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ABSTRACT. The convergence of stochastic interacting particle systems in the mean-field limit to
solutions to conservative stochastic partial differential equations is shown, with optimal rate of con-
vergence. As a second main result, a quantitative central limit theorem for such SPDEs is derived,
again with optimal rate of convergence.

The results apply in particular to the convergence in the mean-field scaling of stochastic gradient
descent dynamics in overparametrized, shallow neural networks to solutions to SPDEs. It is shown
that the inclusion of fluctuations in the limiting SPDE improves the rate of convergence, and retains
information about the fluctuations of stochastic gradient descent in the continuum limit.

1. INTRODUCTION

The analysis of machine learning algorithms is confronted with algorithms in high dimension,
with a large number of degrees of freedom (parameters), huge data-sets, and high computing ca-
pacities. This motivates the analysis of scaling limits, corresponding to the asymptotic regimes
in which these parameters become large, leading to a variety of relative scaling regimes. A par-
ticularly relevant one is the so-called overparametrised regime, which corresponds to the case in
which the number of parameters M is much larger than the (large) number of training samples
(data) N . Indeed, a large class of real-world algorithms fall into this class, see, for example [10].

The success of such algorithms comes as a statistical surprise. Classical belief and estimates
in statistics would suggest that vast overparametrization leads to overfitting [83], contradicting
empirical evidence in machine learning. A systematic explanation of this observation constitutes a
key challenge in the scientific understanding of machine learning. For recent progress concerning
the related “double-descent” phenomenon of the error observed in machine learning we refer to
[8, 40, 65, 74]. A central standing conjecture is that the (stochastic) learning algorithm employed
in empirical risk minimization introduces an “implicit bias” towards minimizers that generalize
well, thereby avoiding those that would lead to overfitting.

In order to prove or disprove this conjecture, universal models for machine learning are needed
as the basis for the analysis of the stochastic dynamics of (stochastic) learning algorithms and their
implicit bias. Motivated by this, several scaling limits of stochastic gradient descent dynamics have
been analysed in the literature. In particular, the overparametrised regime, with its “mean-field”
[15, 45, 78] and “lazy training” [14, 44, 84] scalings has achieved significant attention in recent
years. In these works, the joint scaling limit of small learning rate α→ 0 and overparametrization
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2 SPDES AND SGD

M → ∞ is considered. Roughly speaking, it is shown, for example in [66], that the empirical
distribution νM,α of the network parameters following stochastic gradient descent converges to
the solution µ0 of a (deterministic) gradient flow in the sense that

d(νM,α, µ0) = O(M− 1
2 ) +O(α

1
2 ) for α→ 0, M → ∞.

This corresponds to a law of large numbers result, since it proves the concentration of the random
measures νM,α onto a deterministic path. The mean behavior of stochastic gradient descent can
then be analysed by considering the limiting dynamics µ0. However, after passing to µ0 all of
the information about the inherent fluctuations of stochastic gradient descent is lost. Since there
is substantial empirical evidence that stochasticity is decisive for the implicit bias of stochastic
gradient descent [2, 49, 82], universal limiting models incorporating these fluctuations are needed.
In this work, we rigorously identify a class of nonlinear conservative SPDEs which serve as such
a fluctuating continuum model.

All previous known results rely on considering the joint scaling limit M → ∞, α → 0. In
contrast, in practice, the sizes of networks M are typically large, while the learning rate α is
moderately small (e.g. [81]). This corresponds to the scaling limit M → ∞ with α > 0 small
but fixed. The identification of a scaling limit in this regime is demanding, since it informally
corresponds to the solutions of a nonlinear SPDE with challenging well-posedness properties.
The development of a corresponding well-posedness framework and the rigorous treatment of the
scaling regime M → ∞, α > 0 are two of the main contributions of the present work.

We now give a more precise account of the setup and results of the present work. Supervised
learning starts from a given training set of data1 D ⊆ Rn0 ×Rk0 with inputs Θ = {θ : (θ, f(θ)) ∈
D} and labels {f(θ) : (θ, f(θ)) ∈ D}. One then chooses a space of hypotheses. Here, we consider
a fully-connected feed-forward network with one hidden layer

(1.1) fM (x, θ) =
1

M

M∑
i=1

ciϕ(Uiθ + bi) =
1

M

M∑
i=1

Φ(xi, θ)

with weights/parameters xi := (ci, Ui, bi) ∈ Rk0×Rd0×n0×Rd0 =: Rd, Φ(xi, θ) = ciϕ(Uiθ+bi),
and ϕ a nonlinear activation function. In practice, ϕ is often chosen as the rectified linear unit
(ReLU). In fact, the results of this paper apply to more general choices of Φ, and we only restrict
for simplicity to the specific choice in this introduction. Thereby, we obtain a parametrization of
the space of hypotheses M = {fM (x, θ) : x ∈ RMd}. The aim of risk minimization then is to
select a suitable model fM (x, ·) ∈ M minimizing the risk

L(x) =

∫
D
|f(θ)− fM (x, θ)|2dϑ(θ),(1.2)

where we concentrate on square loss l(x, y) = 1
2 |x−y|

2, and ϑ is some measure on the data set D.
For example, D finite with ϑ the uniform distribution corresponds to empirical risk minimization.
This leads to the optimization problem Err :=! minx L(x). In machine learning, this optimization
is approximated by variants of the stochastic gradient descent algorithm [73], corresponding to a
random choice of the direction of descent. More precisely, the optimization dynamics are specified
via

(1.3) x(n+ 1) = x(n)− α

P

P∑
p=1

∇xl(f(x(n), θp), f(θp)),

1For simplicity we assume that the ground-truth is given by a function f .
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where θp are i.i.d. samples drawn from ϑ, α is the learning rate, P is the mini-batch size, and
x(0) is initialized i.i.d from a measure µ0. Stochastic gradient descent corresponds to P = 1 and
gradient descent to P = N . Note that, since Eϑ∇xl(f(·), fM (x, ·)) = ∇xL(x), this is an unbi-
ased estimator of gradient descent. The convergence of these (stochastic) optimization algorithms
depends crucially on the properties of the empirical risk L. In machine learning, this risk land-
scape is typically non-convex, non-smooth, and degenerate, making the rigorous analysis of the
convergence of stochastic gradient descent challenging.

In a series of works, see, e.g. [30, 61], it has been shown that for small learning rate α > 0, the
time discrete dynamics (1.3) can be approximated up to first order by the following SDE

(1.4) dXM,α
t = U(XM,α

t , µM,α
t )dt+ σ

1
2Σ

1
2 (XM,α

t )dB(t),

where µM,α
t := 1

M

∑
i δ(XM,α

t )i
is the empirical measure of the above system, B is a Brownian

motion in RMd, U(x, µ) = (V (xi, µ))i∈[M ], Σ(x, µ) = (Ã(xi, xj , µ))i,j∈[M ] for x = (xi)i∈[M ] ∈
RMd, and

V (xi, µ) = ∇F (xi)− ⟨∇xiK(xi, ·), µ⟩,

G(xi, µ, θ) =

(
f(θ)−

∫
Φ(y, θ)µ(dy)

)
∇xiΦ(xi, θ)

− Eϑ

[(
f(θ)−

∫
Φ(y, θ)µ(dy)

)
∇xiΦ(xi, θ)

]
,

Ã(xi, xj , µ) = Eϑ [G(xi, µ, θ)⊗G(xj , µ, θ)]

(1.5)

and σ = α
P is the fluctuation intensity. Notably, compared to plain gradient descent, (1.5) retains

information on the fluctuations in (1.3), and offers a higher order of approximation.
In the case of shallow networks (1.1) and square loss (1.2) we observe, following [12, 74, 76],

that we can represent the square loss as follows

L(x) = Cf − 1

M

M∑
i=1

F (xi) +
1

2M2

M∑
i,j=1

K(xi, xj)

where Cf = Eϑ|f(θ)|2, F (xi) = Eϑ [f(θ)Φ(xi, θ)], K(xi, xj) = Eϑ [Φ(xi, θ)Φ(xj , θ)], i, j ∈
[M ]. This representation of the loss reveals intricate relations to statistical physics by interpreting
the parameters as particles interacting via the interaction potential given by the risk (see [76]): The
empirical distribution µM,α of the parameter dynamics (1.4) can be identified as a solution to the
martingale problem

(1.6) dµM,α
t = −∇ · (V (·, µM,α

t )µM,α
t )dt+

σ

2
D2 : (A(·, µM,α

t )µM,α
t )dt+ σ

1
2∇ · (dMM,α

t )

with initial datum µM0 = 1
M

∑M
i=1 δ(XM,α

0 )i
and where MM,α is a continuous martingale satisfying

[⟨ψ,MM,α
· ⟩]t =

∫ t

0

∫ ∫
ψ(x)⊗ ψ(y) : Ã(x, y, µM,α

s )µM,α
s (dx)µM,α

s (dy)ds

and A(x, µ) = Ã(x, x, µ). Based on this, in several works [12, 74, 76] it has been informally
suggested that in the overparametrised limit (M → ∞) the dynamics will converge to solutions of
the martingale problem

(1.7) dµαt = −∇ · (V (·, µαt )µαt )dt+
σ

2
D2 : (A(·, µαt )µαt )dt+ σ

1
2∇ · (dMα

t ),
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where M is a continuous martingale satisfying

(1.8) [⟨ψ,Mα
· ⟩]t =

∫ t

0

∫ ∫
ψ(x)⊗ ψ(y) : Ã(x, y, µαs )µ

α
s (dx)µ

α
s (dy)ds.

The proof of this conjecture is one of the main results of this work. Precisely, we prove that
in the M → ∞ scaling limit, the empirical measure µM,α converges to a solution µα of the
conservative SPDE (1.9), with the optimal rate of convergence

d(µM,α, µα) = O(M−1/2) for M → ∞ .

The rigorous proof relies on the development of a well-posedness framework for (1.7), that is, to
an infinite dimensional martingale problem with nonlocal coefficients and degenerate ellipticity.
We approach this by analyzing instead the probabilistically strong well-posedness of SPDEs that
have (1.7) as their martingale problem. However, the naive guess for such an SPDE, corresponding
to informally taking the square-root of the coefficients in the quadratic variation (1.8), leads to an
SPDE with irregular diffusion coefficients, for which the validity of strong uniqueness appears
unclear. Instead, as one of the first main ideas of this work, we introduce an alternative “coupling”
SPDE associated to (1.7), by

(1.9) dµαt = −∇ · (V (·, µαt )µαt )dt+
σ

2
D2 : (A(·, µαt )µαt )dt+ σ

1
2∇ ·

∫
Θ
G(·, µt, θ)W (dθ, dt),

which we will call the Stochastic Mean-Field Equation, where W is a cylindrical Wiener process
in L2(Θ, ϑ). We then prove the (probabilistically strong) well-posedness of this SPDE. Since (1.9)
is an SPDE with nonlocal coefficients, and degenerate coercivity, this is a challenging task. We
next state a paraphrased version of our main results on the well-posedness of (1.9). We refer the
reader to Theorems 2.16, 2.23, and 2.26 for the precise results under varying assumptions on the
coefficients and the initial data.

Theorem 1.1 (See Theorems 2.16, 2.23, and 2.26). Given sufficiently nice initial data µ0 ∈
P2(Rd) and sufficiently nice coefficients V (·), A(·), G(·, ·), the stochastic mean-field equation (1.9)
has a unique superposition solution in the sense of Definition 2.6.

The proof of this result relies on establishing a superposition principle for the stochastic mean-
field equation (1.9), i.e. the proof that each solution to (1.9) is given as a superposition of solutions
to the SDE with interaction

(1.10) dX(u, t) = V (X(u, t), µt) dt+

∫
Θ
G(X(u, t), µt, θ)W (dθ, dt),

where µt = µ0 ◦ X(·, t)−1. While the superposition principle for deterministic PDE has been
well-established in a series of ground-breaking works [3, 5, 23, 34, 79], even in infinite dimensions
[71], the few existing results for the case of SPDEs [16, 35] rely on restrictive assumptions on the
regularity of the coefficients or initial data, which are not satisfied in the present case. Therefore,
a new argument for the case of measure-valued, discrete initial data corresponding to (1.6) and
Lipschitz continuous coefficients is developed in the present work, as well as a new proof for
measure-valued initial data, relaxing the regularity assumptions on the coefficients from [16].

We then prove the uniqueness of solutions to this Lagrangian system, which by the superposi-
tion principle implies the uniqueness of solutions to (1.9). Based on the superposition principle, we
next establish the convergence of the empirical measures µM,α to the solution µα of the stochastic
mean-field equation (1.9) with optimal rate M− 1

2 .
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µM,α M → ∞ SMFE (1.9)µ0

α→ 0

TE (1.11)µ0

α→ 0

TE (1.11)µM
0 M → ∞

FIGURE 1. The limits of small learning rate and large parameter size for the
empirical measure µM,α. Here, (1.11)ν (resp. (1.9)ν) denotes a solution of (1.11)
(resp. (1.9)) with initial datum ν.

Theorem 1.2 (See Theorem 2.14). Let µM,α be the superposition empirical measure associated
to the SDE (1.4) started from independent samples of µ0. Then, for fixed α > 0 and as M → ∞,
we have the estimate

E sup
t∈[0,T ]

W2
2 (µ

M,α
t , µαt ) ≲ EW2

2 (µ
M
0 , µ0) ≲M−1 ,

where µα is a superposition solution of the stochastic mean-field equation (1.9) with σ = α
P and

initial datum µ0, Wp denotes the p-Wasserstein distance, and the implicit constants are indepen-
dent of α.

We next analyze the law of large numbers behavior of solutions µα to (1.9) in the limit of
small learning rate α → 0, proving an optimal rate of convergence to the deterministic transport
equation

(1.11) dµ0t = −∇ ·
(
V (t, ·, µ0t )µ0t

)
dt .

Theorem 1.3 (See Theorem 3.1). If µα is a superposition solution of (1.9) with initial datum µ0,
then in the limit α→ 0, we have the estimate

(1.12) E sup
t∈[0,T ]

W2
2 (µ

α
t , µ

0
t ) ≲ α,

where µ0 is the solution of the transport equation (1.11) with initial datum µ0 and the implicit
constant is independent of α > 0.

Combining Theorems 1.2 and 1.3, we conclude

(1.13) E sup
t∈[0,T ]

W2
2 (µ

M,α
t , µ0t ) ≲ α+M−1,

which implies that the limits M → ∞ and α→ 0 of µM,α commute. In addition, using the results
of the present work the intermediate limits can be characterized: Indeed, since µM,α is itself shown
to be a superposition solution to the stochastic mean-field equation (1.9), (1.12) implies that taking
the limit α→ 0 for M > 0 fixed yields a solution µM to the transport equation (1.11) with initial
datum µM0 . Subsequently, considering the limit M → ∞ and applying (1.13) implies that µM

converges to a solution to the transport equation (1.11) with initial datum µ0. Taking the limits in
the opposite order follows in an analogous manner, see Figure 1.

Having established the law of large numbers behavior of µM,α, we next turn to its asymp-
totic fluctuations and prove a quantified central limit theorem for the stochastic mean-field equa-
tion (1.9), again providing optimal bounds on the rate of convergence. As discussed in [76], there
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are two sources of fluctuations, one due to the sampling from the initial measure µ0 and one due
to the dynamical fluctuations in SGD. We define the corresponding fluctuation field

ηM,α := min{α−1/2,M1/2}(µM,α − µ0).

As is done in [76, Section 4.4], we will focus on the case where the dynamical fluctua-
tions dominate, i.e. α decreases slowly than M−1. Precisely, assuming that M = M(α) with
limα→0 α

−1M−1(α) < ∞, we prove that the fluctuation field ηα = α−1/2(µM(α),α − µ0) for
α→ 0 converges to a solution of the linear SPDE

dηt = −∇ ·
(
V (·, µ0t )ηt + ⟨Ṽ (x, ·), ηt⟩0µ0t (dx)

)
dt(1.14)

− P− 1
2

∫
Θ
∇ ·
(
G(·, µ0t , θ)µ0t

)
W (dθ, dt),

and prove an optimal rate of convergence. This generalizes the result obtained in [76, Section 4.4],
and proves that (1.9) correctly reproduces the central limit fluctuations of the stochastic gradient
descent. The proof of this optimal rate of convergence relies on a careful estimation of the error
terms, including a new stopping time argument.

Theorem 1.4 (See Theorem 3.7). Given sufficiently nice initial data µ0 ∈ P2(Rd) and sufficiently
nice coefficients V,A,G, consider the fluctuation field ηα as defined earlier. Then, ηα converges to
a weak solution η of (1.14) with initial datum η0 = aη̃0, where η̃0 is a centred Gaussian random
variable with covariance

E⟨φ, η̃0⟩⟨ψ, η̃0⟩ =
∫

(φ(x)− ⟨φ, µ0⟩) (ψ(x)− ⟨ψ, µ0⟩) dµ0(x) ,

for any smooth φ,ψ and a = limα→0 α
− 1

2M− 1
2 (α). Furthermore, ηα satisfies

E sup
t∈[0,T ]

∥ηαt − ηt∥2H−J ≲ α

for some appropriately chosen J ∈ N.

Remark 1.5. For the case that the fluctuations arising from the sampling from the initial measure
dominate, that is, if M = M(α) with limα→0 α

−1M−1(α) = +∞, then the same arguments as
in the proof of Theorem 1.4 imply that ηM = M1/2(µM(α),α − µ0) converges to a solution η to
the linear PDE (1.14) with G = 0 started from the centered Gaussian random variable η̃0 defined
in Theorem 1.4 and yield the optimal rate of convergence

E sup
t∈[0,T ]

∥ηMt − ηt∥2H−J ≲M−1.

We next show that the central limit Theorem 1.4 in particular implies that the stochastic mean-
field equation offers a higher order approximation of the SGD dynamics than the deterministic
mean field equation. We define the empirical distribution of SGD by

(1.15) ν
M, 1

M
t =

1

M

M∑
i=1

δxi(⌊Mt⌋), t ≥ 0,

where x(k) = (xi(k))i∈[M ], k ∈ N0, is defined by (1.3) with α = 1
M and P = 1. The central limit

theorem obtained in [78] gives

νM, 1
M = µ0 +M− 1

2 η + o(M− 1
2 ),
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with η as in Theorem 1.4. Moreover, for µ
1
M we have by Theorem 1.4

µ
1
M = µ0 +M− 1

2 η +O(M−1).

This indicates that the solutions µ
1
M to (1.9) provide a higher order approximation to the SGD

dynamics νM, 1
M , in the sense that

νM, 1
M − µ

1
M = o(M− 1

2 ),

which supersedes the order of approximation by the non-fluctuating limit d(νM, 1
M , µ0) ≈M−1/2.

Theorem 1.6. (See Theorem 4.1) Let µ
1
M be a superposition solution to the stochastic mean-field

equation (1.9) with α = 1
M . Let also νM, 1

M , be the empirical process associated to the SGD (1.3),
which is defined by (1.15). Then, for every p ∈ [1, 2),

Wp(Law(µ
1
M ),Law(νM, 1

M )) = o(M− 1
2 ).

1.1. Overview of the literature. To first order, in the small learning rate limit α→ 0, stochastic
gradient descent converges to deterministic gradient descent. As argued above, this law of large
numbers scaling limit does not incorporate information on the fluctuations of stochastic gradient
descent. However, considering higher order approximations, stochastic gradient descent can be
shown to converge to solutions to so-called stochastic modified equations

(1.16) dXt = −∇
(
L(Xt) +

1

4
α|∇L(Xt)|2

)
dt+ (αΣ(Xt))

1
2dWt

with Σ given in terms of the variance of the stochastic sampling of the empirical loss, see [30, 60].
For the validity of this limit for moderately large learning rates see [62]. A discussion of (1.16)
with jump noise can be found in [67].

The effect of the randomness inherent to stochastic gradient descent on the implicit bias and
on implicit regularization has been analyzed in [2, 49, 82].

Overparameterised limits of shallow networks in the mean-field training regime have received
considerable attention in recent years. In [15, 45, 66, 75, 78] the convergence of gradient descent
to a Wasserstein gradient flow has been shown and analysed. Notably, this limit is different from
the “lazy training” regime which can be treated in terms of a linearisation around initialization, see
[29, 44]. An instructive comparison of the scaling regimes is given in [14] and of their performance
in [13, 38, 70].

Linear SPDE have been rigorously identified in the context of central limit fluctuations in
stochastic gradient descent in [75, 77]. A fluctuating, nonlinear mean-field limit, incorporating the
fluctuations of stochastic gradient descent was, informally, suggested in [12, 74, 76], taking the
form of the conservative SPDE (2.1) below. The rigorous derivation of this conservative SPDE
as well as a proof of a quantified central limit theorem remained open problems in the literature.
These are solved in the present work.

