d− 1

d
σ

∫
Ω

‖∇f‖2dx+
d− 1

d

σ

γ

∫
Σ

‖∇τf‖2dS.

Since ∫
Σ

∂f

∂ν
∆τfdS =

1

γ

∫
Σ

(∆τf + σf)∆τfdS

=
1

γ

∫
Σ

(∆τf)2dS − σ

γ

∫
Σ

‖∇τf‖2dS ≥ −σ
γ

∫
Σ

‖∇τf‖2dS

the r.h.s. of (3.10) is bounded from below by

kR

∫
Ω

‖∇f‖2dx− 2σ

γ

∫
Σ

‖∇τf‖2dS +

∫
Σ

h|∂f
∂ν
|2dS + k2

∫
Σ

‖∇τf‖2dS

≥ kR
∫

Ω

‖∇f‖2dx− 2σ

γ

∫
Σ

‖∇τf‖2dS + k2

∫
Σ

‖∇τf‖2dS.
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Combining the two bounds for (3.10) yields(
d− 1

d
σ − kR

)∫
Ω

‖∇f‖2dx ≥
(
k2 −

3d− 1

d

σ

γ

)∫
Σ

‖∇τf‖2dS,

which implies that either

k2 −
3d− 1

d

σ

γ
≤ 0, i.e. σ ≥ dk2γ

3d− 1

or
d− 1

d
σ − kR ≥ 0, i.e. σ ≥ d

d− 1
kr.

Consequently,

σ ≥ min

(
dk2γ

3d− 1
,

d

d− 1
kR

)
.

Corollary 3.7. Under assumption (M), it holds that

Cα ≤ min(M1,M2),

where M1 = M1(α) and M2 = M2(α) are defined by (3.8) and (3.11), respectively.

When α goes to 0, M1 tends to max(CΩ,
d−1
dkR

, CΣ) and M2 tends to +∞, so the estimation via the

interpolation method is always stronger. When α goes to 1, M1 tends to CΩ and M2 tends to d−1
dkR

, so the

relative strength of each method depends on the values of CΩ, d and kR.

3.3 Brownian motion on balls with partial sticky reflecting boundary diffusion

As in Section 3.1, let Ω := B1 be the unit ball of R2. Now, define for a fixed δ ∈ (0, 1)

Σ = {(cos θ, sin θ) ∈ ∂Ω : −δπ ≤ θ ≤ δπ}, ΣN := ∂Ω\Σ.

Proposition 3.8. It holds that

Cα ≤ max

(
CΩ + (1− α)K1(δ),

4(1− α)δ2 + 8αδ3CΩ + 8α(1− α)δ3K1(δ)

(1− α) + 8αδ3

)
, (3.12)

where CΩ = 1
σΩ
≈ 1

3.39 and K1(δ) =
(√

1− δπ + 1
4

√
3
δ

)2

.

As previously, we will start by computing the needed constants CΩ, CΣ, KΣ,Ω, K1 and K2. The first

constant, CΩ = 1
σΩ
≈ 1

3.39 , remains unchanged.

Lemma 3.9. The following inequalities hold true

VarλΣ f ≤ CΣ

∫
Σ

‖∇τf‖2dλΣ, (3.13)

VarλΣ
f ≤ KΣ,Ω

∫
Ω

‖∇f‖2dλΩ, (3.14)

where CΣ = 4δ2 and KΣ,Ω = 1
2δ .
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Proof. Inequality (3.13) corresponds to the Poincaré inequality of the Laplacian on the one-dimensional

interval [−δπ, δπ] with Neumann boundary conditions. It is well known (see [2, Prop. 4.5.5]) that the

optimal Poincaré constant is given by CΣ = 4δ2.

Moreover, let us decompose the normalized Hausdorff measure λ∂ on the sphere ∂Ω into the normalized

Hausdorff measure λΣ on Σ and the normalized Hausdorff measure λN on ΣN: λ∂ = δλΣ + (1 − δ)λN.

Therefore

Varλ∂ f = δVarλΣ
f + (1− δ) VarλN

f + δ(1− δ)
(∫

Σ

fdλΣ −
∫

ΣN

fdλN

)2

≥ δVarλΣ
f,

Furthermore, recall that by inequality (3.2), for any f ∈ C1(Ω), Varλ∂ f ≤ 1
2

∫
Ω
‖∇f‖2dλΩ. It im-

plies (3.14).