For an overview of the literature on conservative SPDEs we refer to [33, Section 1.1]. We here
concentrate on nonlocal conservative SPDEs. In [20] nonlocal, nonlinear stochastic Fokker-Planck
equations have been considered, proving the uniqueness of solutions by several methods, e.g. by
duality arguments, coupling arguments, and the Krylov–Rozovskii variational framework. Under
less restrictive assumptions on the coefficients and solutions, this has been extended in [58, 25, p.
115]. The case of measure-valued solutions has been treated in [16]. Additionally, motivated by
applications to fluid dynamics, signed measure-valued solutions to nonlocal, nonlinear stochastic
Fokker-Planck equations have been considered in the literature, see, for example, e.g. [6, 55, 56,
72] and the references therein.
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The convergence of interacting particle systems to solutions of nonlocal, nonlinear Fokker-
Planck equations, and the closely related phenomenon of propagation of chaos has been considered
in [16], [54] and [59, Theorem 2.3] and the references therein. SDE with interaction have been
analyzed in [9, 25, 26, 26, 28, 68], and their relation to SPDEs has been considered in [27, 54].

The SPDE considered in this work bears some similarity with the so-called Dean–Kawasaki
equation introduced in [22, 48], and which corresponds to (1.6) for independent particles. In con-
trast to the Dean–Kawasaki equation, the noise caused by SGD is spatially correlated, which al-
lows the development of a full mathematical treatment introduced in the present work. The more
singular case of the Dean–Kawasaki equation has attracted considerable interest in the literature,
yielding the construction of (renormalized) solutions [7, 50, 53, 80], negative results on the exis-
tence of non-trivial solutions [51, 52], and regularized models [18, 19].

Central limit theorems for conservative, local SPDEs have been analyzed in [24]. The case of
linear transport noise has been analyzed in [36]. For central limit theorems for parabolic SPDEs
with multiplicative, semilinear noise we refer to [11, 41, 42] and the references therein. Higher or-
der approximations of interacting particle systems by conservative, local SPDEs have been shown
in [24], and for non-interacting particle systems up to arbitrary order in [17]. The authors are not
aware of any previous results on central limit theorems for nonlocal conservative SPDEs.

1.2. Outline of the paper. In Section 2, well-posedness results for the SDE with interaction (1.10)
is shown assuming Lipschitz continuity of its coefficients, and the existence of a superposition so-
lution to the stochastic mean-field equation (1.9) is established. This allows us to connect the
uniqueness with the superposition principle in Corollary 2.12. The well-posedness of (1.10) and
the continuous dependence of its solutions with respect to the initial particle distribution is ob-
tained in Section 2.1. Section 2.2 is devoted to the proof of the uniqueness for the stochastic
mean-field equation (1.9). The limit Theorems 3.1 and 3.7 are proved in Section 3. In Section 4,
the higher order approximation of the SGD dynamics by solutions to the stochastic mean-field
equation is obtained.

1.3. Basic notation. Let d ∈ N be fixed. For m ∈ N0 := N ∪ {0} the space of m-times continu-
ously differentiable functions from an open set Γ ⊂ Rd to R is denoted by Cm(Γ). The subspace
of Cm(Γ) of all bounded together with their derivatives (resp. compactly supported) functions is
denoted by Cm

b (Γ) (resp. Cm
c (Γ)). We write C(Γ), Cb(Γ) and Cc(Γ) for C0(Γ), C0

b(Γ) and C0
c(Γ),

respectively. Let φ, fi ∈ Cm(Γ), i ∈ [n] := {1, . . . , n}. We set ∂iφ = ∂
∂xi
φ and ∂2i,jφ = ∂2

∂xixj
φ.

For f = (fi)i∈[n], we write ∇f for the matrix with rows (∂jfi)j∈[d], i ∈ [n], and ∇·f =
∑d

i=1 ∂ifi

if n = d. We also set D2φ = (∂i,jφ)i,j∈[d]. The supremum norm in Cm
b (Γ) will be denoted by

∥ · ∥Cm
b

, that is,

∥f∥Cm
b
=
∑

|α|≤m

sup
x∈Γ

|Dαf(x)| ,

where Dα = ∂|α|

∂x
α1
1 ...∂x

αd
d

and |α| = α1 + · · ·+ αd for α = (α1, . . . , αd) ∈ Nd
0

For vectors a, b ∈ Rd and matrices A,B ∈ Rd×d we will use the notation a · b =
∑d

i=1 aibi,

|a| =
√
a · a, a⊗b = (aibj)i,j∈[d],A : B =

∑d
i,j=1 ai,jbi,j ,A ·b =

(∑d
j=1 ai,jbj

)
i∈[d]

and |A| =
√
A : A. In particular, (∇f) · g =

(∑d
j=1(∂jfi)gj

)
i∈[n]

, where f = (fi)i∈[n] and g = (gi)i∈[d].

For p ≥ 0 we also introduce the subset C2
p(Rd) of all functions f from C2(Rd) such that

|f(x)|+ (1 + |x|)|∇f(x)|+ (1 + |x|2)|D2f(x)| ≤ C(1 + |x|p), x ∈ Rd, for some C > 0.
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For everym ∈ N0 and δ ∈ (0, 1) denote by Cm,δ(Rd) the subset of all functions from Cm(Rd)
whose m-th derivatives are locally δ-Hölder continuous, that is, a function f ∈ Cm(Rd) belongs
to Cm+δ(Rd) if for every R > 0 there exists a constant C such that

|Dαf(x)−Dαf(y)| ≤ C|x− y|δ

for all x, y ∈ Rd with |x− y| ≤ R and α ∈ Nd
0 with |α| = m. We equip the space Cm,δ(Rd) with

the Fréchet topology generated by the following seminorms

∥f∥m+δ,K = sup
x∈K

|f(x)|
1 + |x|

+
∑

1≤|α|≤m

sup
x∈K

|Dαf(x)|+
∑

|α|=m

sup
x,y∈K
x ̸=y

|Dαf(x)−Dαf(y)|
|x− y|δ

for all compact sets K ⊂ Rd. Set Cm,δ
lb =

{
f ∈ Cm,δ : ∥f∥m+δ := ∥f∥m+δ,Rd <∞

}
.

We also denote by C̃m,δ the set of all functions f ∈ Cm(Rd × Rd) whose mixed m-th deriva-
tives are locally δ-Hölder continuous, that is, for every R > 0 there exists a constant C > 0 such
that

|Dα
xD

α
y f(x, y)−Dα

x′Dα
y f(x

′, y)−Dα
xD

α
y′f(x, y

′) +Dα
x′Dα

y′f(x
′, y′)| ≤ C|x− x′|δ|y − y′|δ

for all x, y ∈ Rd with |x − y| < R and α ∈ Nd
0 with |α| = m. Similarly to Cm,δ(Rd), the space

C̃m,δ(Rd) will be equipped with the Fréchet topology generated by the seminorms

∥f∥∼m+δ,K = sup
x,y∈K

|f(x, y)|
(1 + |x|)(1 + |y|)

+
∑

1≤|α|≤m

sup
x,y∈K

|Dα
xD

α
y f(x, y)|

+
∑

|α|=m

sup
x,x′,y,y′∈K
x ̸=x′,y ̸=y′

|Dα
xD

α
y f(x, y)−Dα

x′Dα
y f(x

′, y)−Dα
xD

α
y′f(x, y

′) +Dα
x′Dα

y′f(x
′, y′)|

|x− x′|δ|y − y′|δ
.

for all compact sets K ⊂ Rd. Set C̃m,δ
lb (Rd) =

{
f ∈ C̃m,δ(Rd) : ∥f∥∼m+δ := ∥f∥∼

m+δ,Rd <∞
}

.

LetL2(Rd) be the Hilbert space of all 2-integrable functions on Rd with respect to the Lebesgue
measure with the usual L2-norm ∥ · ∥L2 and inner product ⟨·, ·⟩L2 .

For J ∈ N0 and an open domain Γ ⊂ Rd we denote the complete extension of the space
C∞
c (Γ) with respect to the norm defined by

∥φ∥2J,Γ =
∑
|α|≤J

∫
Γ
|Dαφ(x)|2dx

by HJ(Γ). It is well-known that HJ(Γ) is a separable Hilbert space with the inner product

⟨φ1, φ2⟩J,Γ =
∑
|α|≤J

∫
Γ
Dαφ1(x)D

αφ2(x)dx.

The dual space to HJ(Γ) equipped with the norm

∥f∥−J,Γ = sup
φ∈C∞

c (Rd)

⟨φ, f⟩0,Γ
∥φ∥J

will be denoted by H−J(Γ). It is also a separable Hilbert space with the inner product denoted
by ⟨·, ·⟩−J,Γ. According to the Riesz representation theorem, there exists the isometry between
HJ(Γ) and H−J(Γ) denoted by LJ,Γ. We will often drop Γ from the notation of the inner product
and the norm on a Sobolev space, if it does not lead to the confusion. For more details about the
Sobolev spaces HJ(Γ) and H−J(Γ) we refer the reader to, e.g., [1].
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For I = [0, T ] or I = [0,∞) the space of all càdlàg functions from I to a metric space E
equipped with the Skorohod topology will be denoted by D(I, E). The set C(I, E) of all contin-
uous functions from I to E is a closed subset of D(I, E) and the induced topology on C(I, E) is
equivalent to the topology of uniform convergence on compacts.

The space of all probability measures (resp. signed measures with finite total variations) on
(Rd,B(Rd)) equipped with the topology of weak convergence will be denoted by P(Rd) (resp. by
M(Rd)). Let Pp(Rd) denote the subset of P(Rd) of all probability measures with finite p-moment
for p ≥ 1, that is,

Pp(Rd) =
{
µ ∈ P(Rd) : ⟨ϕp, µ⟩ <∞

}
,

where ϕp(x) = |x|p, x ∈ Rd, and ⟨φ, µ⟩ (and also ⟨φ(x), µ(dx)⟩) is the integration of φ with
respect to µ. It is well-know that Pp(Rd) is a Polish space with the Wasserstein distance given for
each µ, ν ∈ Pp(Rd) by

Wp(µ, ν) = inf

(∫
Rd

∫
Rd

|x− y|pχ(dx, dy)
) 1

p

,

where the infimum is taken over all probability measures on Rd × Rd with marginals µ and ν.
We will fix a measure space (Θ,G, ϑ) such that ϑ is a finite measure and the space L2(Θ, ϑ) :=

L2(Θ,G, ϑ), which consists of all 2-integrable with respect to ϑ functions (more precisely, equiv-
alence classes) from Θ to R, is separable. The usual inner product and norm on L2(Θ, ϑ) are
denoted by ⟨·, ·⟩ϑ and ∥ · ∥ϑ, respectively. Let Wt, t ≥ 0, be a cylindrical Wiener process on
L2(Θ, ϑ) defined on a complete probability space (Ω,F ,P) and (Ft)t≥0 be the right-continuous
complete extension of the filtration generated by W , which exists according to [46, Lemma 7.8].
We recall that for an (Ft)-progressively measurable L2(Θ, ϑ)-valued process gt, t ≥ 0, satisfying∫ t

0

∫
Θ
g2t (θ)ϑ(dθ) <∞ a.s.

for every t > 0, the integral2 defined by∫ t

0
gs(θ)W (dθ, ds) :=

∫ t

0
GsdWs, t ≥ 0,

is a continuous local (Ft)-martingale with quadratic variation

(1.17)
[∫ ·

0
gs(θ)W (dθ, ds)

]
t

=

∫ t

0

∫
Θ
g2s(θ)ϑ(dθ), t ≥ 0,

where Gt = ⟨gt, ·⟩ϑ, t ≥ 0, is an (Ft)-progressively measurable process on the space of Hilbert–
Schmidt operators on L2(Θ, ϑ). Denote the space of all Hilbert–Schmidt operators from L2(Θ,m)
to a Hilber spaceH by L2(L2(Θ,m);H) and ∥·∥HS,H be the Hilbert–Schmidt norm on that space.
In particular, ∥Gt∥HS,R = ∥gt∥ϑ.

2For the definition of the stochastic integral with respect to a cylindrical Wiener process see, e.g., [37, Section 2.2.4].
The equality (1.17) holds due to Theorem 2.4 [37] and the fact that GtG

∗
t = ∥g∥2ϑ for Gt = ⟨gt, ·⟩ϑ.
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2. WELL-POSEDNESS AND SUPERPOSITION PRINCIPLE

In this section, we establish the well-posedness and the superposition principle for the stochas-
tic mean-field equation

dµt =
1

2
D2 : (A(t, ·, µt)µt) dt−∇ · (V (t, ·, µt)µt) dt

−
∫
Θ
∇ · (G(t, ·, µt, θ)µt)W (dθ, dt),

(2.1)

where W is a cylindrical Wiener process in L2(Θ, ϑ) defined on a complete probability space
(Ω,F ,P) and the functions V : [0,∞) × Rd × P2(Rd) × Ω → Rd and G : [0,∞) × Rd ×
P2(Rd) × Ω → (L2(Θ, ϑ))

d, A : [0,∞) × Rd × P2(Rd) × Ω → Rd×d satisfy the following
Assumption 2.1.

Assumption 2.1. The functions V and G are B([0,∞))⊗B(Rd)⊗B(P2(Rd))⊗F-measurable
and bounded (in (t, x, µ)) on every compact subset of [0,∞)×Rd ×P2(Rd) a.s., the restrictions
of V and G to the time interval [0, t] are B([0, t])⊗ B(Rd)⊗ B(P2(Rd))⊗Ft-measurable, and

A(t, x, µ) =
(
⟨Gi(t, x, µ, ·), Gj(t, x, µ, ·)⟩ϑ

)
i,j∈[d]

for all t ≥ 0, x ∈ Rd, µ ∈ P2(Rd).

Definition 2.2. Let µ0 ∈ P2(Rd). A continuous (Ft)-adapted process µt, t ≥ 0, in P2(Rd) is
a (strong) solution to the stochastic mean-field equation (2.1) started from µ0 if for every φ ∈
C2
c(Rd) a.s. the equality

⟨φ, µt⟩ = ⟨φ, µ0⟩+
1

2

∫ t

0

〈
D2φ : A(s, ·, µs), µs

〉
ds

+

∫ t

0
⟨∇φ · V (s, ·, µs), µs⟩ ds+

∫ t

0

∫
Θ
⟨∇φ ·G(s, ·, µs, θ), µs⟩W (dθ, ds)

(2.2)

holds for every t ≥ 0.

All integrals in the definition above are well-defined due to the a.s. boundedness of the func-
tions inside the integral ⟨·, µs⟩.

Remark 2.3. If for every T > 0 and compact set K in P2(Rd) the coefficients V and G are a.s.
bounded on [0, T ]× Rd ×K, that is, there exists a (random) constant C > 0 such that

|V (t, x, µ)|+ ∥|G(t, x, µ, ·)|∥m ≤ C, t ∈ [0, T ], x ∈ Rd, µ ∈ K,

and µt, t ≥ 0, is a solution to (2.1), then the integral equality (2.2) in Definition 2.2 holds for
every φ ∈ C2

b(Rd). This follows from the dominated convergence theorem and the compactness
of {µt, t ∈ [0, T ]} in P2(Rd) due to the continuity of µt, t ≥ 0.

Remark 2.4. Let µt, t ≥ 0, be a solution to the equation (2.1). Then for every φ ∈ C2
c(Rd) the

process ⟨φ, µt⟩, t ≥ 0, is a continuous local (Ft)-semimartingale with quadratic variation

[⟨φ, µ·⟩]t =
∫ t

0

∫
Θ
⟨∇φ ·G(s, ·, µs, θ), µs⟩ ⟨∇φ ·G(s, ·, µs, θ), µs⟩ϑ(dθ)ds

=

∫ t

0

∫
Rd

∫
Rd

(∇φ(x)⊗∇φ(y)) : Ã(s, x, y, µs)µs(dx)µs(dy)ds,

where Ã(s, x, y, µ) = (⟨Gi(s, x, µ, ·), Gj(s, y, µ, ·)⟩ϑ)i,j∈[d]. The expression for the quadratic
variation of ⟨φ, µt⟩, t ≥ 0, directly follows from (1.17).
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Together with the stochastic mean-field equation (2.1), we will consider the following associ-
ated SDE with interaction

dX(u, t) = V (t,X(u, t), µ̄t)dt+

∫
Θ
G(t,X(u, t), µ̄t, θ)W (dθ, dt),

X(u, 0) = u, µ̄t = µ0 ◦X−1(·, t), u ∈ Rd, t ≥ 0.

(2.3)

This type of equation was introduced and studied by Dorogovtsev in [26, Section 2]. We next give
the definition of a solution to (2.3), following [26, Definition 2.1.1].

Definition 2.5. A family of continuous processes {X(u, t), t ≥ 0}, u ∈ Rd, is called a (strong)
solution to the SDE with interaction (2.3) if the restriction of X to the time interval [0, t] is
B([0, t]) ⊗ B(Rd) ⊗ Ft-measurable, µ̄t = µ0 ◦ X−1(·, t) ∈ P2(Rd) a.s. for all t ≥ 0 and for
every u ∈ Rd a.s.

X(u, t) = u+

∫ t

0
V (s,X(u, s), µ̄s)ds+

∫ t

0

∫
Θ
G(s,X(u, s), µ̄s, θ)W (dθ, ds)

for all t ≥ 0.

We remark that µ̄t, t ≥ 0, is an (Ft)-progressively measurable process in P2(Rd). Moreover,
due to Fubini’s theorem it does not depend on the version of X(u, ·), u ∈ Rd, that is, if Y (u, t),
satisfies the same measurablity conditions from Definition 2.5 as X and for every u ∈ Rd a.s.
Y (u, ·) = X(u, ·), then µ̄t = µ0 ◦ Y −1(·, t), t ≥ 0, a.s.

The key tool in the investigation of solutions to the stochastic mean-field equation (2.1) is the
fact that it satisfies the (strong) superposition principle.

Definition 2.6. A continuous process µt, t ≥ 0, in P2(Rd) started from µ0 ∈ P2(Rd) is a strong
superpositon solution3 to the stochastic mean-field equation (2.1) or satisfies the superposition
principle if there exists a solution X(u, t), t ≥ 0, u ∈ Rd, to the SDE with interaction (2.3) such
that µt = µ0 ◦X−1(·, t), t ≥ 0, a.s.

In order to build a strong superposition solution to the equation (2.1), we will need the Lip-
schitz continuity assumption on the coefficients, which will guarantee the well-posedness of the
SDE (2.3).

Assumption 2.7. The coefficients V and G are Lipschitz continuous with respect to x and µ,
that is, for every T > 0 there exists L > 0 such that a.s. for every t ∈ [0, T ], x, y ∈ Rd and
µ, ν ∈ P2(Rd)

|V (t, x, µ)− V (t, y, ν)|+ ∥|G(t, x, µ, ·)−G(t, y, ν, ·)|∥ϑ ≤ L (|x− y|+W2(µ, ν)) .

and
|V (t, 0, δ0)|+ ∥|G(t, 0, δ0, ·)|∥ϑ ≤ L,

where δ0 denotes the δ-measure at 0 on Rd.

Remark 2.8. Assumption 2 implies linear growth of V and G, that is, a.s.

|V (t, x, µ)|+ ∥|G(t, x, µ, ·)|∥ϑ ≤ L(1 + |x|+W2(µ, δ0))

for all x ∈ Rd and µ ∈ P2(Rd).

3The notion of the strong superposiltion solution considered in this work is close to one introduced by Flandoli (see
[35, Definition 5]). Since we will only work with equation (2.3) which has a unique solution, we avoid more general
definitions, like in [3, 35, 79], which needs the introduction of distributions on the path space.
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In the next section, using a standard approach, we will prove the well-posedness of the SDE
with interaction (2.3) stated in the following theorem.

Theorem 2.9 (Well-posedness of the SDE with interaction). Under Assumptions 2.1 and 2.7,
the SDE with interaction (2.3) has a unique strong solution X(u, t), t ≥ 0, u ∈ Rd, for every
µ0 ∈ P2(Rd). Moreover, for every T > 0 and p ≥ 2 there exists a constant C > 0 (only
depending of L, p, d and T ) such that

E sup
t∈[0,T ]

|X(u, t)|p ≤ C(1 + ⟨ϕp, µ0⟩+ |u|p)

for all u ∈ Rd, where ϕp(x) = |x|p, x ∈ Rd.

Corollary 2.10 (Moment preservation property). Under Assumptions 2.1 and 2.7, the measure-
valued process µ̄t = µ0 ◦ X−1(·, t), t ≥ 0, is moment preserving, that is, for every T > 0 and
p ≥ 2

E sup
t∈[0,T ]

⟨ϕp, µ̄t⟩ ≤ C (1 + ⟨ϕp, µ0⟩) .

The corollary directly follows from the inequality in Theorem 2.9 by its integration with re-
spect to µ0.

Next, using Itô’s formula, one can prove the existence of a superposition solution to (2.1).

Theorem 2.11 (Existence of solutions). Let V,G,A satisfy Assumptions 2.1 and 2.7. Then for
every µ0 ∈ P2(Rd) there exists a solution µt, t ≥ 0, to the stochastic mean-field equation (2.1)
started from µ0 that satisfies the superposition principle and is moment preserving.

The proof of this theorem directly follows from Lemma 2.13 below. We note that the unique-
ness of the stochastic mean-field equation is closely related to the superposition principle. Indeed,
the well-posedness of the SDE with interaction (see Theorem 2.9) and Theorem 2.11 immediately
imply the following corollary.

Corollary 2.12. Let V,G,A satisfy Assumptions 2.1, 2.7. The stochastic mean-field equation (2.1)
has a unique solution if and only if every its solution in the sense of Definition 2.2 is a strong
superposition solution in the sense of Definition 2.6.

In Section 2.2, we will prove the uniqueness to the stochastic mean-field equation making
further assumptions on the initial condition and its coefficients.

2.1. SDE with interaction. We start this section with the proof that any solution to the SDE with
interaction (2.3) provides a solution to the equation (2.1) in the sense of Definition 2.2.

Lemma 2.13. Let V,G,A satisfy Assumption 2.1, X(u, t), t ≥ 0, u ∈ Rd, be a solution to the
SDE with interaction (2.3) with µ0 ∈ P2(Rd) and µ̄t = µ0 ◦ X−1(·, t), t ≥ 0, be continuous in
P2(Rd). Then µ̄t, t ≥ 0, is a solution to the stochastic mean-field equation (2.1) started from µ0.

Proof. We note that for every u ∈ Rd the process X(u, t), t ≥ 0, is a continuous semimartingale
in Rd with quadratic variation

[X(u, ·)]t =
∫ t

0
A(s,X(u, s), µ̄s)ds, t ≥ 0.

Indeed, according to (1.17) and the polarisation equality, one gets

[Xi(u, ·), Xj(u, ·)]t =
∫ t

0
⟨Gi(s,X(u, s), µ̄s, ·), Gj(s,X(u, s), µ̄s, ·)⟩ϑds
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=

∫ t

0
Ai,j(s,X(u, s), µ̄s)ds, t ≥ 0,

for all i, j ∈ [d].
Next, taking φ ∈ C2

c(Rd) and applying Itô’s formula to φ(X(u, t)) for every u ∈ Rd, we get
a.s.

φ(X(u, t)) = φ(u) +

∫ t

0
∇φ(X(u, s)) · V (s,X(u, s), µ̄s)ds

+
1

2

∫ t

0
D2φ(X(u, s)) : A(s,X(u, s), µ̄s)ds

+

∫ t

0
∇φ(X(u, s)) · dN(u, s), t ≥ 0.

where N(u, t) =
∫ t
0

∫
ΘG(s,X(u, s), µ̄s, θ)W (dθ, ds), t ≥ 0. Using the definition of the stochas-

tic integral with respect to a cylindrical Wiener process, it is easily to see that

φ(X(u, t)) = φ(u) +

∫ t

0
∇φ(X(u, s)) · V (s,X(u, s), µ̄s)ds

+
1

2

∫ t

0
D2φ(X(u, s)) : A(s,X(u, s), µ̄s)ds

+

∫ t

0

∫
Θ
∇φ(X(u, s)) ·G(s,X(u, s), µ̄s, θ)W (dθ, ds), t ≥ 0.

Since φ has a compact support and the set {µ̄s, s ∈ [0, t]} is compact a.s. as the image of the
compact set [0, t] under the continuous map s 7→ µ̄s, the functions ∇φ(x) · V (s, x, µ̄s), D2φ(x) :
A(s, x, µ̄s) and ∥∇φ(x) ·G(s, x, µ̄s, ·)∥2ϑ, s ∈ [0, t], x ∈ Rd are bounded a.s., by Assumption 2.1.
Hence, we may integrate the above expression with respect to µ0 and use Fubini’s theorem and
the equality

∫
Rd ψ(X(u, t))µ0(du) = ⟨ψ, µ̄t⟩ for ψ ∈ Cb(Rd) to get that µ̄t, t ≥ 0, satisfies (2.2).

This ends the proof of the lemma. □

We next prove Theorem 2.9. Since its proof is similar to the proofs of [26, Theorem 2.2.1], we
will only provide a sketch.

Proof of Theorem 2.9. Let µ̄0t = µ0, t ≥ 0. We define inductively for every n ≥ 1 the family of
continuous processes {Xn(u, t), t ≥ 0}, u ∈ Rd, as solutions to the usual SDEs

dXn(u, t) = V
(
s,Xn(u, t), µ̄

n−1
s

)
dt+

∫
Θ
G
(
t,Xn(u, t), µ̄

n−1
s , θ

)
W (dθ, dt),

Xn(u, 0) = u

(2.4)

and

(2.5) µ̄n = µ0 ◦X−1
n (·, t), t ≥ 0.

Using Assumptions 2.1 and 2.7, it is easy to see that SDE (2.4) has a unique solution for every
u ∈ Rd and for every p ≥ 2, n ≥ 1 and T > 0 there exists a constant C > 0, independent of u,
such that

(2.6) E sup
t∈[0,T ]

|Xn(u, t)|p ≤ C(1 + |u|p)

for all n ≥ 1 and u ∈ Rd.
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We will first show thatXn satisfies the measurability assumptions from Definition 2.5. For this
we will prove that Xn has a continuous version in u. Taking u, v ∈ Rd, T > 0, p ≥ 2, and using
Hölder’s inequality and the Burkholder–Davis–Gundy inequality, we estimate for each t ∈ [0, T ]

E sup
s∈[0,t]

|Xn(u, s)−Xn(v, s)|p ≤ C1|u− v|p

+ C1E
∫ t

0

∣∣V (s,Xn(u, s), µ̄
n−1
s

)
− V

(
s,Xn(v, s), µ̄

n−1
s

)∣∣p ds
+ C1E

∫ t

0

∥∥|G(s,Xn(u, s), µ̄
n−1
s , ·)−G(s,Xn(v, s), µ̄

n−1
s , ·)|

∥∥p
ϑ
ds,

whereC1 is a constant that depends only on p, T and d. By Assumption 2.7 and Gronwall’s lemma,
we get

(2.7) E sup
t∈[0,T ]

|Xn(u, t)−Xn(v, t)|p ≤ C|u− v|p,

where C also depends only on p, T, L and d. Therefore, we can conclude from [46, Theorem 3.23]
that Xn(u, ·), u ∈ Rd, has a continuous version as a C([0,∞))-valued process, which will be also
denoted by Xn. Note that the choice of different version of Xn(u, ·), u ∈ Rd, does not change
the fact that Xn(u, ·) solves equation (2.4) for every u ∈ Rd. Thus, the desired measurability of
Xn follows from the continuity of (u, t) 7→ Xn(u, t) a.s. We also note that µ̄n, defined by (2.5),
is an (Ft)-progressively measurable continuous process in P2(Rd), where the continuity follows
from bound (2.6) and de la Vallée-Poussin [63, Theorem 1.8]. Note that µ̄· does not depend on the
choice of a version of Xn(u, ·), u ∈ Rd.

Next, using Assumption 2.7 again, we can estimate for every T > 0, t ∈ [0, T ], u ∈ Rd and
n ≥ 1

E sup
s∈[0,t]

|Xn+1(u, s)−Xn(u, s)|2 ≤ C

∫ t

0
E sup
r∈[0,s]

|Xn+1(u, r)−Xn(u, r)|2ds

+ C

∫ t

0
E sup
r∈[0,s]

W2
2

(
µ̄nr , µ̄

n−1
r

)
ds,

where C is independent of u, t and n. By Gronwall’s lemma, we have

(2.8) E sup
s∈[0,t]

|Xn+1(u, s)−Xn(u, s)|2 ≤ CeCT

∫ t

0
E sup
r∈[0,s]

W2
2

(
µ̄nr , µ̄

n−1
r

)
ds.

Using the definition of the Wasserstein distance, we further estimate for t ∈ [0, T ] and n ≥ 2

E sup
s∈[0,t]

W2
2

(
µ̄ns , µ̄

n−1
s

)
≤ E sup

s∈[0,t]

∫
Rd

|Xn(u, s)−Xn−1(u, s)|2µ0(du)

≤
∫
Rd

E sup
s∈[0,t]

|Xn(u, s)−Xn−1(u, s)|2µ0(du)

≤ CeCT

∫ t

0
E sup
r∈[0,s]

W2
2

(
µ̄n−1
r , µ̄n−2

r

)
ds,

where we have used the equality µ0(Rd) = 1 and (2.8) in the last step. Iterating the above inequal-
ity n− 2 times, we get

E sup
t∈[0,T ]

W2
2

(
µ̄nt , µ̄

n−1
t

)
≤ C2e2CT

∫ t

0

∫ s1

0
E sup
r∈[0,s2]

W2
2

(
µ̄n−2
r , µ̄n−3

r

)
ds2ds1 ≤ . . .
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≤ Cn−1e(n−1)CT

∫ t

0

∫ s1

0
· · ·
∫ sn−2

0
E sup
r∈[0,sn−1]

W2
2

(
µ̄1r , µ̄

0
r

)
dsn−1 . . . ds2ds1

≤ Cn−1e(n−1)CTTn−1

(n− 1)!
E sup

t∈[0,T ]
W2

2

(
µ̄1t , µ̄

0
t

)
.

The finiteness of the expectation on the right hand side of the above inequality follows from (2.6).
By (2.8),

E sup
t∈[0,T ]

|Xn+1(u, t)−Xn(u, t)|2 ≤
CnenCTTn

(n− 1)!
E sup

t∈[0,T ]
W2

2

(
µ̄1t , µ̄

0
t

)
.

Next, using the Borel–Cantelli lemma, it is easily seen that there exist continuous processes µ̄t,
t ≥ 0, in P2(Rd) and X(u, t), t ≥ 0, in Rd, u ∈ Rd, such that for every T > 0 and u ∈ Rd

sup
t∈[0,T ]

|Xn(u, t)−X(u, t)| → 0 and sup
t∈[0,T ]

W2 (µ̄
n
t , µ̄t) → 0 a.s.

as n→ ∞. Moreover, for every u ∈ Rd a.s.

X(u, t) = u+

∫ t

0
V (s,X(u, s), µ̄s)ds+

∫ t

0

∫
Θ
G(s,X(u, s), µ̄s, θ)W (dθ, ds)

for all t ≥ 0, by Assumption 2.7. Since the constant in inequality (2.7) does not depend on u, v and
n, the inequality remains true forXn replaced byX , by Fatou’s lemma. Therefore, the C([0,∞))-
valued random field X(u, ·), u ∈ Rd, has a continuous version, which is also denoted by X . This
implies that X satisfies the measurability assumptions of Definition 2.5. We also remark that for
every φ ∈ Cb(Rd) and t ≥ 0 one has a.s.

⟨φ, µ̄t⟩ = lim
n→∞

⟨φ, µ̄nt ⟩ = lim
n→∞

∫
Rd

φ(Xn(u, t))µ0(du) =

∫
Rd

φ(X(u, t))µ0(du),

by the dominated convergence theorem. This completes the proof of the well-posedness of SDE (2.3).
We next show the finiteness of moments of the solution X . For each u ∈ Rd and n,m ∈ N we

define the stopping times

τnu = inf {t ≥ 0 : |X(u, t)| ≥ n} and σn = inf {t ≥ 0 : W2(µ̄t, δ0) ≥ n} .
Let also τn,mu = τnu ∧σm. Then, using Hölder’s inequality, the Burkholder–Davis–Gundy inequal-
ity (see, e.g., Theorem 3.28 [47]) and Remark 2.8, we estimate for p ≥ 2 and every n,m ∈ N,
t ∈ [0, T ]

E sup
s∈[0,t]

|X(u, s ∧ τn,mu )|p ≤ C|u|p + CE sup
s∈[0,t]

∣∣∣∣∣
∫ s∧τn,m

u

0
V (r,X(u, r), µ̄r)dr

∣∣∣∣∣
p

+ CE sup
s∈[0,t]

∣∣∣∣∣
∫ s∧τn,m

u

0
G(r,X(u, s), µ̄r, θ)W (dθ, dr)

∣∣∣∣∣
p

≤ C|u|p + CE
∫ t∧τn,m

u

0
|V (r,X(u, r), µ̄r)|p ds

+ CE

(∫ t∧τn,m
u

0
∥|G(s,X(u, s), µ̄s, ·)|∥2ϑ ds

) p
2

≤ C|u|p + CE
∫ t∧τn,m

u

0
(1 + |X(u, s)|p +Wp

2 (µ̄s, δ0)) ds
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≤ C(1 + |u|p) + CE
∫ t

0
|X(u, s ∧ τn,mu )|pds

+ CE
∫ t

0
Wp

2 (µ̄s∧τn,m
u

, δ0)ds

≤ C(1 + |u|p) + CE
∫ t

0
sup

r∈[0,s]
|X(u, r ∧ τn,mu )|pds

+ C

∫ t

0
EWp

2 (µ̄s∧τn,m
u

, δ0)ds,

where the constant C depends only on L, p, d and T . By Gronwall’s lemma, we get

E sup
s∈[0,t]

|X(u, s ∧ τn,mu )|p ≤ CeCT

(
1 + |u|p +

∫ t

0
EWp

2 (µ̄s∧τn,m
u

, δ0)ds

)
.

Making n→ ∞ and using Fatou’s lemma, we obtain

(2.9) E sup
s∈[0,t]

|X(u, s ∧ σm)|p ≤ CeCT

(
1 + |u|p +

∫ t

0
EWp

2 (µ̄s∧σm , δ0)ds

)
for all t ∈ [0, T ], u ∈ Rd and m ≥ 1. In order to bound the integral in the inequality above, we
first estimate

E sup
s∈[0,t]

Wp
2 (µ̄s∧σm , δ0) = E

(
sup
s∈[0,t]

∫
Rd

|X(u, s ∧ σm)|2µ0(du)

) p
2

≤ E
∫
Rd

sup
s∈[0,t]

|X(u, s ∧ σm)|pµ0(du)

≤ CeCT

∫
Rd

(
1 + |u|p +

∫ t

0
EWp

2 (µ̄s∧σm , δ0)ds

)
µ0(du)

= C1 (1 + ⟨ϕp, µ0⟩) + C1

∫ t

0
EWp

2 (µ̄s∧σm , δ0)ds

= C1 (1 + ⟨ϕp, µ0⟩) + C1

∫ t

0
E sup

r∈[0,s]
Wp

2 (µ̄r∧σm , δ0)ds,

where C1 = CeCT . Hence, Gronwall’s lemma yields

E sup
s∈[0,t]

Wp
2 (µ̄s∧σm , δ0) ≤ C1e

C1T (1 + ⟨ϕp, µ0⟩)

for all t ∈ [0, T ] and m ≥ 1. Combining the inequality above with (2.9), we obtain

E sup
s∈[0,t]

|X(u, s ∧ σm)|p ≤ C (1 + ⟨ϕp, µ0⟩+ |u|p) ,

where the constant C depends only on L, p, d and T . Now, making m → ∞ and using Fatou’s
lemma, we complete the proof of the theorem. □

We will further prove the continuous dependence of µ̄· on the initial condition. This is known
for SDEs with interaction with non-random coefficients driven by a Brownian sheet (see [26,
Exercise 5.3.1]).
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Theorem 2.14. Let the coefficients of SDE (2.3) satisfy Assumptions 2.1, 2.7 and let Xi, i ∈ [2],
be solutions to (2.3) with µ0 = µi0 ∈ P2(Rd). Then, for every T > 0, there exists a constant
C > 0 such that

(2.10) E sup
t∈[0,T ]

|X1(u, t)−X2(v, t)|2 ≤ C
(
|u− v|2 +W2

2 (µ
1
0, µ

2
0)
)
, u, v ∈ Rd,

and

(2.11) E sup
t∈[0,T ]

W2
2

(
µ̄1t , µ̄

2
t

)
≤ CW2

2

(
µ10, µ

2
0

)
,

where µ̄it = µi0 ◦Xi(·, t).

Proof. Using Hölder’s inequality, the Burkholder–Davis–Gundy inequality and Assumption 2.7,
we estimate for each t ∈ [0, T ] and u, v ∈ Rd

E sup
s∈[0,t]

|X1(u, s)−X2(v, s)|2 ≤ 3|u− v|2

+ 3tE
∫ t

0

∣∣V (s,X1(u, s), µ̄
1
s)− V (s,X2(v, s), µ̄

2
s)
∣∣2 ds

+ 3E sup
s∈[0,t]

∣∣∣∣∫ s

0

∫
Θ

(
G(r,X1(u, r), µ̄

1
r , θ)−G(r,X2(v, r), µ̄

2
r , θ)

)
W (dθ, dr)

∣∣∣∣2
≤ 3|u− v|2 + C

∫ t

0

(
E|X1(u, s)−X2(v, s)|2 + EW2

2

(
µ̄1s, µ̄

2
s

))
ds

≤ 3|u− v|2 + C

∫ t

0
E sup

r∈[0,s]
|X1(u, r)−X2(v, r)|2ds+ C

∫ t

0
EW2

2

(
µ̄1s, µ̄

2
s

)
ds,

where C is independent of u, v and t. By Gronwall’s lemma, we get for each t ∈ [0, T ]

(2.12) E sup
s∈[0,t]

|X1(u, s)−X2(v, s)|2 ≤ C|u− v|2 + C

∫ t

0
EW2

2

(
µ̄1s, µ̄

2
s

)
ds.

We next take an arbitrary probability measure χ on Rd × Rd with marginals µi0, i ∈ [2].
Then the probability measure χt defined by χs(B) = χ ({(u, v) : (X1(u, s), X2(v, s)) ∈ B}),
B ∈ B(Rd × Rd), that is the pushforward of χ under the map (u, v) 7→ (X1(u, s), X2(v, s)), has
the marginals µ̄is, i ∈ [2], for each t ∈ [0, T ]. Thus, by the estimate above, we obtain

E sup
s∈[0,t]

W2
2 (µ̄

1
s, µ̄

2
s) ≤ E sup

s∈[0,t]

∫
Rd

∫
Rd

|x− y|2χs(dx, dy)

≤
∫
Rd

∫
Rd

E sup
s∈[0,t]

|X1(u, s)−X2(v, s)|2χ(du, dv)

≤ C

∫
Rd

∫
Rd

|u− v|2χ(du, dv) + C

∫ t

0
EW2

2 (µ̄
1
s, µ̄

2
s)ds.

Taking infimum over all χ with marginals µi0, i ∈ [2], we get the inequality

E sup
s∈[0,t]

W2
2 (µ̄

1
s, µ̄

2
s) ≤ CW2

2 (µ
1
0, µ

2
0) + C

∫ t

0
EW2

2 (µ̄
1
s, µ̄

2
s)ds

≤ CW2
2 (µ

1
0, µ

2
0) + C

∫ t

0
E sup

r∈[0,s]
W2

2 (µ̄
1
r , µ̄

2
r)ds,
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where C depends only on T , L and d. Next, Gronwall’s lemma implies

E sup
t∈[0,T ]

W2
2 (µ̄

1
s, µ̄

2
s) ≤ CeCTW2

2 (µ
1
0, µ

2
0).

This completes the proof of (2.11).
The estimate (2.10) now directly follows from (2.11) and (2.12). This concludes the proof of

the proposition. □

We will also need to use the fact that two paths of particles described by an SDE with interac-
tion never meet.

Lemma 2.15. Let V and G satisfy Assumptions 2.1, 2.7 and let X be a solution to (2.3). Then for
every u, v ∈ Rd, u ̸= v, a.s. X(u, t) ̸= X(v, t) for all t ≥ 0.

Proof. We set X(u, v, t) = X(u, t) −X(v, t), t ≥ 0, and introduce the following (Ft)-stopping
times

σn = inf

{
t ≥ 0 : |X(u, v, t)| ≤ 1

n

}
, n ≥ 1.

Then by Itô’s formula and Assumption 2.7, we can estimate for every T > 0 and t ∈ [0, T ]

E
1

|X(u, v, t ∧ σn)|
≤ 1

|u− v|
+ C

∫ t

0
E

1

|X(u, v, s ∧ σn)|
ds,

for some constant C independent of t and n. By Gronwall’s lemma, E 1
|X(u,v,t∧σn)| <

eCT

|u−v| .

Passing to the limit as n→ ∞ and using Fatou’s lemma, one gets E 1
|X(u,v,t∧σ)| <

eCT

|u−v| , t ∈ [0, T ],
where σ is defined similarly to σn with 1

n replaced by 0. Therefore, X(u, v, t ∧ σ) > 0 a.s. for all
t ≥ 0. This implies t < σ a.s. for all t ≥ 0. Hence, σ = +∞ a.s. which completes the proof of the
lemma. □

2.2. Uniqueness and superposition principle. The main goal of this section is to prove the
uniqueness of solutions to the stochastic mean-field equation. We will consider separately a few
types of initial particle distributions: atomic, with L2-density, and with a finite second moment.
Depending on the type of initial conditions, we will need additional assumptions on the coeffi-
cients of the equation, which will appear in corresponding sections.

2.2.1. Atomic initial conditions. We remind the reader that ϕm(x) = |x|m, x ∈ Rd, and set

Nn =

{
µ ∈ P2(Rd) : µ =

n∑
l=1

αlδxl for some αl ≥ 0 and xl ∈ Rd

}
, n ≥ 1.

It is easily seen that Nn is a closed subspace of P2(Rd) for each n ≥ 1.

Theorem 2.16. Let V,G,A satisfy Assumptions 2.1, 2.7, and let µ0 ∈ Nn for some n ≥ 1. Then
there exists a unique solution µt, t ≥ 0, to (2.1) started from µ0 and satisfying

(2.13) sup
t∈[0,T ]

⟨ϕp, µt⟩ <∞ a.s.

for p = n2 + n and all T > 0. Moreover, µt, t ≥ 0, is a superposition solution to (2.1).