Lemma 3.10. It holds that (∫
Ω

fdλΩ −
∫

Σ

fdλΣ

)2

≤ K1(δ)

∫
Ω

‖∇f‖2dλΩ

with K1(δ) =
(√

1− δπ + 1
4

√
3
δ

)2

.

Proof. For every x ∈ Ω\{0} with polar coordinates (r, θ), r ∈ (0, 1), θ ∈ (−π, π], denote by px the point

of coordinates (1, δθ) on Σ. Obviously,
∫

Σ
f(y)λΣ(dy) =

∫
Ω
f(px)λΩ(dx) and by Jensen’s inequality

I :=

(∫
Ω

fdλΩ −
∫

Σ

fdλΣ

)2

≤
∫

Ω

(f(x)− f(px))
2
λΩ(dx).

Define g(r, θ) := f(r cos(θ), r sin(θ)). Then

I ≤ 1

π

∫ 1

0

∫ π

−π
(g(r, θ)− g(1, δθ))2rdrdθ ≤ (

√
J1 +

√
J2)2, (3.15)

where J1 = 1
π

∫ 1

0

∫ π
−π(g(r, θ) − g(r, δθ))2rdrdθ and J2 = 1

π

∫ 1

0

∫ π
−π(g(r, δθ) − g(1, δθ))2rdrdθ. On the

one hand

J1 =
1

π

∫ 1

0

∫ π

−π

(∫ θ

δθ

∂g

∂θ
(r, u)du

)2

rdrdθ ≤ 1− δ
π

∫ 1

0

∫ π

−π
|θ|
∫ π

−π

(
∂g

∂θ

)2

(r, u)du rdrdθ

≤ (1− δ)π2 1

π

∫ 1

0

∫ π

−π

(
1

r

∂g

∂θ

)2

(r, u)du rdr ≤ (1− δ)π2

∫
Ω

‖∇f‖2dλΩ. (3.16)

On the other hand

J2 ≤
1

π

∫ 1

0

∫ π

−π
(1− r)

∫ 1

r

(
∂g

∂r

)2

(s, δθ)ds rdrdθ ≤ 1

π

∫ 1

0

∫ π

−π

(
∂g

∂r

)2

(s, δθ)

∫ s

0

(1− r)rdrdsdθ.

For every s ∈ [0, 1],
∫ s

0
(1− r)rdr = s2

2 − s3

3 ≤ 3s
16 , thus

J2 ≤
3

16δπ

∫ 1

0

∫ δπ

−δπ

(
∂g

∂r

)2

(s, u)sdsdu ≤ 3

16δ

∫
Ω

‖∇f‖2dλΩ. (3.17)

The proof of the lemma is completed by putting together (3.15), (3.16) and (3.17).
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Figure 2: The above two figures show the upper estimate given by the r.h.s of (3.12). In the case δ = 0.9
(Figure 2b), the curve interpolates between the extremal constantsCΣ andCΩ, as opposed to the half-sphere
case (Figure 2a).

Proof of Proposition 3.8. We apply Proposition 2.1 with CΩ = 1
σΩ

, CΣ = 4δ2, KΣ,Ω = 1
2δ , K1(δ) =(√

1− δπ + 1
4

√
3
δ

)2

and K2 = 0.

For δ sufficiently large, the map α 7→ Cα is continuous at α = 0. Indeed, by Proposition 2.2, a sufficient

condition is CΣ(δ) > CΩ +K1(δ), that is

4δ2 >
1

σΩ
+

(
√

1− δπ +
1

4

√
3

δ

)2

,

which is satisfied for any δ ≥ 0.862.

3.4 Ball with a needle

Our final example is the unit ball Ω = B1 of R2 with a needle L of length L attached to one point of the

boundary, i.e. L := {(x, 0) : 1 ≤ x ≤ L + 1}, see Figure 3. The attachment point and the endpoint of the

needle are denoted by x0 := (1, 0) and xL = (L+ 1, 0), respectively.