We define the following function Fn : Pn(n−1)(Rd) → [0,∞) by

(2.14) Fn(µ) =

∫
Rdn

∏
i,j:i ̸=j

∣∣zi − zj
∣∣ n∏
i=1

µ(dzi) =

∫
Rdn

∏
i,j:i<j

∣∣zi − zj
∣∣2 n∏

i=1

µ(dzi).
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Then

(2.15) F−1
n ({0}) = Nn−1

for every n ≥ 2.

Remark 2.17. The function Fn can be written as a polynomial of the maps

µ 7→
∫
Rd

zk11 . . . zkdd µ(dz)

with k1 + · · ·+ kd ≤ n(n− 1), ki ∈ N ∪ {0}, i ∈ [d].

To prove Theorem 2.16, we will apply Itô’s formula to the semimartingale F (µt), t ≥ 0.
Hence, we will need an analog of Itô’s formula for functions of the form

(2.16) G(µ) = f(⟨φ1, µ⟩, . . . , ⟨φm, µ⟩), µ ∈ P2(Rd),

for some smooth functions f and φl, l ∈ m, involving functional derivatives [21, Section 2]

δG(µ)

δµ
(x) =

∂

∂ε
G(µ+ εδx)|ε=0

and
δ2G(µ)

δµ2
(x, y) =

∂2

∂ε1∂ε2
G(µ+ ε1δx + ε2δy)|ε1=ε2=0

in order to simplify computations.
We will often work with the linear stochastic mean-field equation obtained by freezing a so-

lution µt, t ≥ 0, in coefficients. In particular, we will write v(t, x), a(t, x) and g(t, x, θ) for
V (t, x, µt), A(t, x, µt) and G(t, x, µt, θ).

Proposition 2.18. Let V,A,G satisfy Assumptions 2.1, 2.7, p ≥ 2 and νt, t ≥ 0, be a continuous
(Ft)-adapted process in P2(Rd) satisfying for every φ ∈ C2

c(Rd)

⟨φ, νt⟩ = ⟨φ, ν0⟩+
∫ t

0
⟨∇φ · v(s, ·), νs⟩ds+

1

2

∫ t

0
⟨D2φ : a(s, ·), νs⟩ds

+

∫ t

0

∫
Θ
⟨∇φ · g(s, ·, θ), νs⟩W (dθ, ds).

(2.17)

If there exist an (Ft)-stopping time σ such that sup
t∈[0,σ]

⟨ϕp, νt⟩ <∞ a.s., then

G(νt∧σ) = G(ν0) +

∫ t∧σ

0

〈
∇δG(νs)

δνs
· v(s, ·), νs

〉
ds

+
1

2

∫ t∧σ

0

〈
D2 δG(νs)

δνs
: a(s, ·), νs

〉
ds

+
1

2

∫ t∧σ

0

〈
∇⊗∇δ2G(νs)

δν2s
: ã(s, ·), νs ⊗ νs

〉
ds

+

∫ t∧σ

0

∫
Θ

〈
∇δG(νs)

δνs
· g(s, ·, θ), νs

〉
W (dθ, ds),

(2.18)

for each function G defined by (2.16) with φl ∈ C2
p(Rd), l ∈ [m], and f ∈ C2(Rm), where

ãi,j(t, x, y) = ⟨gi(t, x, ·), gj(t, y, ·)⟩ϑ, i, j ∈ [d].
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Proof. We will first show that equality (2.17) holds for every φ ∈ C2
p(Rd) and t replaced by t∧σ.

We fix g ∈ C2
b (R) such that g(x) = 0, x ≤ 0, and g(x) = 1, x ≥ 1. Set for n ≥ 1

κn(x) :=

{
g (n− ln |x|) , if x ̸= 0,

1, if x = 0,
x ∈ Rd.

It is easy to see that for each x ∈ Rd κn(x) → 1 as n → ∞ and κn, n ≥ 1, belongs uniformly to
C2
0(Rd), that is, there exists a constant C > 0 such that

|κn(x)|+ (1 + |x|)|∇κn(x)|+ (1 + |x|2)|D2κn(x)| ≤ C

for all x ∈ Rd and n ≥ 1. Let φ ∈ C2
p(Rd) and φn = φκn, n ≥ 1. Note that φn ∈ C2

c(Rd) for all
n ≥ 1. Therefore, for every t ≥ 0

⟨φn, νt⟩ = ⟨φn, ν0⟩+
∫ t

0
⟨∇φn · v(s, ·), νs⟩ds+

1

2

∫ t

0
⟨D2φn : a(s, ·), νs⟩ds

+

∫ t

0

∫
Θ
⟨∇φn · g(s, ·, θ), νs⟩W (dθ, ds).

We will next pass to the limit as n → ∞. A simple computation gives that φn(x) → φ(x),
∇φn(x) → ∇φ(x) and D2φn(x) → D2φ(x) as n→ ∞ for all x ∈ Rd. Define for k ≥ 1

σk = inf {t ≥ 0 : ⟨ϕp, νt⟩ > k, W2(νt, δ0) > k} ∧ σ.

Since the set {µ ∈ P2(Rd) : ⟨ϕp, µ⟩ ≤ k} is closed in P2(Rd) and νt, t ≥ 0, is a continuous
process, σk is an (Ft)-stopping time, by [32, Proposition 2.1.5 (a)]. Let k ≥ 1 and t ≥ 0 be fixed.
Since sup

s∈[0,σk]
⟨ϕp, νs⟩ ≤ k and φn(x) ≤ C(1 + |x|p), x ∈ Rd, n ≥ 1, for some C > 0, the

dominated convergence theorem implies that

⟨φn, νt∧σk
⟩ → ⟨φ, νt∧σk

⟩ a.s.

as n→ ∞. By Remark 2.8, for every x ∈ Rd and s ∈ [0, t ∧ σk] one has

|∇φn · v(s, x)| ≤ (|∇φ(x)||κn(x)|+ |φ(x)||∇κn(x)|) |V (s, x, µs)|
≤ L (|∇φ(x)||κn(x)|+ |φ(x)||∇κn(x)|) (1 + |x|+W2(µs, δ0))

≤ L (|∇φ(x)||κn(x)|+ |φ(x)||∇κn(x)|) (1 + |x|+ k)

≤ C1(1 + |x|p),

(2.19)

where C1 is a constant which is independent of s and x. Since
∫ t∧σk

0 C1(1+⟨ϕp, νs⟩)ds ≤ C1(1+
k)t <∞, the dominated convergence theorem implies∫ t∧σk

0
⟨∇φn · v(s, ·), νs⟩ ds→

∫ t∧σk

0
⟨∇φ · v(s, ·), νs⟩ ds a.s.

as n→ ∞. Similarly, by Remark 2.8, for every s ∈ [0, t ∧ σk]

|D2φn : a(s, x)| ≤ |κn(x)D2φ(x) : a(s, x)|+ |(∇φ(x)⊗∇κn(x)) : a(s, x)|
+ |(∇κn(x)⊗∇φ(x)) : a(s, x)|+

∣∣φ(x)D2κn(x) : a(s, x)
∣∣

≤
(
|κn(x)||D2φ(x)|+ 2|∇φ(x)||∇κn(x)|+ |φ(x)||D2κn(x)|

)
|a(s, x)|

≤
(
|κn(x)||D2φ(x)|+ 2|∇φ(x)||∇κn(x)|

+ C|φ(x)||D2κn(x)|
)
(1 + |x|+W2(µs, δ0))

2 ≤ C1(1 + |x|p),
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where C1 is also a constant independent of x and s. Therefore, using the dominated convergence
theorem again, we get∫ t∧σk

0

〈
D2φn : a(x, ·), νs

〉
ds→

∫ t∧σk

0

〈
D2φ : a(x, ·), νs

〉
ds a.s.

as n→ ∞. It remains only to show the convergence of the stochastic integrals. We consider

E
(∫ t∧σk

0
⟨(∇φ−∇φn) · g(s, ·, θ), νs⟩W (dθ, ds)

)2

= E
∫ t∧σk

0

∫
Θ
⟨(∇φ−∇φn) · g(s, ·, θ), νs⟩2 ϑ(dθ)ds

≤ E
∫ t∧σk

0

∫
Θ

〈
|∇φ−∇φn|2 |g(s, ·, θ)|2, νs

〉
ϑ(dθ)ds

≤ E
∫ t∧σk

0

〈
|∇φ−∇φn|2 ∥|g(s, ·, θ)|∥2ϑ , νs

〉
ds→ 0

as n → ∞. In the last step, we have used the dominated convergence theorem, since |∇φ −
∇φn|2 ∥|g(s, x)|∥2ϑ ≤ C(1 + |x|p) on [0, t ∧ σk] with a (non-random) constant C that does not
depend on s and x, where the estimate can be obtained in a similar manner to (2.19). Consequently,∫ t∧σk

0

∫
Θ
⟨∇φn · g(s, ·, θ), νs⟩W (dθ, ds) →

∫ t∧σk

0

∫
Θ
⟨∇φ · g(s, ·, θ), νs⟩W (dθ, ds)

in L2(Ω) as n→ ∞.
Summarizing obtained convergence results, we can conclude that for each t ≥ 0 and k ≥ 0 we

have a.s.

⟨φ, νt∧σk
⟩ = ⟨φ, ν0⟩+

∫ t∧σk

0
⟨∇φ · v(s, ·), νs⟩ds+

1

2

∫ t∧σk

0
⟨D2φ : a(s, ·), νs⟩ds

+

∫ t∧σk

0

∫
Θ
⟨∇φ · g(s, ·, θ), νs⟩W (dθ, ds).

Now we pass to the limit as k → ∞. Remark that the map t 7→ ⟨φ, νt⟩ is not continuous a.s. in
the Euclidean topology on [0,∞) because φ is not bounded in general. However, σk → σ in the
discrete topology as k → ∞, i.e. a.s. there exists k̃ such that σk = σ for all k ≥ k̃. This allows to
pass to the limit as k → ∞. This gives (2.17) with t replaced by t ∧ σ. We can conclude from this
equality that the process ⟨φ, νt∧σ⟩ has a continuous version and is an (Ft)-semimartingale.

We next set ⟨φ, νt⟩ = (⟨φ1, νt⟩, . . . , ⟨φm, νt⟩). Applying Itô’s formula, one obtains

G(νt∧σ) = f (⟨φ1, νt∧σ⟩, . . . , ⟨φm, νt∧σ⟩) = f (⟨φ, ν0⟩)

=
m∑
l=1

∫ t∧σ

0
∂lf(⟨φ, νs⟩)d⟨φl, νs⟩

+
1

2

m∑
l,k=1

∫ t∧σ

0
∂l∂kf(⟨φ, νs⟩)d [⟨φl, ν·⟩, ⟨φk, ν·⟩]s

= f (⟨φ, ν0⟩) +
m∑
l=1

∫ t∧σ

0
∂lf(⟨φ, νs⟩)⟨∇φl · v(s, ·), νs⟩ds

+
1

2

m∑
l=1

∫ t∧σ

0
∂lf(⟨φ, νs⟩)⟨D2φl : a(s, ·), νs⟩ds
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+

m∑
l=1

∫ t∧σ

0

∫
Θ
∂lf(⟨φ, νs⟩) ⟨∇φl · g(s, ·, θ), νs⟩W (dθ, ds)

+
1

2

m∑
l,k=1

∫ t∧σ

0

∫
Θ
∂l∂kf(⟨φ, νs⟩)⟨∇φl · gl(s, ·, θ), νs⟩⟨∇φk · gk(s, ·, θ), νs⟩ϑ(dθ)ds.

Using the equalities

δG(µ)

δµ
(x) =

m∑
l=1

∂lf(⟨φ, µ⟩)φl(x)

and

δ2G(µ)

δµ2
(x, y) =

m∑
l,k=1

∂l∂kf(⟨φ, µ⟩)φl(x)φk(y),

we get (2.18) that completes the proof of the proposition. □

Remark 2.19. One can extend the obtained Itô’s formula to any, e.g., bounded twice continuously
differentiable function G on P2(Rd), using an approximation analog to Bernstein polynomials
similarly as it was done in the proof of [51, Theorem 2]. We do not consider this extension here
since the obtained Itô formula is needed only for the proof of Theorem 2.16, where it will be ap-
plied to the function Fn, that is defined by (2.14) and satisfies the assumptions of Proposition 2.18
.

Corollary 2.20. Let µt, t ≥ 0, be a solution to the stochastic mean-field equation (2.1) whose
coefficients satisfy Assumptions 2.1 and 2.7. Then equality (2.2) holds for every φ ∈ C2

b(Rd).

Proof. We note that µt, t ≥ 0, is a continuous process in P2(Rd). Hence, sup
s∈[0,t]

⟨ϕ2, µs⟩ < ∞ a.s.

for all t ≥ 0. Consequently, the corollary directly follows from Proposition 2.18 with f(x) = x,
x ∈ R, and the inclusion C2

b(Rd) ⊂ C2
2(Rd). □

The following lemma gives the key property of solutions to the stochastic mean-field equation
started from atomic initial condition that allows to prove their uniqueness.

Lemma 2.21. Let V,A,G satisfy Assumptions 2.1, 2.7, n ≥ 2, and νt, t ≥ 0, be defined in
Proposition 2.18 with µ0 ∈ Nn−1. Assume that there exists an (Ft)-stopping time σ such that
sup

t∈[0,σ]
⟨ϕp, νt⟩ <∞ a.s. for p = n2 − n. Then a.s. νt∧σ ∈ Nn−1, t ≥ 0.

Proof. To prove the lemma, it is enough to show that a.s. Fn(νt∧σ) = 0, t ≥ 0, by observa-
tion (2.15). For this we will apply Itô’s formula to the function F := Fn, which satisfies assump-
tions of Proposition 2.18, according to Remark 2.17. We first compute the derivatives of F which
appear in (2.18). For x ∈ Rd we have

δF (µ)

δµ
(x) =

∂

∂ε

∫
Rdn

∏
i,j:i ̸=j

|zi − zj |
n∏

i=1

(
µ(dzi) + εδx

) ∣∣∣
ε=0

=
n∑

i1=1

∫
Rdn

∏
i,j:i ̸=j

|zi − zj |δx(dzi1)
∏
i ̸=i1

µ(dzi).
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Writing {i, j} ≠ {i1, i2} for the set
{
(i, j) ∈ [n]2 : i ̸= j, (i, j) ̸∈ {(i1, i2), (i2, i1)}

}
, we get for

k, l ∈ [d]

∂

∂xk

δF (µ)

δµ
(x) = 2

∑
i1,i2:i1 ̸=i2

∫
Rdn

(zi1k − zi2k )
∏

{i,j}≠{i1,i2}

|zi − zj |δx(zi1)
∏
i:i ̸=i1

µ(dzi)

and

∂2

∂xk∂xl

δF (µ)

δµ
(x) = 4

∑
i1,i2,i3:
i1 ̸=i2 ̸=i3

∫
Rdn

(zi1k − zi2k )(zi1l − zi3l )

∏
{i,j}≠{i1,i2}
{i,j}≠{i1,i3}

|zi − zj |δx(zi1)
∏
i:i ̸=i1

µ(dzi)

+ 2δkl
∑

i1,i2:i1 ̸=i2

∫
Rdn

∏
{i,j}≠{i1,i2}

|zi − zj |δx(zi1)
∏
i:i ̸=i1

µ(dzi)

=: Ik,l(x, µ) + δklĨ
k(x, µ),

where δkl = I{k}(l) denotes the Kronecker delta. Similarly, for x, y ∈ Rd and k, l ∈ [d]

δ2F

δµ2
(x, y) =

∑
i1,i2:i1 ̸=i2

∫
Rdn

∏
i ̸=j

|zi − zj |δx(dzi1)δy(dzi2)
∏

i ̸=i1,i2

µ(dzi),

∂

∂xk

δ2F

δµ2
(x, y) = 2

∑
i1,i2:i1 ̸=i2

∑
i3:i3 ̸=i1

∫
Rdn

(zi1k − zi3k )

∏
{i,j}≠{i1,i3}

|zi − zj |δx(dzi1)δy(dzi2)
∏

i:i ̸=i1,i2

µ(dzi)

and

∂2

∂xk∂yl

δ2F

δµ2
(x, y) = 4

∑
i1,i2:i1 ̸=i2

∑
i3:i3 ̸=i1

∑
i4:i4 ̸=i1,i2

∫
Rdn

(zi1k − zi3k )(zi2l − zi4l )

∏
{i,j}≠{i1,i3}
{i,j}≠{i2,i4}

|zi − zj |δx(dzi1)δy(dzi2)
∏

i:i ̸=i1,i2

µ(dzi)

+ 4
∑

i1,i2:i1 ̸=i2

∑
i3:i3 ̸=i1,i2

∫
Rdn

(zi1k − zi3k )(zi2l − zi1l )

∏
{i,j}≠{i1,i3}
{i,j}≠{i2,i1}

|zi − zj |δx(dzi1)δy(dzi2)
∏

i:i ̸=i1,i2

µ(dzi)

− 2δkl
∑

i1,i2:i1 ̸=i2

∫
Rdn

∏
{i,j}̸={i1,i2}

|zi − zj |δx(dzi1)δy(dzi2)
∏

i:i ̸=i1,i2

µ(dzi)

=: Jk,l
1 (x, y, µ) + Jk,l

2 (x, y, µ) + δklJ̃
k(x, y, µ).



SPDES AND SGD 25

We next estimate the terms which appear after applying Itô’s formula from Proposition 2.18 to the
semimartingale F (νt), t ≥ 0. For the first term, we get〈
∇δF (νs)

δνs
· v(s, ·), νs

〉
= 2

∑
i1,i2:i1 ̸=i2

∫
Rdn

(zi1 − zi2) · v(s, zi1)
∏

{i,j}̸={i1,i2}

|zi − zj |
n∏

i=1

νs(dz
i).

Interchanging i1 and i2, the expression above can be rewritten as∑
i1,i2:i1 ̸=i2

∫
Rdn

(zi1 − zi2) · v(s, zi1)
∏

{i,j}≠{i1,i2}

|zi − zj |
n∏

i=1

νs(dz
i)

+
∑

i1,i2:i1 ̸=i2

∫
Rdn

(zi2 − zi1) · v(s, zi2)
∏

{i,j}̸={i2,i1}

|zi − zj |
n∏

i=1

νs(dz
i)

=
∑

i1,i2:i1 ̸=i2

∫
Rdn

(zi1 − zi2) ·
(
v(s, zi1)− v(s, zi2)

) ∏
{i,j}̸={i1,i2}

|zi − zj |
n∏

i=1

νs(dz
i).

Therefore, using the Lipschitz continuity of v(s, ·) from Assumption 2.7, we can estimate∣∣∣∣〈∇δF (νs)

δνs
· vs, νs

〉∣∣∣∣ ≤ L
∑

i1,i2:i1 ̸=i2

∫
Rdn

|zi1 − zi2 |2
∏

{i,j}≠{i1,i2}

|zi − zj |
n∏

i=1

νs(dz
i)

= L
∑

i1,i2:i1 ̸=i2

∫
Rdn

∏
i,j:i ̸=j

|zi − zj |
n∏

i=1

νs(dz
i) = Ln(n− 1)F (νs).

In order to estimate

K :=

〈
D2 δF (νs)

δνs
: a(s, ·), νs

〉
+

〈
∇⊗∇δ2F (νs)

δν2s
: ã(s, ·), νs ⊗ νs

〉
,

we first split Jk,l
1 into three terms Jk,l

1,1, J
k,l
1,2, J

k,l
1,3 defined by

Jk,l
1,1(x, y, µ) = 4

∑
i1,i2,i3,i4:

i1 ̸=i2 ̸=i3 ̸=i4

∫
Rdn

(zi1k − zi3k )(zi2l − zi4l )

∏
{i,j}≠{i1,i3}
{i,j}≠{i2,i4}

|zi − zj |δx(dzi1)δy(dzi2)
∏

i:i ̸=i1,i2

µ(dzi),

Jk,l
1,2(x, y, µ) = 4

∑
i1,i2,i4:
i1 ̸=i2 ̸=i4

∫
Rdn

(zi1k − zi2k )(zi2l − zi4l )

∏
{i,j}≠{i1,i2}
{i,j}≠{i2,i4}

|zi − zj |δx(dzi1)δy(dzi2)
∏

i:i ̸=i1,i2

µ(dzi)

and

Jk,l
1,3(x, y, µ) = 4

∑
i1,i2,i4:
i1 ̸=i2 ̸=i4

∫
Rdn

(zi1k − zi4k )(zi2l − zi4l )
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{i,j}̸={i1,i4}
{i,j}̸={i2,i4}

|zi − zj |δx(dzi1)δy(dzi2)
∏

i:i ̸=i1,i2

µ(dzi),

which are obtained by summing over {i3 : i3 ̸= i2, i4}, {i3 : i3 = i2, i3 ̸= i4} and {i3 : i3 =

i4, i3 ̸= i2} in the second sum, respectively. We remark that Jk,l
1,1 only appears for n ≥ 4 and Jk,l

1,2,

Jk,l
1,3 appear for n ≥ 3. We rewrite K as the sum K1 +K2 +K3, where

K1 = ⟨J1,1(νs) : ã(s, ·), νs ⊗ νs⟩ ,
K2 = ⟨I(νs) : a(s, ·), νs⟩+ ⟨J1,2(νs) : ã(s, ·), νs ⊗ νs⟩

+ ⟨J1,3(νs) : ã(s, ·), νs ⊗ νs⟩+ ⟨J2(νs) : ã(s, ·), νs ⊗ νs⟩

and

K3 =
〈
Ĩ(νs) · b(s, ·), νs

〉
+
〈
J̃(νs) : b̃(s, ·), νs ⊗ νs

〉
.

In the above equality the functions b and b̃ are defined by bk(s, ·) = ak,k(s, ·) and b̃k(s, ·) =
ãk,k(s, ·), k ∈ [d]. We next compute

K1 = 4
∑

i1,i2,i3,i4:
i1 ̸=i2 ̸=i3 ̸=i4

∫
Rdn

[
(zi1 − zi3)⊗ (zi2 − zi4)

]
: ã(s, zi1 , zi2)

∏
{i,j}≠{i1,i3}
{i,j}≠{i2,i4}

|zi − zj |
n∏

i=1

νs(dz
i)

=
∑

i1,i2,i3,i4:
i1 ̸=i2 ̸=i3 ̸=i4

∫
Rdn

[
(zi1 − zi3)⊗ (zi2 − zi4)

]

:
〈
g(s, zi1 , ·)− g(s, zi3 , ·), g(s, zi2 , ·)− g(s, zi4 , ·)

〉
ϑ

∏
{i,j}≠{i1,i3}
{i,j}≠{i2,i4}

|zi − zj |
n∏

i=1

νs(dz
i)

=
∑

i1,i2,i3,i4:
i1 ̸=i2 ̸=i3 ̸=i4

∫
Rdn

〈
(zi1 − zi3) · (g(s, zi1 , ·)− g(s, zi3 , ·)),

(zi2 − zi4) · (g(s, zi2 , ·)− g(s, zi4 , ·))
〉
ϑ

∏
{i,j}≠{i1,i3}
{i,j}≠{i2,i4}

|zi − zj |
n∏

i=1

νs(dz
i).

Therefore, using the Cauchy-Schwarz inequality and then the Lipschitz continuity of g(s, ·), we
estimate

|K1| ≤
∑

i1,i2,i3,i4:
i1 ̸=i2 ̸=i3 ̸=i4

∫
Rdn

|zi1 − zi3 |∥g(s, zi1 , ·)− g(s, zi3 , ·)∥ϑ|zi2 − zi4 |∥g(s, zi2 , ·)− g(s, zi4 , ·)∥ϑ

∏
{i,j}≠{i1,i3}
{i,j}≠{i2,i4}

|zi − zj |
n∏

i=1

νs(dz
i)

≤ L2
∑

i1,i2,i3,i4:
i1 ̸=i2 ̸=i3 ̸=i4

∫
Rdn

|zi1 − zi3 |2|zi2 − zi4 |2
∏

{i,j}≠{i1,i3}
{i,j}≠{i2,i4}

|zi − zj |
n∏

i=1

νs(dz
i)
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= L2
∑

i1,i2,i3,i4:
i1 ̸=i2 ̸=i3 ̸=i4

∫
Rdn

∏
i,j:i ̸=j

|zi − zj |
n∏

i=1

νs(dz
i) = L2 n!

(n− 4)!
F (νs).

We rewrite K2 in similar way as K1:

K2 = 4
∑

i1,i2,i3:
i1 ̸=i2 ̸=i3

∫
Rdn

[
(zi1 − zi2)⊗ (zi1 − zi3)

]
: a(s, zi1)

∏
{i,j}≠{i1,i2}
{i,j}≠{i1,i3}

|zi − zj |
n∏

i=1

νs(dz
i)

+ 4
∑

i1,i2,i4:
i1 ̸=i2 ̸=i4

∫
Rdn

[
(zi1 − zi2)⊗ (zi2 − zi4)

]
: ã(s, zi1 , zi2)

∏
{i,j}≠{i1,i2}
{i,j}≠{i2,i4}

|zi − zj |
n∏

i=1

νs(dz
i)

+ 4
∑

i1,i2,i4:
i1 ̸=i2 ̸=i4

∫
Rdn

[
(zi1 − zi4)⊗ (zi2 − zi4)

]
: ã(s, zi1 , zi2)

∏
{i,j}≠{i1,i4}
{i,j}≠{i2,i4}

|zi − zj |
n∏

i=1

νs(dz
i)

+ 4
∑

i1,i2,i3:
i1 ̸=i2 ̸=i3

∫
Rdn

[
(zi1 − zi3)⊗ (zi2 − zi1)

]
: ã(s, zi1 , zi2)

∏
{i,j}≠{i1,i3}
{i,j}≠{i2,i1}

|zi − zj |
n∏

i=1

νs(dz
i).

Interchanging the indexes of summations in second, third and fourth terms in the following way
[i1 7→ i2, i2 7→ i1, i4 7→ i3], [i1 7→ i2, i2 7→ i3, i4 7→ i1] and [i2 7→ i3, i3 7→ i2], respectively, and
using the equalities a(s, x) = ⟨g(s, x, ·), g(s, x, ·)⟩ϑ, ã(s, x, y) = ⟨g(s, x, ·), g(s, y, ·)⟩, we get

K2 = 4
∑

i1,i2,i3:
i1 ̸=i2 ̸=i3

∫
Rdn

[
(zi1 − zi2)⊗ (zi3 − zi1)

]
:

[
− ⟨g(s, zi1 , ·), g(s, zi1 , ·)⟩ϑ + ⟨g(s, zi2 , ·), g(s, zi1 , ·)⟩ϑ

− ⟨g(s, zi2 , ·), g(s, zi3 , ·)⟩ϑ + ⟨g(s, zi1 , ·), g(s, zi3 , ·)⟩ϑ
] ∏
{i,j}≠{i1,i2}
{i,j}≠{i1,i3}

|zi − zj |
n∏

i=1

νs(dz
i)

= 4
∑

i1,i2,i3:
i1 ̸=i2 ̸=i3

∫
Rdn

[
(zi1 − zi2)⊗ (zi3 − zi1)

]

: ⟨g(s, zi1 , ·)− g(s, zi2 , ·), g(s, zi3 , ·)− g(s, zi1 , ·)⟩ϑ
∏

{i,j}≠{i1,i2}
{i,j}≠{i1,i3}

|zi − zj |
n∏

i=1

νs(dz
i).

Similarly as before, we get

K2 ≤ 4L2 n!

(n− 3)!
F (νs).

We now compute

K3 = 2
∑

i1,i2:i1 ̸=i2

∫
Rdn

[
d∑

k=1

ak,k(s, z
i1)

] ∏
{i,j}≠{i1,i2}

|zi − zj |
n∏

i=1

νs(dz
i)
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− 2
∑

i1,i2:i1 ̸=i2

∫
Rdn

[
d∑

k=1

ãk,k(s, z
i1 , zi2)

] ∏
{i,j}≠{i1,i2}

|zi − zj |
n∏

i=1

νs(dz
i)

=
∑

i1,i2:i1 ̸=i2

∫
Rdn

[
d∑

k=1

(
⟨gk(s, zi1 , ·), gk(s, zi1 , ·)⟩ϑ + ⟨gk(s, zi2 , ·), gk(s, zi2 , ·)⟩ϑ

− 2⟨gk(s, zi1 , ·), gk(s, zi2 , ·)⟩ϑ
)] ∏

{i,j}≠{i1,i2}

|zi − zj |
n∏

i=1

νs(dz
i)

=
∑

i1,i2:i1 ̸=i2

∫
Rdn

d∑
k=1

∥gk(s, zi1 , ·)− gk(s, z
i2 , ·)∥2ϑ

∏
{i,j}≠{i1,i2}

|zi − zj |
n∏

i=1

νs(dz
i).

Hence, using the Lipschitz continuity of g(s, ·) again, we get

|K3| ≤ L2
∑

i1,i2:i1 ̸=i2

∫
Rdn

|zi1 − zi2 |2
∏

{i,j}≠{i1,i2}

|zi − zj |
n∏

i=1

νs(dz
i) = L2n(n− 1)F (νs).

Combining obtained estimates for Ki, i ∈ [3], we can see that |K| ≤ CnL
2F (νs).

We next define for p = n2 − n and every k ≥ 1 the (Ft)-stopping time σk as follows

σk = inf {t ≥ 0 : ⟨ϕp, νt⟩ ≥ k} ∧ σ.

Then there exists a (non-random) constant C > 0 such that F (µt) ≤ C for all t ∈ [0, σk], by
Remark 2.17. Applying Itô’s formula to F (µt ∧ σk), t ≥ 0, taking the expectations and using
estimates obtained above, we have for every k ≥ 1

EF (µt∧σk
) ≤ Ln(n− 1)E

∫ t∧σk

0
F (µs)ds+ L2CnE

∫ t∧σk

0
F (µs)ds

≤ Ln(n− 1)

∫ t

0
EF (µs∧σk

)ds+ L2Cn

∫ t

0
EF (µs∧σk

)ds, t ≥ 0.

By Gronwall’s lemma, E [F (µt∧σk
)] = 0 for all t ≥ 0. This implies that for every t ≥ 0 a.s.

µt∧σk
∈ Nn−1. Since Nn−1 is closed and µt, t ≥ 0, is continuous, we obtain that a.s. µt∧σk

∈
Nn−1 for all t ≥ 0 and k ≥ 1. Making k → ∞, we can conclude that with probability 1 µt∧σ ∈
Nn−1, t ≥ 0, that ends the proof of the proposition. □

We next prove the main statement of this section.

Proof of Theorem 2.16. Let µt, t ≥ 0, be a solution to the stochastic mean-field equation (2.1)
started from µ0 ∈ Nn and satisfying (2.13). We will show that µt is a superposition solution. Let
µ0 =

∑n
i=1 αiδxi for some αi ≥ 0 and xi ∈ Rd, i ∈ [n]. Without loss of generality, we may

assume that αi, i ∈ [n], are strictly positive and xi, i ∈ [n], are distinct. Applying Lemma 2.21,
we can conclude that a.s. µt ∈ Nn for all t ≥ 0. By the continuity of µ·, there exist (Ft)-adapted
continuous processes αi(t), Y i(t), t ≥ 0, i ∈ [n], such that ai(0) = αi, Yi(0) = xi, i ∈ [n], and

µt =
n∑

i=1

αi(t)δY i(t), t ≥ 0.

For every i ∈ [n] we define the stopping time

τ0 := inf
{
t ≥ 0 : |Y i(t)− xi| ≥ ε or |Y j(t)− xi| ≤ 2ε for some j ̸= i

}
,
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where ε = 1
3 min

i ̸=j
|xi − xj |. For each i ∈ [n] we next consider functions φ,ψi ∈ C2

c(Rd) such that

φi(x) = 1, ψi(x) = xi for |x − xi| < ε and φi(x) = ψi(x) = 0 for |x − xi| ≥ 2ε. Then, using
the definition of a solution to the stochastic mean-field equation, we obtain

αi(t ∧ τ0) = ⟨φi, µt∧τ0⟩ = ⟨φi, µ0⟩ = αi, t ≥ 0,

since ∇φi(x) = 0 and D2φi(x) = 0 for |x − xi| < ε and for |x − xi| > 2ε. Similarly, using
additionally the previous observation, for every t ≥ 0

αiYi(t ∧ τ0) = αi(t ∧ τ0)Yi(t ∧ τ0) = ⟨ψi, µt∧τ0⟩

= αiYi(0) +

∫ t∧τ0

0
αi(s)v(s, Yi(s))ds+

∫ t∧τ0

0

∫
Θ
αi(s)g(s, Yi(s), θ)W (dθ, ds)

= αiYi(0) +

∫ t∧τ0

0
αiv(s, Yi(s))ds+

∫ t∧τ0

0

∫
Θ
αig(s, Yi(s), θ)W (dθ, ds)

holds. Hence, Yi is a solution to the usual SDE

(2.20) dYi(t) = v(t, Yi(t))dt+

∫
Θ
g(t, Yi(t), θ)W (dθ, dt), Yi(0) = xi

on the interval [0, τ0]. Note that (2.20) has at most one solution due to the Lipschitz continuity of
its coefficients. Let X(u, t), t ≥ 0, u ∈ Rd, be a solution to SDE with interaction (2.3). Since
X(xi, t), t ≥ 0, also solves equation (2.20), one has Yi(t) = X(xi, t), t ∈ [0, τ0], for each i ∈ [n].
Next, considering the process µ1t := µt+τ0 conditioning to the σ-algebra Fτ0 , we get that, µ1t ,
t ≥ 0, satisfies the same stochastic mean-field equation with the initial condition µτ0 . Applying
our argument above again to µ1t , t ≥ 0, we get that αi(t+τ0) = αi and Yi(t+τ0) = X(xi, t+τ0)
for t ∈ [0, τ1] and i ∈ [n], where

τ1 := inf
{
t ≥ 0 : |Yi(t+ τ0)− Yi(τ0)| ≥ ε

or |Yj(t+ τ0)− Yi(τ0)| ≤ 2ε for some j ̸= i
}
,

and ε = 1
3 min

i ̸=j
|Yi(τ0)−Yj(τ0)|. Hence, αi(t) = αi and Yi(t) = X(xi, t), t ∈ [0, τ0+τ1], i ∈ [n].

Repining our argument infinitely many times and using the uniform continuity of Yi, i ∈ [n], a.s.
on any compact time interval, we get that αi(t) = αi and Yi(t) = X(xi, t), t ∈ [0, τ ], for

τ = inf {t ≥ 0 : Yi(t) = Yj(t) for some j ̸= i} .
Since X(xi, ·) and X(xj , ·) never meet for distinct xi, xj , by Lemma 2.15, we can conclude that
τ = +∞. Consequently, µt = µ0 ◦X−1(·, t), t ≥ 0. This ends the proof of the uniqueness of the
superposition principle for the stochastic mean-field equation. □

2.2.2. Initial condition with L2-density. In this section, we adapt the method from [58] in order
to prove the uniqueness for the stochastic mean-field equation (2.1) if the initial condition has an
L2-density with respect to the Lebesgue measure and the coefficients are bounded a.s. We will
need the following assumption.

Assumption 2.22. For every T > 0 there exists a (non-random) constant L > 0 such that a.s. for
every x ∈ Rd, t ∈ [0, T ], and µ ∈ P2(Rd)

|V (t, x, µ)|+ ∥|G(t, x, µ, ·)|∥ϑ ≤ L

holds.

Using the notation dµ
dx for the density of a measure µ ∈ P(Rd) with respect to the Lebesgue

measure, we state the main result of this section.
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Theorem 2.23. Let the coefficients of stochastic mean-field equation (2.1) satisfy Assumptions 2.1,
2.7 and 2.22, and µ0 ∈ P2(Rd) be absolutely continuous with respect to Lebesgue measure with
dµ0

dx ∈ L2(Rd). Then (2.1) has a unique solution µt, t ≥ 0, started from µ0. Moreover, µt, t ≥ 0,
is a superposition solution which is absolutely continuous with respect to the Lebesgue measure
with

(2.21) E
∥∥∥dµt
dx

∥∥∥2
L2

≤ eCt

∥∥∥∥dµ0dx
∥∥∥∥2
L2

for all t ≥ 0 and some constant C > 0.

Proof. The proof of the theorem is similar to the proof of the uniqueness result for the nonlinear
SPDE in [58, Section 3], which differs from the equation (2.1) by non-random and homogeneous
(independent of time) coefficients, on one side, and a more general structure on the other side.
Therefore, we just describe the main steps omitting details. Let µt, t ≥ 0, be a solution to (2.1)
started from µ0. As in the previous section, we freeze µt in the coefficients. As before, we set
v(t, x) = V (t, x, µt), a(t, x) = A(t, x, µt) and g(t, x, θ) = G(t, x, µt, θ). We will consider µt,
t ≥ 0, as a solution to the following linear SPDE

dµt =
1

2
D2 : (a(t, ·)µt)dt−∇ · (v(t, ·)µt)dt−

∫
Θ
∇ · (g(t, ·, θ)µt)W (dθ, dt).

(2.22)

This means that equality (2.17) holds for the process µt, t ≥ 0, where test functions φ can be taken
in C2

b(Rd), by Corollary 2.20 and Assumption 2.7.
Our goal is to show that (2.22) has a unique solution. But now we will assume that a solution

νt, t ≥ 0, can take values in the space M(Rd) of all signed measures on Rd with finite total
variations and ν0 ∈ M(Rd). Thus, let νt, t ≥ 0, be a continuous (Ft)-adapted process which
satisfies (2.17) for all φ ∈ Cb(Rd) and ν0 is absolutely continuous with respect to the Lebesgue
measure with dν0

dx from L2(Rd).
For any ρ ∈ M(Rd) and ε > 0, we define

Pερ(x) :=

∫
Rd

pε(x− y)ρ(dy),

where pε is the heat kernel defined by pε(x) = 1
(2πε)−d/2 e

− |x|2
2ε . For every φ ∈ Cb(Rd), we will

also write Pεφ(x) for
∫
Rd pε(x − y)φ(y)dy and Pε(φρ)(x) for

∫
Rd pε(x − y)φ(y)ρ(dy). Setting

νεt := Pενt, t ≥ 0, and following the computations from [58, Section 3], based on the application
of Itô’s formula, we get

E∥νεt ∥2L2
= ∥νε0∥2L2

−
d∑

i=1

E
∫ t

0
2 ⟨νεs , ∂xiPε(vi(s, ·)νs)⟩L2

ds

+

d∑
i,j=1

E
∫ t

0

〈
νεs , ∂xi∂xjPε(ai,j(s, ·)νs)

〉
L2
ds

+ E
∫ t

0

∫
Θ

∥∥∥ d∑
i=1

∂xiPε(gi(s, ·, θ)νs)
∥∥∥2
L2

ϑ(dθ)ds, t ≥ 0.
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Using Assumptions 2.7, 2.22 and [58, Lemma 3.2], one can immediately conclude that for
every T > 0 there exists a constant C such that

(2.23) E
∫ t

0
2 ⟨νεs , ∂xiPε(vi(s, ·)νs)⟩L2

ds ≤ C

∫ t

0
E ∥Pε(|νs|)∥2L2

ds, t ∈ [0, T ],

where |νs| is the total variation of νs. Using the integration by parts in the L2-norm, the sum of
the last two integrals in the expansion of E∥νεt ∥2L2

can be rewritten as

1

2

d∑
i,j=1

∫
Rd

∫
Rd

(
(xi − yi)(xj − yj)

4ε2
− 1

2ε
I{i=j}

)
p2ε(x− y)

· ⟨gi(s, y, θ)− gi(s, x, θ), gj(s, y, θ)− gj(s, x, θ)⟩ϑνs(dx)νs(dy).

This leads to the same estimate (2.23), see the proof of [58, Lemma 3.3] for more details. Hence,
for every T > 0, there exists a constant C > 0 such that

E∥νεt ∥2L2
≤ ∥νε0∥2L2

+ C

∫ t

0
E ∥Pε(|νs|)∥2L2

ds.

Following proofs of Corollary 3.1 and Theorem 3.3 from [58], we can conclude that every solution
to the linear SPDE (2.22) with L2-density is unique. Moreover, if its solution νt, t ≥ 0, is a
measure-valued process, then νt is absolutely continuous with respect to the Lebesgue measure
with density satisfying (2.21) for every t ≥ 0. This immediately implies that the process µt, t ≥ 0,
is a unique solution to (2.22) started from µ0 and is absolutely continuous with respect to the
Lebesgue measure that satisfies (2.21).

In order to show that µt, t ≥ 0, is superposition solution, consider a solution Y (u, t), t ≥ 0,
u ∈ Rd, to the equation

dY (u, t) = v(t, Y (u, t))dt+

∫
Θ
g(t, Y (u, t), θ)W (dθ, dt),

Y (u, 0) = u, ν̄t = µ0 ◦ Y (·, t)−1,

(2.24)

which exists and is unique due to Theorem 2.9, since its coefficients v, g satisfy Assumptions 2.1, 2.7.
By Lemma 2.13, ν̄t, t ≥ 0, is a solution to the (2.22) started from µ0. The uniqueness result, stated
above, yields that ν̄t = µt, t ≥ 0. On the other hand, the unique solution X to (2.3) solves
also (2.24). Hence, Y must coincide with X . This completes the proof of the superposition prin-
ciple.

Then, the uniqueness for the stochastic mean-field equation (2.1) directly follows from Corol-
lary 2.12. □

2.2.3. Initial condition with finite second moment. We will now obtain the well-posedness and
superposition principle for the stochastic mean-field equation for general initial conditions. This
case includes both types of initial conditions considered before, however, stronger assumptions
on the regularity of the coefficients will be needed. Our main idea is to transform a solution to
the stochastic mean-field equation by a smooth (in space) stochastic flow to get a solution to a
continuity equation with random coefficients for which the superposition principle can be easily
obtain, e.g., by a duality method. This will imply that the original equation has only superposition
solutions which will yield the uniqueness result by Corollary 2.12. For the construction of the
transformation flow, we will mainly use results from [57].

We first introduce the following assumption on the coefficients of the equation and formulate
the main result of this section.