In that setting, we define Ω = B1 ∪ L, Σ = ∂B1 ∪ L and

λα = αλΩ + (1− α)λΣ,

where λΩ is as previously the normalized Lebesgue measure on Ω and λΣ = 2π
2π+Lλ∂ + L

2π+LλL, with λ∂

and λL being the normalized Hausdorff measures on ∂Ω and L, respectively. We choose

D0 =

{
f ∈ C0(Ω)) ∩ C1(Ω \ {x0}) |

∂f

∂e1
+
∂f

∂e2
+
∂f

∂e3
= 0 at x0

}
,

where e1 = (0, 1), e2 = (0,−1) and e3 = (1, 0) are the three ”tangent” vectors to Σ at point x0, and

D := ∇, Dτ :=
√
β∇τ , which is well defined in Σ \ {x0}. With this choice, for α ∈ [0, 1] (Eα,D0) is
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(0, 0) x0 xL

e1

e2

e3

L

∂Ω

Figure 3: The ball (in green) is denoted by Ω, the boundary of the ball is denoted by ∂Ω and the needle (in
blue) is denoted by L.

a pre-Dirichlet form on L2(Ω, λα), whose closure generates Brownian motion on Ω with sticky boundary

diffusion on Σ, i.e. whose generator is given by

Aα(f) = ∆fIΩ + β∆ΣfIΣ −
α

1− α
2π + L

π

∂f

∂ν
I∂Ω,

with ∆Σ being the generator of the canonical diffusion on Σ with reflecting boundary condition at xL. As

before, the optimal Poincaré constant Cα for Aα is given by

Cα := sup
f∈D0

Eα(f)>0

Varλα f

Eα(f)
,

and let CΩ := C1 and CΣ := C0. In this case the following estimate is obtained.

Proposition 3.11.

Cα ≤ max

(
1

σΩ
+

3

8
(1− α),

1

βγL
+ α

L2(π + L)

β(2π + L)

)
,

where γL > 0 is the smallest positive solution to

2 cos(
√
γL)(1− cos(

√
γ2π)) + sin(

√
γL) sin(

√
γ2π) = 0. (3.18)

Note that γL ≤ 1 for any L > 0 and if L = 2π, γ2π =
(

arccos(−1/3)
2π

)2

≈ 0.0925.

Let us compute the constants needed to apply Proposition 2.1. As we do not expect an inequality of

type (2.2) to hold in that case, we set KΣ,Ω := +∞. Moreover, CΣ can be computed exactly as follows.

Lemma 3.12. In this case, CΣ = 1
βγL

.

Proof. The constant 1
CΣ

is the smallest non-zero eigenvalue γ of the following problem:
β∆τf = −γf on Σ\{x0},
∂f
∂ν = 0 at point xL,
∂f
∂e1

+ ∂f
∂e2

+ ∂f
∂e3

= 0 at point x0,
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where ∆τ is the Laplace-Beltrami operator on ∂Ω and L. A general solution to that boundary value problem

is given by

f(x) =

A cos(
√

γ
β y) +B sin(

√
γ
β y) if x = (y, 0) ∈ L,

C cos(
√

γ
β θ) +D sin(

√
γ
β θ) if x = (cos θ, sin θ) ∈ ∂Ω,

where A, B, C and D have to satisfy the continuity assumption of f at point x0 and both boundary condi-

tions, that is: 

A = C = C cos(

√
γ

β
2π) +D sin(

√
γ

β
2π),

0 = −A sin(

√
γ

β
L) +B cos(

√
γ

β
L),

0 = B +D + C sin(

√
γ

β
2π)−D cos(

√
γ

β
2π).

A short computation shows that this system has a non-trivial solution if and only if γβ solves (3.18). There-

fore, 1
CΣ

= βγL. Obviously, γ = 1 is a solution to (3.18), thus γL ≤ 1.

Next, we look for the constants K1 and K2.

Lemma 3.13. Inequality (2.3) holds with K1 = 3
8 and K2 = L2(π+L)

β(2π+L) .