32 SPDES AND SGD

Assumption 2.24. There exists δ ∈ (0, 1) such that Vi(t, ·, µ) ∈ C1,δ
lb (Rd), Ãi,j(t, ·, µ) ∈ C̃3,δ

lb (Rd)

a.s. for all t ≥ 0, µ ∈ P2(Rd), i, j ∈ [d], and for every T > 0 and a compact set K ⊂ P2(Rd)
a.s.

sup
t∈[0,T ],µ∈K

(
∥Vi(t, ·, µ)∥1+δ + ∥Ãi,j(t, ·, µ)∥∼3+δ

)
<∞, i, j ∈ [d],

where Ã was defined in Remark 2.4.

Remark 2.25. Let µt, t ≥ 0, be an arbitrary continuous process in P2(Rd). Then Assumption 2.24
implies that for each i, j ∈ [d] the processes

∫ t
0 Vi(s, ·, µs)ds, t ≥ 0, and

∫ t
0 Ãi,j(s, ·, µs)ds, t ≥ 0,

are a.s. continuous in C1,δ(Rd) and C̃3,δ(Rd), respectively. Indeed, due to the continuity of the
process µt, t ≥ 0, the set Kµ

T := {µt : t ∈ [0, T ]} is compact in P2(Rd) for every T > 0. Then
the direct computation shows that for every T > 0, t, t′ ∈ [0, T ] and compact K ⊂ Rd∥∥∥∥∥

∫ t

0
Vi(s, ·, µs)ds−

∫ t′

0
Vi(s, ·, µs)ds

∥∥∥∥∥
1+δ,K

≤ sup
s∈[0,T ],
µ∈Kµ

T

∥Vi(s, ·, µ)∥1+δ |t− t′|

and ∥∥∥∥∥
∫ t

0
Ãi,j(s, ·, µs)ds−

∫ t′

0
Ãi,j(s, ·, µs)ds

∥∥∥∥∥
∼

3+δ,K

≤ sup
s∈[0,T ],
µ∈Kµ

T

∥∥∥Ãi,j(s, ·, µ)
∥∥∥
3+δ

|t− t′|

for all i, j ∈ [d], that guarantees the continuity.

Theorem 2.26. Let the coefficients of the stochastic mean-field equation (2.1) satisfy Assump-
tions 2.1, 2.7 and 2.24. Then for every µ0 ∈ P2(Rd) the equation (2.1) has a unique solution
started from µ0. Moreover, it is a superposition solution.

In order to prove the theorem we will state a few auxiliary statements. Let µt, t ≥ 0, be a
solution to the stochastic mean-field equation (2.1) whose coefficients satisfy Assumptions 2.1, 2.7
and 2.24. As before, we will freeze µt in the coefficients, setting v(t, x) = V (t, x, µt), a(t, x) =
A(t, x, µt), ã(t, x, y) = Ã(t, x, y, µt) and g(t, x, θ) = G(t, x, µt, θ). We consider the following
field of local martingales

M(x, t) =

∫ t

0

∫
Θ
g(s, x, θ)W (dθ, ds), x ∈ Rd, t ≥ 0.

Note that its local quadratic variation

[Mi(x, ·),Mj(y, ·)]t =
∫ t

0
ãi,j(s, x, y)ds, t ≥ 0, x, y ∈ Rd, i, j ∈ [d],

is C̃3,δ(Rd)-valued continuous process, by Remark 2.25. Consequently, there exists a version of
M which is a C3,δ′-valued continuous process for every δ′ ∈ (0, δ), by [57, Theorem 3.1.2].
Moreover, for each α with |α| ≤ 3, DαM(x, t), t ≥ 0, x ∈ Rd, is a family of continuous local
martingales with quadratic variation[

DαMi(x, ·), DβMj(y, ·)
]
t
=

∫ t

0
Dα

xD
β
y ãi,j(s, x, y)ds, t ≥ 0,

for any x, y ∈ Rd, i, j ∈ [d] and α, β with |α| ≤ 3, |β| ≤ 3, by [57, Theorem 3.1.3].
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We consider the following family of linear stochastic transport equations written in integral
form

(2.25) ψk(t, x) = xk −
∫ t

0
∇ψk(s, x) ·M(x, ◦ds), t ≥ 0, x ∈ Rd, k ∈ [d],

where the Stratonovich integral was defined in [57, Section 3.2]. Using the connection between
the Itô and Stratonovich integrals (see [57, Theorem 3.2.5]), one gets

∫ t

0
∇ψk(s, x) ·M(x, ◦ds) =

∫ t

0
∇ψk(s, x) ·M(x, ds) +

1

2

d∑
i=1

[∫ ·

0
Mi(x, ds), ∂iψk(·, x)

]
t

=

∫ t

0
∇ψk(s, x) · g(s, x, θ)W (dθ, ds)

− 1

2

d∑
i=1

[
Mi(x, ·), ∂i

∫ ·

0
∇ψk(s, x) ·M(x, ds)

]
t

.

In order to compute the quadratic variation on the right hand side of the above expression, we will
use [57, Theorem 3.1.3]. Thus, for x, y ∈ Rd[

Mi(y, ·), ∂i
∫ ·

0
∇ψk(s, x) ·M(x, ds)

]
t

=
∂

∂xi

[
Mi(y, ·),

∫ ·

0
∇ψk(s, x) ·M(x, ds)

]
=

∂

∂xi

d∑
j=1

∫ t

0
∂jψk(s, x)

∫
Θ
gj(s, x, θ)gj(s, y, θ)ϑ(dθ)ds

=

d∑
j=1

∫ t

0

∂

∂xi
(∂jψk(s, x)ãi,j(s, x, y)) ds.

Therefore, equality (2.25) can be rewritten in Itô’s form as follows

ψk(t, x) = xk −
∫ t

0

∫
Θ
∇ψk(s, x) · g(s, x, θ)W (dθ, ds)

+
1

2

∫ t

0

∫
Rd

∇x · (ã(s, x, y) · ∇ψk(s, x)) δx(dy)ds

(2.26)

for any t ≥ 0, x ∈ Rd and k ∈ [d].

Proposition 2.27. Under the assumptions of Theorem 2.26, for each k ∈ [d] there exist δ′ ∈ (0, δ)

and an (Ft)-adapted continuous C3,δ′-valued process ψk(t, ·), t ≥ 0, that satisfies (2.25) (and,
therefore, (2.26)). Moreover, a.s. for every t ≥ 0 the map ψ(t, ·) = (ψ1(t, ·), . . . , ψd(t, ·)) :

Rd → Rd is invertible and φ(t, ·) := ψ−1(t, ·) is an (Ft)-adapted continuous C3,δ′(Rd)-valued
stochastic process that satisfies the equation

φ(t, x) = x+

∫ t

0
M(φ(s, x), ◦ds)

for every t ≥ 0 and x ∈ Rd.
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We note that [57, Theorem 3.2.5] yields that the inverse flow φ(t, ·), t ≥ 0, to ψ(t, ·), t ≥ 0,
solves the equation

φ(t, x) = x+

∫ t

0

∫
Θ
g(s, φ(s, x), θ)W (dθ, ds)

+
1

2

∫ t

0
(∇x · ã)(s, φ(s, x), φ(s, x))ds, t ≥ 0, x ∈ Rd,

(2.27)

in Itô form, where ∇x · ã(s, x, y) =
(∑d

j=1
∂

∂xj
ãi,j(s, x, y)

)
i∈[d]

. Indeed,

∫ t

0
Mk(φ(s, x), ◦ds) =

∫ t

0
Mk(φ(s, x), ds) +

1

2

d∑
i=1

[
∂i

∫ ·

0
Mk(φ(s, x), ds), φi(·, x)

]
t

.

By [57, Theorem 3.1.3], we can compute for x, y ∈ Rd[
∂

∂xi

∫ ·

0
Mk(φ(s, x), ds), φi(·, y)

]
t

=
∂

∂xi

∫ t

0

∫
Θ
gk(s, x, θ)gi(s, y, θ)ϑ(dθ)ds

=

∫ t

0

∂

∂xi
ãk,i(s, x, y)ds.

This implies the equivalence between the equations in Itô and Stratonovich form.

Proof of Proposition 2.27. The existence of ψk, k ∈ [d], follows from [57, Theorem 6.1.8]. We
observe that

φ(t, x) = x+

∫ t

0
M(φ(s, x), ◦ds), t ≥ 0, x ∈ Rd,

is the stochastic characteristic equation for the SPDE (2.25). By (2.27) and [57, Theorems 3.4.6,
4.7.3], it has a unique continuous C3,δ′(Rd)-valued solution which is also a stochastic flow of C3-
diffeomorphisms. Using [57, Theorem 6.1.2], we can conclude that ψk(t, ·) is the k-th coordinate
of φ−1(t, ·) for any t ≥ 0. This immediately implies the equality ψ−1(t, ·) = φ(t, ·) which ends
the proof of the proposition. □

We will next consider for every t ≥ 0 the following probability measure ρt = µt ◦ψ−1(t, ·) on
Rd. It is easy to see that ρt, t ≥ 0, is a continuous process in P(Rd). Let us show that this process
(locally) satisfies a continuity equation with random coefficients.

Lemma 2.28. Let the coefficients of (2.1) satisfy Assumptions 2.1, 2.7 and 2.24. Then the measure-
valued process ρt, t ≥ 0, defined above, is a solution to the equation

(2.28) dρt = −∇(b(t, ·)ρt)dt, ρ0 = µ0,

that is, for every φ ∈ C2
c(Rd) a.s. the equality

⟨ρt, φ⟩ = ⟨µ0, φ⟩+
∫ t

0
⟨∇φ · b(s, ·), ρs⟩ ds, t ≥ 0,

holds, where b(t, x) = b̃(t, ψ−1(t, x)) and

b̃k(t, x) = ∇ψk(t, x) · v(t, x)−
1

2

∫
Rd

∇x · (ã(t, x, y) · ∇ψk(t, x)) δx(dy)

for all t ≥ 0, x ∈ Rd, k ∈ [d].
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Proof. Let φ ∈ C2
c(Rd). We note that ⟨φ, ρt⟩ = ⟨φ ◦ ψ(t, ·), µt⟩ for every t ≥ 0, by the definition

of the measure ρt. Hence, we first apply Itô’s formula to φ ◦ ψ(t, x), t ≥ 0, for each x ∈ Rd. One
gets for t ≥ 0

φ ◦ ψ(t, x) = φ (ψ(t, x)) = φ(x)

−
d∑

k=1

∫ t

0

∫
Θ
(∂kφ ◦ ψ) (s, x) [∇ψk(s, x) · g(s, x, θ)]W (dθ, ds)

+
1

2

d∑
k=1

∫ t

0
(∂kφ ◦ ψ) (s, x)

∫
Rd

∇x · (ã(t, x, y) · ∇ψk(t, x)) δx(dy)ds

+
1

2

d∑
k,l=1

∫ t

0

(
∂2k,lφ ◦ ψ

)
(s, x) [(∇ψk(s, x)⊗∇ψl(s, x)) : a(s, x)] ds.

Next, we consider a non-negative function κ ∈ C2
c(Rd) such that

∫
Rd κ(x)dx = 1, and set

δεx(y) =
1
εd
κ
(
1
ε (x− y)

)
, y ∈ Rd, for each x ∈ Rd and ε > 0. Integrating δεx by µt and denoting

µεt (x) = ⟨δεx, µt⟩, we get for every x ∈ Rd a.s.

µεt (x) = µε0(x) +
1

2

∫ t

0

〈
D2δεx : a(s, ·), µs

〉
ds

+

∫ t

0
⟨∇δεx · v(s, ·), µs⟩ ds+

∫ t

0

∫
Θ
⟨∇δεx · g(s, ·, θ), µs⟩W (dθ, ds)

for all t ≥ 0. Using now the expressions for φ ◦ ψ(t, x) and µεt (x) and Itô’s formula, we obtain
for every x ∈ Rd a.s.

φ ◦ ψ(t, x)µεt (x) = φ(x)µε0(x)

−
d∑

k=1

∫ t

0

∫
Θ
µεs(x) (∂kφ ◦ ψ) (s, x) [∇ψk(s, x) · g(s, x, θ)]W (dθ, ds)

+
1

2

d∑
k=1

∫ t

0
µεs(x) (∂kφ ◦ ψ) (s, x)

∫
Rd

∇x · (ã(s, x, y) · ∇ψk(s, x)) δx(dy)ds

+
1

2

d∑
k,l=1

∫ t

0
µεs(x)

(
∂2k,lφ ◦ ψ

)
(s, x) [(∇ψk(s, x)⊗∇ψl(s, x)) : a(s, x)] ds

+
1

2

∫ t

0
φ ◦ ψ(s, x)

〈
D2δεx : a(s, ·), µs

〉
ds+

∫ t

0
φ ◦ ψ(s, x) ⟨∇δεx · v(s, ·), µs⟩ ds

+

∫ t

0

∫
Θ
φ ◦ ψ(s, x) ⟨∇δεx · g(s, ·, θ), µs⟩W (dθ, ds)

−
d∑

k=1

∫ t

0

∫
Θ
⟨∇δεx · g(s, ·, θ), µs⟩ (∂kφ ◦ ψ) (s, x) [∇ψk(s, x) · g(s, x, θ)]ϑ(dθ)ds

for all t ≥ 0. Note that for every t ≥ 0 a.s. there exists a compact K ⊂ Rd such that suppφ ◦
ψ(s, ·) ∈ K for any s ∈ [0, t]. Indeed, one can take K = {ψ−1(s, x) : s ∈ [0, t], x ∈ suppφ},
which is a compact set as the image of [0, t] × suppφ under the continuous map (s, x) 7→
ψ−1(s, x) (for the continuity of ψ−1 see Proposition 2.27). Therefore, we may integrate the above
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expression with respect to the Lebesgue measure dx over Rd. Then taking ε→ 0, we get∫
Rd

φ ◦ ψ(t, x)µεt (x)dx→ ⟨φ ◦ ψ(t, ·), µt⟩ a.s.

and ∫
Rd

φ(x)µε0(x)dx→ ⟨φ, µ0⟩ a.s.

Next using the equalities ∇yδ
ε
x(y) = −∇xδ

ε
x(y), D

2
yδ

ε
x(y) = D2

xδ
ε
x(y), the integration by parts

formula and Fubini’s theorem, we can conclude that the sum of all terms consisting of the integrals∫ t
0 (. . . )ds in the expression for

∫
Rd φ ◦ ψ(t, x)µεt (x)dx converges a.s. to

I1 : =
1

2

d∑
k=1

∫ t

0

〈
(∂kφ ◦ ψ) (s, x)

∫
Rd

∇x · (ã(s, x, y) · ∇ψk(s, x)) δx(dy), µs(dx)

〉
ds

+
1

2

d∑
k,l=1

∫ t

0

〈(
∂2k,lφ ◦ ψ

)
(s, x) [(∇ψk(s, x)⊗∇ψl(s, x)) : a(s, x)] , µs(dx)

〉
ds

+
1

2

∫ t

0

〈
D2(φ ◦ ψ)(s, x) : a(s, ·), µs

〉
ds+

∫ t

0
⟨∇(φ ◦ ψ)(s, x) · v(s, ·), µs⟩ ds

−
d∑

k,i,j=1

∫ t

0

∫
Rd

〈
∂

∂xi
[(∂kφ ◦ ψ) (s, x)∂jψk(s, x)ãi,j(s, x, y)] , µs(dx)

〉
δx(dy)ds.

Taking into account that the second and the third integrals are the same and that the last term can
be rewritten as

−
d∑

k,l=1

∫ t

0

〈(
∂2k,lφ ◦ ψ

)
(s, x)∂j [(∇ψk(s, x)⊗∇ψl(s, x)) : ãi,j(s, x, x)] , µs(dx)

〉
ds

−
d∑

k=1

∫ t

0

〈
(∂kφ ◦ ψ) (s, x)

∫
Rd

∇x · (ã(s, x, y) · ∇ψk(s, x)) δx(dy), µs(dx)

〉
ds,

we obtain

I1 = −1

2

d∑
k=1

∫ t

0

〈
(∂kφ ◦ ψ) (s, x)

∫
Rd

∇x · (ã(s, x, y) · ∇ψk(s, x)) δx(dy), µs(dx)

〉
ds

+
d∑

k=1

∫ t

0
⟨(∂kφ ◦ ψ)(s, ·)∇ψk(s, ·) · v(s, ·), µs⟩ ds

=

∫ t

0
⟨(∇φ ◦ ψ) (s, ·) · b(s, ψ(s, ·)), µs⟩ ds.

We now show that the difference of stochastic integrals converges to zero. Set

Fε(s, x, θ) = φ ◦ ψ(s, x) ⟨∇δεx · g(s, ·, θ), µs⟩

−
d∑

k=1

µεs(x) (∂kφ ◦ ψ) (s, x) [∇ψk(s, x) · g(s, x, θ)]

=

∫
Rd

φ ◦ ψ(s, x)∇yδ
ε
x(y) · g(s, y, θ)µs(dy)
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−
∫
Rd

δεx(y)∇(φ ◦ ψ)(s, x) · g(s, x, θ)µs(dy)

=

∫
Rd

(φ ◦ ψ(s, x)∇yδ
ε
x(y) · g(s, y, θ)− δεx(y)∇(φ ◦ ψ)(s, x) · g(s, x, θ))µs(dy)

for all s ≥ 0, x ∈ Rd and θ ∈ Θ. Using stochastic Fubini’s theorem, one can see that

(2.29)
∫
Rd

(∫ t

0

∫
Θ
Fε(s, x, θ)W (dθ, ds)

)
dx =

∫ t

0

∫
Θ

(∫
Rd

Fε(s, x, θ)dx

)
W (dθ, ds).

Moreover,∫ t

0

∫
Θ

(∫
Rd

Fε(s, x, θ)dx

)2

ϑ(dθ)ds

=

∫ t

0

∫
R4d

φ ◦ ψ(s, x)φ ◦ ψ(s, x̃)∇yδ
ε
x(y)⊗∇ỹδ

ε
x̃(ỹ) : ã(s, y, ỹ)µs(dy)µs(dỹ)dxdx̃ds

+

∫ t

0

∫
R4d

δεx(y)δ
ε
x̃(ỹ)∇(φ ◦ ψ)(s, x)⊗∇(φ ◦ ψ)(s, x̃) : ã(s, x, x̃)µs(dy)µs(dỹ)dxdx̃ds

− 2

∫ t

0

∫
R4d

φ ◦ ψ(s, x)δεx̃(ỹ)∇yδ
ε
x(y)⊗∇ (φ ◦ ψ(s, x̃) : ã(s, y, x̃))µs(dy)µs(dỹ)dxdx̃ds

for every t ≥ 0. After the integration by parts, similarly as before, we obtain∫ t

0

∫
Θ

(∫
Rd

Fε(s, x, θ)dx

)2

ϑ(dθ)ds→ 0 a.s.

as ε→ 0. This simply implies the convergence of the right hand side of (2.29) to zero in probability
as ε → 0, by, e.g., [43, Theorem II.7.2’]. Summarizing our computations, we get that for every
t ≥ 0 a.s.

⟨φ ◦ ψ(t, ·), µt⟩ = ⟨φ, µ0⟩+
∫ t

0
⟨(∇φ ◦ ψ) (s, ·) · b(s, ψ(s, ·)), µs⟩ ds.

This directly implies that the process ρt, t ≥ 0, solves the equation (2.28). □

Note that we cannot control the growth of the coefficient b in the PDE (2.28) in the spatial
variable. Therefore, the known superposition principle, e.g. from [4, 23, 79], cannot be applied.
However, we can construct a superposition solution to (2.28) and a solution to its dual equation pre-
cisely, and then use the duality principle to prove that only the superposition solution solves (2.28).

Let Y (u, t), u ∈ Rd, t ≥ 0, be a unique solution to (2.3) with the frozen coefficients v and g.
In particular, for every u ∈ Rd a.s.

(2.30) Y (u, t) = u+

∫ t

0
v(s, Y (u, s))ds+

∫ t

0

∫
Θ
g(s, Y (u, s), θ)W (dθ, ds), t ≥ 0.

By Assumptions 2.7, 2.24 and [57, Theorem 4.6.5], Y has a modification (also denoted by Y )
which is a continuous process in the space of C1,δ′(Rd)-diffeomorphisms for every δ′ ∈ (0, δ),
i.e., a.s. Y (·, t), t ≥ 0, is a continuous C1,δ′(Rd)-valued process and a.s. for every t ≥ 0 there
exists the inverse map Y −1(·, t) : Rd → Rd to Y (·, t) which is a C1,δ′-valued continuous process.
We also set

(2.31) Z(·, t) = ψ(t, Y (·, t)), t ≥ 0,

which is a continuous process in the space of C1,δ′-diffeomeorphisms for some δ ∈ (0, δ), accord-
ing to Proposition 2.27.
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Lemma 2.29. Under the assumptions of Lemma 2.28, the process ρ̄t = µ0 ◦ Z−1(·, t), t ≥ 0, is
the unique solution to (2.28).

Proof. We first apply the generalised Itô’s formula from [57, Theorem 3.3.1] toZ(u, t) = ψ(t, Y (u, t)),
t ≥ 0. We get for every u ∈ Rd a.s.

Z(u, t) = u+

∫ t

0
b̃(s, Y (u, s))ds = u+

∫ t

0
b(s, Z(u, s))ds, t ≥ 0.

where b̃ and b were defined in Lemma 2.28. Let φ ∈ C2
c(Rd). By the usual chain-rule, one obtains

for each u ∈ Rd a.s.

φ(Z(u, t)) = φ(u) +

∫ t

0
(∇φ) (Z(u, s)) · b(s, Z(u, s))ds, t ≥ 0.

Then, integrating the obtained expression with respect to µ0 yields that the process ρ̄t, t ≥ 0,
satisfies the equality

⟨φ, ρ̄t⟩ = ⟨φ, µ0⟩+
∫ t

0
⟨∇φ · b(s, ·), ρ̄s⟩ ds, t ≥ 0,

a.s. This implies that ρ̄t, t ≥ 0, is a solution to (2.28).
We next prove the uniqueness of solutions to (2.28). Let ρt, t ≥ 0, be a solution to (2.28). For

a fixed function φ ∈ C2
c(Rd) define

γ(t, ·) = φ(Z−1(·, t)), t ≥ 0,

which is a C3,δ′(Rd)-valued continuous process. Then similarly to the proof of [57, Lemma 6.1.1],
one can show that for every x ∈ Rd a.s.

γ(t, x) = φ(x)−
∫ t

0
∇γ(s, x) · b(s, x)ds, t ≥ 0.

Repeating now the computation from the proof of Lemma 2.28, we get a.s.

⟨γ(t, ·), ρt⟩ = ⟨γ(0, ·), φ⟩+
∫ t

0
⟨∇γ(s, ·) · b(s, ·), ρs⟩ds−

∫ t

0
⟨∇γ(s, ·) · b(s, x), ρs⟩ ds

= ⟨µ0, φ⟩, t ≥ 0.

Thus, from the definition of γ it follows that a.s.

⟨φ, µ0⟩ =
∫
Rd

γ(t, x)ρt(dx) =

∫
Rd

φ(Z−1(x, t))ρt(dx) =

∫
Rd

φ(u)ρ̃t(du),

where ρ̃t(A) = ρt{Z(u, t) : u ∈ A}, A ∈ B(Rd). It is easy to see that ρ̃t, t ≥ 0, is a continuous
process in P(Rd). Consequently, the above expression, which holds for every φ ∈ C2

c(Rd), yields
that ρ̃t = µ0, t ≥ 0, a.s. Hence, ρt = µ0 ◦ Z−1(·, t) = ρ̄t, t ≥ 0, a.s. This completes the proof of
the lemma. □

We now ready to prove the well-posedness of the stochastic mean-field equation for arbitrary
initial conditions.

Proof of Theorem 2.26. Let µt, t ≥ 0, be an arbitrary solution to the stochastic mean-field equa-
tion (2.1). Let also ψ, ρ, Y and Z be defined by (2.25), (2.28), (2.30), and (2.31), respectively,
where the process µt, t ≥ 0, is frozen in the coefficients V,A, Ã and G, i.e, v(t, x) = V (t, x, µt),
a(t, x) = A(t, x, µt), ã(t, x, y) = Ã(t, x, y, µt) and g(t, x, θ) = G(t, x, µt, θ). We recall that
ρt = µt ◦ ψ−1(t, ·), t ≥ 0. Then by Lemmas 2.28 and 2.29, we obtain that a.s.

ρt = µ0 ◦ Z−1(·, t) =
(
µ0 ◦ Y −1(·, t)

)
◦ ψ−1(t, ·), t ≥ 0.
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Using that ψ(t, ·) is a bijection, we conclude that µt = µ0 ◦ Y −1(·, t), t ≥ 0, a.s. Hence,
Y is a solution to the SDE with interaction (2.3) due to the definition of Y and the fact that
µ̄t = µ0 ◦ Y −1(·, t) = µt for all t ≥ 0. Moreover, Y is also the unique solution, according to
Theorem 2.9. This yields that µt, t ≥ 0, is a superposition solution to (2.1). This completes the
proof of the theorem since the superposition principle implies the uniqueness of the stochastic
mean-field equation, by Corollary 2.12. □

3. LIMIT THEOREMS FOR THE STOCHASTIC MEAN-FIELD EQUATION

The aim of this section is to prove an analog of the law of large numbers (LLN) and the central
limit theorem (CLT) for solutions to the stochastic mean-field equation (2.1). More precisely, we
provide a rate of convergence of the superposition solution µεt , t ≥ 0, to

dµεt =
ε

2
D2 : (A(t, ·, µεt )µεt )dt−∇ · (V (t, ·, µεt )µεt ) dt

−
√
ε

∫
Θ
∇ · (G(t, ·, µεt , θ)µεt )W (dθ, dt)

(3.1)

started from µε0 ∈ P2(Rd) to the superposition solution µ0t , t ≥ 0, to the PDE

(3.2) dµ0t = −∇ ·
(
V (t, ·, µ0t )µ0t

)
dt

started from µ00 ∈ P2(Rd). We also show that the fluctuation field

(3.3) ηεt =
1√
ε

(
µεt − µ0t

)
, t ≥ 0,

converges to a Gaussian process η0t , t ≥ 0, which is a solution to the linear SPDE

dη0t = −∇ ·
(
V (t, ·, µ0t )η0t + ⟨Ṽ (t, x, ·), η0t ⟩0µ0t (dx)

)
dt

−
∫
Θ
∇ ·
(
G(t, ·, µ0t , θ)µ0t

)
W (dθ, dt),

(3.4)

and estimate the speed of the convergence.

3.1. Law of large numbers. In this section, we will prove the following theorem.

Theorem 3.1 (LLN for the stochastic mean-field equation). Let the coefficients A, V,G of the
stochastic mean-field equation (3.1) satisfy Assumptions 2.1 and 2.7. Furthermore, let µεt , t ≥ 0,
be a superposition solution to the SPDE (3.1) started from µε0 ∈ P2(Rd) for each ε > 0 and µ0t ,
t ≥ 0, be a superposition solution to the PDE (3.2) started from µ00 ∈ P2(Rd). Then, for every
T > 0 there exists a constant C > 0 such that

(3.5) E sup
t∈[0,T ]

W2
2 (µ

ε
t , µ

0
t ) ≤ C

(
ε (1 + ⟨ϕ2, µε0⟩) +W2

2 (µ
ε
0, µ

0
0)
)
,

where ϕ2(x) = |x|2, x ∈ Rd.

Proof. The proof is similar to the proof of Theorem 2.14. Since the processes µεt , t ≥ 0, and µ0t ,
t ≥ 0, are superposition solutions to (3.1) and (3.2), respectively, we have µεt = µε0 ◦ Xε(t, ·),
t ≥ 0, ε ≥ 0, where Xε are solutions to the corresponding SDEs with interaction (2.3). Using the
Burkholder–Davis–Gundy inequality, Assumption 2.7 and Remark 2.8, we get for each t ∈ [0, T ]
and u, v ∈ Rd

E sup
s∈[0,t]

|Xε(u, s)−X0(v, s)|2 ≤ 3|u− v|2
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+ 3TE
∫ t

0

∣∣V (s,Xε(u, r), µ
ε
s)− V (s,X0(v, s), µ

0
s)
∣∣2 ds

+ 3εE sup
s∈[0,t]

∣∣∣∣∫ s

0

∫
Θ
G(r,Xε(u, r), µ

ε
r, θ)W (dθ, dr)

∣∣∣∣2
≤ 3|u− v|2 + C

∫ t

0

(
E|Xε(u, s)−X0(v, s)|2 + EW2

2 (µ
ε
s, µ

0
s)
)
ds

+ εCE
∫ t

0
∥|G(s,Xε(u, s), µ

ε
s)|∥

2
ϑ ds

≤ 3|u− v|2 + C

∫ t

0
E sup

r∈[0,s]
|Xε(u, r)−X0(v, r)|2ds+ C

∫ t

0
EW2

2 (µ
ε
s, µ

0
s)ds

+ ε3CL2

∫ t

0
E
(
1 + |Xε(u, s)|2 +W2

2 (µ
ε
s, δ0)

)
ds,

where C is independent of u, v, t and ε. We note that

W2
2 (µ

ε
s, δ0) =

∫
Rd

|x|2µεs(dx) =
∫
Rd

|Xε(ũ, s)|2µε0(dũ).

Hence, by Gronwall’s lemma, we conclude

E sup
s∈[0,t]

|Xε(u, s)−X0(v, s)|2 ≤ C|u− v|2 + C

∫ t

0
EW2

2 (µ
ε
s, µ

0
s)ds

+ εC

∫ t

0
E
(
1 + |Xε(u, s)|2 +

∫
Rd

|Xε(ũ, s)|2µε0(dũ)
)
ds

≤ C|u− v|2 + C

∫ t

0
EW2

2 (µ
ε
s, µ

0
s)ds+ εC

(
1 + |u|2 + ⟨ϕ2, µε0⟩

)
ds

for all t ∈ [0, T ], u, v ∈ Rd and ε > 0, where C depends only on L and T . Note that in the last
step of the inequality, we have used Theorem 2.9.

For fixed ε > 0, let χ be an arbitrary probability measure on Rd × Rd with marginals µε0
and µ00. Let also χs(B) = χ{(u, v) : (Xε(u, s), X0(v, s)) ∈ B}, B ∈ B(Rd × Rd). Then, for
t ∈ [0, T ], we have the following

E sup
s∈[0,t]

W2
2 (µ

ε
s, µ

0
s) ≤ E sup

s∈[0,t]

∫
Rd

∫
Rd

|x− y|2χs(dx, dy)

≤
∫
Rd

∫
Rd

E sup
s∈[0,t]

|Xε(u, s)−X0(v, s)|2χ(du, dv)

≤ C

∫
Rd

∫
Rd

|u− v|2χ(du, dv) + C

∫
Rd

∫
Rd

∫ t

0
EW2

2 (µ
ε
s, µ

0
s)dsχ(du, dv)

+ εC

∫
Rd

∫
Rd

E
(
1 + |u|2 + ⟨ϕ2, µε0⟩

)
χ(du, ds)

= C

∫
Rd

∫
Rd

|u− v|2χ(du, dv) + C

∫ t

0
EW2

2 (µ
ε
s, µ

0
s)ds

+ εC (1 + 2⟨ϕ2, µε0⟩)

≤ C

∫
Rd

∫
Rd

|u− v|2χ(du, dv) + C

∫ t

0
E sup

r∈[0,s]
W2

2 (µ
ε
r, µ

0
r)ds
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+ εC (1 + 2⟨ϕ2, µε0⟩) .

Taking the infimum over all probability measures χ with marginals µε0 and µ00, we obtain

E sup
s∈[0,t]

W2
2 (µ

ε
s, µ

0
s) ≤ C1W2

2 (µ
ε
0, µ

0
0) + C1

∫ t

0
E sup

r∈[0,s]
W2

2 (µ
ε
r, µ

0
r)ds

+ εC2 (1 + 2⟨ϕ2, µε0⟩)

for all t ∈ [0, T ]. Using Gronwall’s lemma again, we get the required inequality. This completes
the proof of the theorem. □

Remark 3.2. Combining the estimate for E sup
s∈[0,t]

|Xε(u, s)−X0(v, s)|2 from the proof of Theo-

rem 3.1 and the inequality (3.5) from the statement of Theorem 3.1, one gets for every t ∈ [0, T ]
and ε > 0

E sup
s∈[0,t]

|Xε(u, s)−X0(v, s)|2 ≤ C
(
|u− v|2 +W2

2 (µ
ε
0, µ

0
0) + ε

(
1 + |u|2 + ⟨ϕ2, µε0⟩

))
,

where the constant C depends only on T , L and d.

3.2. Central limit theorem. We note that Theorem 3.1 implies that µε → µ0 as µε0 → µ00 and
ε → 0. It this section, we will consider the fluctuations ηεt = 1√

ε

(
µεt − µ0t

)
of µεt , t ≥ 0, around

µ0t , t ≥ 0, as ε → 0. Note that the process ηεt , t ≥ 0, takes values in the space M(Rd) of all
signed measures on Rd with finite total variation. Since the Sobolev embedding theorem (see [1,
Theorem 4.12]) tells us that the space HJ(Rd) is continuously embedded into Cm

b (Rd) for any
J > d

2 +m, for every J > d
2 and ε > 0 the process ηεt , t ≥ 0, can be considered as a continuous

process in H−J(Rd), by the identification ⟨φ, ηεt ⟩0 := ⟨φ, ηεt ⟩, φ ∈ HJ(Rd), where ⟨·, ·⟩0 denotes
the dualization between HJ(Rd) and H−J(Rd). Moreover, a simple computation shows that

dηεt =

√
ε

2
D2 : (A(t, ·, µεt )µεt )−∇ ·

(
V (t, ·, µεt )ηεt + ⟨Ṽ (t, x, ·), ηεt ⟩0µ0t (dx)

)
dt

−
∫
Θ
∇ · (G(t, ·, µεt , θ)µεt )W (dθ, dt),

where we assume that V (t, x, µ) = V̄ (t, x) + ⟨Ṽ (t, x, ·), µ⟩. Passing formally to the limit as
ε→ 0, we expect that the limit of ηεt , t ≥ 0, is a solution to the same equation with ε = 0.

Therefore, the main goal of this section is to show that ηεt , t ≥ 0, converges to the solution
η0t , t ≥ 0, to the linear SPDE (3.4) and to estimate the speed of convergence. We first prove some
auxiliary statements and study the well posedness of the linear SPDE (3.4). We set Γn = (−n, n)d
for n ∈ N̄ := N ∪ {∞}. We start with an auxiliary technical lemma that will prove useful in the
proofs of the later results.

Lemma 3.3. Let J ∈ N, n ∈ N̄ and v = (v1, . . . , vd) with vi ∈ CJ
b (Γn), i ∈ [d]. Then the map

G : H−J+1(Γn) → H−J(Γn) defined by

⟨φ,G(f)⟩0,Γn = ⟨∇φ · v, f⟩0,Γn , f ∈ H−J+1(Γn), φ ∈ C∞
c (Γn),

satisfies

(3.6) |⟨G(f), f⟩−J,Γn | ≤ Cmax
i∈[d]

∥vi∥CJ
b
∥f∥2−J,Γn

for all f ∈ H−J+1(Γn), where the constant C depends only on J and d.
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Proof. We first remark that G maps H−J+1(Γn) to H−J(Γn). Indeed, we have

∥G(f)∥H−J = sup
φ∈C∞

c (Γn)

⟨∇φ · v, f⟩0,Γn

∥φ∥J

≤ sup
φ∈C∞

c (Γn)

∥∇φ · v∥J−1

∥φ∥J
∥f∥−J+1 ≤ Cmax

i∈[d]
∥vi∥CJ−1

b
∥f∥−J+1

for all f ∈ H−J+1.
Since H−J(Γn) is the dual space of HJ(Γn), for every f ∈ H−J+1(Γn) ⊂ H−J(Γn) there

exists a unique function f̃ = L−1
J,Γn

f ∈ HJ(Γn) such that ⟨φ, f⟩0,Γn = ⟨φ, f̃⟩J,Γn for any φ ∈
C∞
c (Γn). We set

R :=
{
f ∈ H−J(Γn) : f̃ ∈ C∞

c (Γn)
}
⊂ H−J+1(Γn)

and compute

⟨G(f), f⟩−J,Γn = ⟨f̃ ,G(f)⟩0,Γn = ⟨∇f̃ · v, f⟩0,Γn = ⟨∇f̃ · v, f̃⟩J,Γn

=
∑
|α|≤J

∫
Γn

Dα
(
∇f̃(x) · v(x)

)
Dαf̃(x)dx

=
d∑

i=1

∑
|α|≤J

∫
Γn

Dα
(
∂if̃(x)vi(x)

)
Dαf̃(x)dx.

For β, α ∈ Nd
0 we say β ≤ α if βi ≤ αi for all i ∈ [d]. We also set

(
α
β

)
=
(
α1

β1

)
. . .
(
αd
βd

)
for β ≤ α.

Then, for every multi-index α with |α| = J , we compute

Dα
(
∂if̃(x)vi(x)

)
=
∑
β≤α

(
α

β

)
Dβ
(
∂if̃(x)

)
Dα−βvi(x)

=
∑
β<α

(
α

β

)
Dβ
(
∂if̃(x)

)
Dα−βvi(x) + vi(x)D

α∂if̃(x),

where β < α means β ≤ α and |β| < |α|. Hence,

⟨G(f), f⟩−J,Γn =

d∑
i=1

∑
|α|<J

∑
β≤α

(
α

β

)∫
Γn

Dβ
(
∂if̃(x)

)
Dα−βvi(x)D

αf̃(x)dx

+
d∑

i=1

∑
|α|=J

∑
β<α

(
α

β

)∫
Γn

Dβ
(
∂if̃(x)

)
Dα−βvi(x)D

αf̃(x)dx

+
d∑

i=1

∑
|α|=J

∫
Γn

vi(x)D
α∂if̃(x)D

αf̃(x)dx.

(3.7)

Using the fact that f̃ ∈ C∞
c (Γn) and the integration by parts, the last integral in the equality above

can be rewritten as follows∫
Γn

vi(x)D
α∂if̃(x)D

αf̃(x)dx =
1

2

∫
Γn

vi(x)∂i

(
Dαf̃(x)

)2
dx

= −1

2

∫
Γn

∂ivi(x)
(
Dαf̃(x)

)2
dx.

(3.8)
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Thus, Young’s inequality and the equalities (3.7), (3.8) yield

|⟨G(f), f⟩−J,Γn | ≤ Cmax
i∈[d]

∥vi∥CJ
b (Γn)

∥f̃∥2J,Γn
= Cmax

i∈[d]
∥vi∥CJ

b (Γn)
∥f∥2−J,Γn

,

for every f ∈ R and some constant depending only on d and J . We now prove the estimate (3.6) for
all f ∈ H−J+1. Since the set R is dense in H−J+1(Γn), there exists a sequence {fm, m ≥ 1} ⊂
R which converges to f in H−J+1(Γn). Since G is a bounded linear operator, G(fm) → G(f) in
H−J(Γn). Moreover, fm → f in H−J(Γn) due to the continuous embedding of H−J+1(Γn) into
H−J(Γn). Hence,

|⟨G(f), f⟩−J,Γn | = lim
m→∞

|⟨G(fm), fm⟩−J,Γn | ≤ lim
m→∞

Cmax
i∈[d]

∥vi∥CJ
b (Γn)

∥fm∥2−J,Γn

= Cmax
i∈[d]

∥vi∥CJ
b (Γn)

∥f∥2−J,Γn
.

This completes the proof of the lemma. □

We now prove the well-posedness of the linear SPDE (3.4).

Proposition 3.4. Let J ≥ d
2 + 3 and v̄ : [0, T ] × Rd → Rd, ṽ : [0, T ] × Rd × Rd → Rd, g :

[0, T ]×Rd → L2(Θ, ϑ) be measurable functions such that for every t ∈ [0, T ], v̄(t, ·) ∈ CJ(Rd),
ṽ(t, ·, ·) ∈ CJ(Rd × Rd), and

sup
t∈[0,T ]

∥v̄(t, ·)∥CJ
b
+ sup

t∈[0,T ],y∈Rd

∥ṽ(t, ·, y)∥CJ
b

+ sup
t∈[0,T ],x∈Rd

∥ṽ(t, x, ·)∥J + sup
t∈[0,T ],x∈Rd

∥g(t, x, ·)∥ϑ
1 + |x|

<∞.
(3.9)

Let also µt, t ∈ [0, T ], be a continuous curve in P2(Rd), ϱ ∈ H−J+1(Rd), and v(t, x) = v̄(t, x)+
⟨ṽ(t, x, ·), µt⟩. Then, there exists a unique (Ft)-adapted continuous process inH−J(Rd) such that
for every φ ∈ C∞

c (Rd) we have a.s.

⟨φ, ηt⟩0 = ⟨φ, ϱ⟩0 +
∫ t

0

(
⟨∇φ · v(s, ·), ηs⟩0,Rd +

〈
∇φ · ⟨ṽ(s, x, ·), ηs⟩0,Rd , µs(dx)

〉)
ds

+

∫ t

0

∫
Θ
⟨∇φ · g(s, ·, θ), µs⟩W (dθ, ds), t ∈ [0, T ].

(3.10)

Moreover, ηt, t ≥ 0, is a Gaussian process in H−J(Rd) and

(3.11) E sup
t∈[0,T ]

∥ηt∥2−J,Rd <∞.

Proof. To prove the well-posedness of (3.10), we will use the general theory developed in [31, 64],
where one needs to check that the coefficients of the equation satisfy some conditions (see (H0)-
(H4) below for more details). Unfortunately, working in the Sobolev space H−J(Rd), we will
not be able to verify (H0). In order to overcome this problem, we will first construct solutions to
cut-off versions of the SPDE in the Sobolev spaces H−J(Γn) for all Gn = (−n, n)d, n ∈ N, and
then pass to the limit as n→ ∞.

Since for every n ∈ N̄ the space Vn := H−J+1(Γn) is continuously and densely embedded
into the Hilbert space Hn := H−J(Γn),

Vn ⊂ Hn
∼= H∗

n ⊂ V∗
n
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is a Gelfand triple, where V∗
n is the dual space of Vn with respect to the inner product ⟨·, ·⟩Hn =

⟨·, ·⟩−J,Γn . In particular,

V∗
n
⟨f, φ⟩Vn = ⟨f, φ⟩Hn , f ∈ Hn, φ ∈ Vn.