Proof. Recall that Σ = ∂Ω ∪ L. Let us insert the average of f over ∂Ω as follows:(∫
Ω

fdλΩ −
∫

Σ

fdλΣ

)2

≤ 2

(∫
Ω

fdλΩ −
∫
∂Ω

fdλ∂

)2

+ 2

(∫
∂Ω

fdλ∂ −
∫

Σ

fdλΣ

)2

≤ 3

8

∫
Ω

‖∇f‖2dλΩ + 2

(∫
∂Ω

fdλ∂ −
∫

Σ

fdλΣ

)2

,

where the second inequality follows directly from (3.3). Moreover, recalling that λΣ = 2π
2π+Lλ∂ + L

2π+LλL(∫
∂Ω

fdλ∂ −
∫

Σ

fdλΣ

)2

=
L2

(2π + L)2

(∫
∂Ω

fdλ∂ −
∫
L
fdλL

)2

.

For every x = (cos θ, sin θ) ∈ ∂Ω, with θ ∈ (−π, π], we denote by px the point of L with coordinates

(1 + L− |θ|Lπ , 0). It follows that(∫
∂Ω

fdλ∂ −
∫
L
fdλL

)2

=

(∫
∂Ω

(f(x)− f(px))dλ∂

)2

≤
∫
∂Ω

(f(x)− f(px))2dλ∂ .

Denoting by λ+
∂ and λ−∂ the normalized Hausdorff measures on ∂Ω+ := {(x, y) ∈ ∂Ω : y > 0} and

∂Ω− := {(x, y) ∈ ∂Ω : y < 0}, respectively,∫
∂Ω

(f(x)− f(px))2dλ∂ =
1

2

∫
∂Ω+

(f(x)− f(px))2dλ+
∂ +

1

2

∫
∂Ω−

(f(x)− f(px))2dλ−∂ .

Moreover, for any C1-function g : [−π, L]→ R,

1

π

∫ π

0

∣∣g(−θ)− g(L− θL
π )
∣∣2 dθ ≤ π + L

2

∫ L

−π
|g′(t)|2dt,
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so we deduce, identifying ∂Ω+ with [−π, 0] and L with [0, L], that∫
∂Ω+

(f(x)− f(px))2dλ+
∂ ≤

π + L

2

(
π

∫
∂Ω+

‖∇τf‖2dλ+
∂ + L

∫
L
‖∇τf‖2dλL

)
and using symmetry to deal with ∂Ω−, we obtain∫
∂Ω

(f(x)− f(px))2dλ∂ ≤
π + L

4

(
π

∫
∂Ω+

‖∇τf‖2dλ+
∂ + π

∫
∂Ω−
‖∇τf‖2dλ−∂ + 2L

∫
L
‖∇τf‖2dλL

)
≤ (π + L)(2π + L)

2

∫
Σ

‖∇τf‖2dλΣ.

Putting together the above inequalities, we get(∫
Ω

fdλΩ −
∫

Σ

fdλΣ

)2

≤ 3

8

∫
Ω

‖∇f‖2dλΩ + 2
L2

(2π + L)2

(π + L)(2π + L)

2β

∫
Σ

β‖∇τf‖2dλΣ

which leads to inequality (2.3) with K1 = 3
8 and K2 = L2(π+L)

β(2π+L) .

Proof of Proposition 3.11. Since KΣ,Ω =∞, we immediately get from Proposition 2.1 that

Cα ≤ max (CΩ + (1− α)K1, αK2, CΣ + αK2) = max (CΩ + (1− α)K1, CΣ + αK2) .

Therefore,

Cα ≤ max

(
1

σΩ
+

3

8
(1− α),

1

βγL
+ α

L2(π + L)

β(2π + L)

)
, (3.19)

where σΩ ≈ 3.39.

Remark 3.14. If β is large enough, that is if the diffusion velocity is larger on Σ than on Ω, then the first

term in (3.19) dominates. Precisely, if β ≥ σΩ

(
1
γL

+ L2(π+L)
2π+L

)
, then (3.19) rewrites for any α

Cα ≤
1

σΩ
+

3

8
(1− α).

Conversely, if β ≤ 1
γL

(
1
σΩ

+ 3
8

)−1

, then (3.19) rewrites for any α

Cα ≤
1

βγL
+ α

L2(π + L)

β(2π + L)
.
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