Let L2 (L2(Θ, ϑ);Vn) denote the space of all Hilbert–Schmidt operators from L2(Θ, ϑ) to Vn and
∥ · ∥HS,Vn be the Hilbert–Schmidt norm on that space. For the cylindrical Brownian motion Wt,
t ≥ 0, in L2(Θ, ϑ) and fixed n ∈ N̄, we consider the following equation

(3.12) dξnt = Un(t, ξ
n
t )dt+Bn(t)dWt,

where Un = Ūn + Ũn : [0, T ] × Vn → Hn ⊂ V∗
n and Bn : [0, T ] → L2 (L2(Θ, ϑ);Vn) are

measurable functions defined by

⟨Ūn(t, f), φ⟩0,Γn = ⟨∇φ · v(t, ·), f⟩0,Γn ,

⟨Ũn(t, f), φ⟩0,Γn = ⟨∇φ(x) · ⟨κnṽ(t, x, ·), f⟩0,Γn , µt(dx)⟩
and

⟨Bn(t)h, φ⟩0,Γn = ⟨h, ⟨∇φ(x) · g(t, x, ·), µt(dx)⟩⟩ϑ
for all φ ∈ C∞

c (Γn), f ∈ Vn and h ∈ L2(Θ, ϑ), where we extend the function φ to the whole
space Rd by zero in the integrals with respect to µt, the function κn ∈ C∞

c (Rd) has a compact
support in Γn and κn = 1 on Γn−1 for every n ∈ N, κ∞ = 1 on Rd, and supn≥1 ∥κn∥CJ−1

b
<∞.

The fact that Un and Bn(t)h take values in Hn and Vn, respectively, follows from the continuous
embedding of the Sobolev space H−J(Γn) into C1

b(Γn).
To prove the well-posedness of the equation (3.12), we need to check the following conditions

for all n ∈ N.
(H0) There exists an orthogonal set {e1, e2, . . . } in Vn such that it constitutes an orthonormal

basis of Hn.
(H1) (Hemicontinuity) The map s 7→ V∗

n
⟨Un(t, f1 + sf2), f⟩Vn is continuous on R for any

f1, f2, f ∈ Vn and t ∈ [0, T ].
(H2) (Monotonicity) There exists a constant C > 0 such that

V∗
n
⟨Un(t, f1)− Un(t, f2), f1 − f2⟩Vn ≤ C∥f1 − f2∥2Hn

for all t ∈ [0, T ] and f1, f2 ∈ Vn.
(H3) (One-side linear growth) For any k ∈ N the operatorUn(t, ·) maps the setEk := span{e1, . . . , ek}

into Vn, and there exists a constant C > 0 such that

⟨Un(t, f), f⟩Vn ≤ C(1 + ∥f∥2Vn
)

for all f ∈ Ek and some constant independent of k and t.
(H4) (Growth) There exists a constant C > 0 such that

∥Un(t, f)∥V∗
n
≤ C(1 + ∥f∥Vn), ∥Bn(t)∥2HS,Vn

≤ C

for all t ∈ [0, T ] and f ∈ Vn.
The condition (H0) follows from the compact embedding of the space Vn into Hn. Indeed,

due to the fact that the inner product ⟨·, ·⟩Vn induces a closed quadratic form on Hn, there exists
a densely defined self-adjoint operator L : Hn ⊃ D(L) → Hn on Hn such that ⟨f1, f2⟩Vn =
⟨f1, Lf2⟩Hn for all f1 ∈ Vn and f2 ∈ D(L). By the compact embedding of Vn into Hn, the
operator L has a discrete spectrum (see also [31, Section 2.1]) {λk, k ≥ 1} with corresponding
eigenbasis {ek, k ≥ 1} in Hn. It is easy to see that {ek, k ≥ 1} is an orthogonal system in Vn

and ek ∈ H−J+2(Γn) for every k ≥ 1.
The condition (H1) holds due to the linearity of Un(t, ·) for every t ∈ [0, T ].



SPDES AND SGD 45

In order to check the monotonicity of Un, we estimate for f ∈ Vn and t ∈ [0, T ]

V∗
n
⟨Un(t, f), f⟩Vn = ⟨Un(t, f), f⟩Hn = ⟨Ūn(t, f), f⟩Hn + ⟨Ũn(t, f), f⟩Hn .

By Lemma 3.3,

⟨Ūn(t, f), f⟩Hn = ⟨Ūn(t, f), f⟩−J,Γn ≤ Cmax
i∈[d]

sup
t∈[0,T ]

∥vi(t, ·)∥CJ
b
∥f∥2−J,Γn

,

where the constant C is independent of n. We remark that sup
t∈[0,T ]

∥vi(t, ·)∥CJ
b

is finite accord-

ing to (3.9). For every f ∈ Vn ⊂ H−J(Γn) we define f̃ = L−1
J,Γn

f ∈ HJ(Γn) and note that
⟨f̃ , φ⟩J,Γn = ⟨f, φ⟩0,Γn for all φ ∈ C∞

c (Γn). By [1, Theorem 5.29], the extension by zero of f̃ on
Rd, which we also denote f̃ , belongs to HJ(Rd). We next estimate

⟨Ũn(t, f), f⟩Hn = ⟨Ũn(t, f), f⟩−J,Γn = ⟨Ũn(t, f), f̃⟩0,Γn

=
〈
∇f̃(x) · ⟨κnṽ(t, x, ·), f⟩0,Γn , µt(dx)

〉
≤

d∑
i=1

∫
Rd

∣∣∣∂if̃(x)∣∣∣ ∥κnṽi(t, x, ·)∥J,Γn∥f∥−J,Γnµt(dx)

≤ ∥f̃∥C1
b
|∥f∥−J,Γn

d∑
i=1

sup
t∈[0,T ],x∈Rd

∥ṽi(t, x, ·)∥J,Rd .

(3.13)

By the continuous embedding of HJ(Rd) into C1
b(Rd), we obtain

∥f̃∥C1
b
≤ C∥f̃∥J,Rd = C∥f̃∥J,Γn = C∥f∥−J,Γn .

Thus, the linearity of Un(t, ·) and the estimates above imply the monotonicity of Un with the
constant C independent of n. This establishes condition (H2).

The functionUn(t, ·) mapsEk = span{e1, . . . , ek} to Vn due to the fact that ek ∈ H−J+2(Γn)
for all k ≥ 1. Moreover, Lemma 3.3 and a similar computation to (3.13) imply

⟨Un(t, f), f⟩Vn ≤ Cmax
i∈[d]

sup
t∈[0,T ],x∈Rd

(
∥vi(t, ·)∥CJ−1

b
+ ∥ṽi(t, x, ·)∥J−1,Rd

)
∥f∥2Vn

for all f ∈ Ek, where the constant C is independent of n and k. Thus, condition (H3) holds.
We separately estimate the norms of Ūn and Ũn in Hn as follows

∥Ūn(t, f)∥Hn = sup
φ∈C∞

c (Γn)

1

∥φ∥J,Γn

⟨∇φ · v(t, ·), f⟩0,Γn

≤ sup
φ∈C∞

c (Γn)

∥∇φ · v(t, ·)∥J−1,Γn

∥φ∥J,Γn

∥f∥Vn

≤ Cmax
i∈[d]

sup
t∈[0,T ]

∥vi(t, ·)∥CJ−1
b

∥f∥Vn ,

for all f ∈ Vn and t ∈ [0, T ], by the continuous embedding of HJ(Rd) into C1
b(Rd). Similarly,

∥Ũn(t, f)∥Hn = sup
φ∈C∞

c (Γn)

1

∥φ∥J,Γn

⟨∇φ(x) · ⟨κnṽ(t, x, ·), f⟩0,Γn , µt(dx)⟩

≤ Cmax
i∈[d]

sup
t∈[0,T ],x∈Rd

∥κnṽi(t, x, ·)∥J−1,Rd∥f∥Vn

≤ C∥κn∥CJ−1
b

max
i∈[d]

sup
t∈[0,T ],x∈Rd

∥ṽi(t, x, ·)∥J−1,Rd∥f∥Vn
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≤ Cmax
i∈[d]

sup
t∈[0,T ],x∈Rd

∥ṽi(t, x, ·)∥J−1,Rd∥f∥Vn

for all f ∈ Vn and t ∈ [0, T ], where the constant C is independent of n due to the specific choice
of κn.

To estimate the Hilbert–Schmidt norm of Bn(t), we consider an orthonormal basis {hk, k ≥
1} in L2(Θ, ϑ) and compute for every k ≥ 1 and φ ∈ C∞

c (Γn)

⟨Bn(t)hk, φ⟩0,Γn = ⟨hk, ⟨∇φ(x) · g(t, x, ·), µt(dx)⟩⟩ϑ =
〈
∇φ · gk(t, ·), µt

〉
,

where gk(t, x) = ⟨g(t, x, ·), hk⟩ϑ. Hence, by the continuous embedding ofHJ−1(Rd) into C1
b(Rd)

due to J ≥ d
2 + 3, we obtain

∥Bn(t)hk∥Vn = sup
φ∈C∞

c (Γn)

〈
∇φ · gk(t, ·), µt

〉
∥φ∥J−1,Γn

≤ C⟨|gk(t, ·)|, µt⟩,

where the constant C is independent of n. Consequently, by Jensen’s inequality and Fubini’s the-
orem,

∥Bn(t)∥2HS,Vn
=

∞∑
k=1

∥Bn(t)hk∥2Vn
≤ C2

∞∑
k=1

⟨|gk(t, ·)|, µt⟩2

≤ C2
d∑

i=1

〈 ∞∑
k=1

(gki (t, ·))2, µt

〉
= C2

d∑
i=1

〈
∥gi(t, x, ·)∥2ϑ, µt(dx)

〉
.

We note that sup
t∈[0,T ]

⟨∥gi(t, x, ·)∥2ϑ, µt(dx)⟩ <∞ due to (3.9). Thus, condition (H4) holds true with

a constant C that is independent of n.
Now we can apply [64, Theorem 1.1], to obtain that, for every n ≥ 1 and ϱ ∈ H−J+1 ⊂ Vn,

there exists a continuous Hn-valued (Ft)-adapted process ηnt , t ∈ [0, T ], which has a dt × P-
version η̄n from L2([0, T ]× Ω, dt× P;V ) and P-a.s.

ηnt = ϱ+

∫ t

0
Un(s, η̄

n
s )ds+

∫ t

0
Bn(s)dWs, t ∈ [0, T ].

Using [64, Lemma 2.1], one can see that

E sup
t∈[0,T ]

∥ηnt ∥2Hn
+ E

∫ T

0
∥η̄nt ∥2Vn

dt ≤ C(1 + ∥ϱ∥2Vn
),

where the constant C is independent of n because all constants in the conditions (H1)-(H4) are
independent of n. Since for every m ≥ n the relationships Hm ⊂ Hn, Vm ⊂ Hn, and ∥ · ∥Hn ≤
∥ · ∥Hm , ∥ · ∥Vn ≤ ∥ · ∥Vm hold, we get

E sup
t∈[0,T ]

∥ηmt ∥2Hn
+ E

∫ T

0
∥η̄mt ∥2Vn

dt ≤ C(1 + E∥ϱ∥2Vm
) ≤ C(1 + ∥ϱ∥2V∞)

for all m ≥ n. Hence the sequence {ηm, m ≥ n} is relatively compact in the weak topologies
of L2(Hn) := L2([0, T ] × Ω, dt × P;Hn), and L2(Vn) := L2([0, T ] × Ω, dt × P;Vn) for every
n ≥ 1. Using a diagonal argument, there exists a subsequence {mk, k ≥ 1} such that ηmk → η̄
in the weak topologies of L2(Hn) and L2(Vn) for every n ≥ 1. In particular,

E
∫ T

0
∥η̄t∥2Vn

dt ≤ C(1 + ∥ϱ∥2V∞)
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for all n ≥ 1. Using Fatou’s lemma and the fact that the sequence ∥η̄t∥Vn , n ≥ 1, increases, we
get

E
∫ T

0
lim
n→∞

∥η̄t∥2Vn
dt ≤ C(1 + ∥ϱ∥2−J+1,Rd).

This yields that η̄ ∈ L2([0, T ]× Ω, dt× P;H−J+1(Rd)) and

E
∫ T

0
∥η̄t∥2−J+1,Rddt ≤ C(1 + ∥ϱ∥2−J+1,Rd).

Next, let γ ∈ L∞([0, T ]×Ω, dt×P;R) and φ ∈ Cc(Rd). We take n ∈ N satisfying suppφ ⊂
Γn and compute

E
∫ T

0
γ(t)⟨η̄t, φ⟩0,Rddt = E

∫ T

0
γ(t)⟨η̄t, φ⟩0,Γndt = lim

k→∞
E
∫ T

0
γ(t)⟨ηmk

t , φ⟩0,Γndt

= E
∫ T

0
γ(t)⟨ϱ, φ⟩0,Γndt+ lim

k→∞
E
∫ T

0
γ(t)

∫ t

0
⟨Umk

(s, η̄mk
t ), φ⟩0,Γndsdt

+ lim
k→∞

E
∫ T

0
γ(t)

∫ t

0
⟨Bmk

(s), φ⟩0,ΓndWsdt

= E
∫ T

0
γ(t)⟨ϱ, φ⟩0,Rddt+ lim

k→∞
E
∫ T

0
γ(t)

∫ t

0
⟨∇φ · v(s, ·), ηmk

s ⟩0,Γndsdt

+ lim
k→∞

E
∫ T

0
γ(t)

∫ t

0

〈
∇φ(x) · ⟨κmk

ṽ(s, x, ·), ηmk
s ⟩0,Γmk

, µs(dx)
〉
dsdt

+

∫ T

0
γ(t)

∫ t

0

∫
Θ
⟨∇φ · g(s, ·, θ), µs⟩W (dθ, ds)dt.

Using the convergence of ηmk in the weak topology of L2(Vn), we get

lim
k→∞

E
∫ T

0
γ(t)

∫ t

0
⟨∇φ · v(s, ·), ηmk

s ⟩0,Γndsdt = E
∫ T

0
γ(t)

∫ t

0
⟨∇φ · v(s, ·), η̄s⟩0,Γndsdt

= E
∫ T

0
γ(t)

∫ t

0
⟨∇φ · v(s, ·), η̄s⟩0,Rddsdt.

Next, we rewrite for every k, l ≥ 1

⟨κmk
ṽ(s, x, ·), ηmk

s ⟩0,Γmk
− ⟨ṽ(s, x, ·), η̄s⟩0,Rd = ⟨(κmk

− 1)ṽ(s, x, ·), η̄s⟩0,Rd

+ ⟨(κmk
− κl)ṽ(s, x, ·), ηmk

s − η̄s⟩0,Γmk
+ ⟨κlṽ(s, x, ·), ηmk

s − η̄s⟩0,Γl
.

Since

|⟨(1− κmk
)ṽ(s, x, ·), η̄s⟩0,Rd | ≤ ∥(κmk

− 1)ṽ(s, x, ·)∥J−1,Rd∥η̄s∥−J+1,Rd ,

|⟨(κmk
− κl)ṽ(s, x, ·), ηmk

s − η̄s⟩0,Γmk
| ≤ ∥(κmk

− κl)ṽ(s, x, ·)∥J−1,Γmk
∥ηmk

s − η̄s∥Vmk
,

≤ C∥(1− κl)ṽ(s, x, ·)∥J−1,Rd∥ηmk
s − η̄s∥Vmk

and ηmk → η̄ in the weak topology of L2(Vl) for every l, it is easily seen that

lim
k→∞

(
E
∫ T

0
γ(t)

∫ t

0

〈
∇φ(x) · ⟨κmk

ṽ(s, x, ·), ηmk
s ⟩0,Γmk

, µs(dx)
〉
dsdt

− E
∫ T

0
γ(t)

∫ t

0

〈
∇φ(x) · ⟨ṽ(s, x, ·), η̄s⟩0,Rd , µs(dx)

〉
dsdt

)
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= lim
k→∞

E
∫ T

0
γ(t)

∫ t

0

〈
∇φ(x) · ⟨(κmk

− 1)ṽ(s, x, ·), η̄s⟩0,Rd , µs(dx)
〉
dsdt

+ lim
l→∞

lim
k→∞

E
∫ T

0
γ(t)

∫ t

0

〈
∇φ(x) · ⟨(κmk

− κl)ṽ(s, x, ·), ηmk
s − η̄s⟩0,Γmk

, µs(dx)
〉
dsdt

+ lim
l→∞

lim
k→∞

E
∫ T

0
γ(t)

∫ t

0
⟨∇φ(x) · ⟨κlṽ(s, x, ·), ηmk

s − η̄s⟩0,Γl
, µs(dx)⟩ dsdt = 0.

This implies that for that for a.e. t ∈ [0, T ] and all φ ∈ C∞
c (Rd)

⟨φ, η̄t⟩0,Rd = ⟨φ, ϱ⟩0,Rd +

∫ t

0

(
⟨∇φ · v(s, ·), η̄s⟩0,Rd +

〈
∇φ · ⟨ṽ(s, x, ·), η̄s⟩0,Rd , µs(dx)

〉)
ds

+

∫ t

0

∫
Θ
⟨∇φ · g(s, ·, θ), µs⟩W (dθ, ds), t ∈ [0, T ].

Taking

ηt = ϱ+

∫ t

0
U∞(s, η̄s)ds+

∫ t

0
B∞(s)dWs, t ∈ [0, T ],

and using the continuity of the right hand side of the expression above, we get the existence of
solutions to (3.4).

Itô’s formula from [69, Theorem 4.2.4] and the condition (H2), which also holds true for n =
∞, imply the uniqueness of solutions to (3.10) and the bound (3.11). The fact that ηt, t ∈ [0, T ],
is a Gaussian process in H−J(Rd) follows from the linearity of the equation. This completes the
proof of the proposition. □

Lemma 3.5. Let the coefficients A, V,G satisfy Assumptions 2.1, 2.7. Let also µεt , t ≥ 0, be a
superposition solution to the stochastic mean-field equation (3.1) started from µε0 ∈ P2(Rd), µt,
t ≥ 0, be a superposition solution to the PDE (3.2) started from µ00 ∈ P2(Rd) and the process ηεt ,
t ≥ 0, be defined by (3.3). Then for every J > d

2 + 1 and T > 0 there exists a constant C > 0
such that

E sup
t∈[0,T ]

∥ηεt ∥2−J ≤ C (1 + ⟨ϕ2, µε0⟩) +
C

ε
W2

2

(
µε0, µ

0
0

)
.

for all ε > 0.

Proof. Since for each ε ≥ 0 the process µεt , t ≥ 0, is a superposition solution to the corresponding
equation, µεt = µε0 ◦ Xε(t, ·), t ≥ 0, where Xε is a solution to the SDE with interaction (2.3)
with G replaced by

√
εG. Similarly to the proof of Theorem 3.1, we fix ε > 0 and consider an

arbitrary probability measure χ on Rd ×Rd with marginals µε0 and µ00. Using Remark 3.2 and the
continuous embedding of HJ

0 (Rd) into C1
b(Rd), we get

E sup
t∈[0,T ]

∥ηεt ∥2−J =
1

ε
E sup

t∈[0,T ]
sup

φ∈C∞
c (Γ)

1

∥φ∥2J
⟨φ, µεt − µ0t ⟩2

=
1

ε
E sup

t∈[0,T ]
sup

φ∈C∞
c (Γ)

1

∥φ∥2J

(∫
Rd

∫
Rd

(φ(Xε(u, t))− φ(X0(v, t)))χ(du, dv)

)2

≤ 1

ε
E sup

t∈[0,T ]
sup

φ∈C∞
c (Γ)

1

∥φ∥2J

∫
Rd

∫
Rd

(φ(Xε(u, t))− φ(X0(v, t)))
2 χ(du, dv)

≤ 1

ε
E sup

t∈[0,T ]
sup

φ∈C∞
c (Γ)

sup
x∈Γ

|∇φ(x)|2

∥φ∥2J

∫
Rd

∫
Rd

|Xε(u, t)−X0(v, t)|2 χ(du, dv)
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≤ C

ε
E sup

t∈[0,T ]

∫
Rd

∫
Rd

|Xε(u, t)−X0(v, t)|2 χ(du, dv)

≤ C

ε

∫
Rd

∫
Rd

E sup
t∈[0,T ]

|Xε(u, t)−X0(v, t)|2 χ(du, dv)

≤ C1

ε

∫
Rd

∫
Rd

(
|u− v|2 +W2

2 (µ
ε
0, µ

0
0) + ε

(
1 + |u|2 + ⟨ϕ2, µε0⟩

))
χ(du, dv)

=
C1

ε

(∫
Rd

∫
Rd

|u− v|2χ(du, dv) +W2
2 (µ

ε
0, µ

0
0) + ε (1 + 2⟨ϕ2, µε0⟩)

)
.

Taking infimum over all χ with marginals µε0 and µ00, we obtain the needed estimate, which com-
pletes the proof of the lemma. □

To prove the convergence of the fluctuation field ηε, we will need the following assumptions
on the coefficients of the stochastic mean-field equation (3.1).

Assumption 3.6.
(i) The coefficients A, V,G do not depend on ω ∈ Ω and there exist Borel measurable func-

tions V̄ : [0,∞)× Rd → Rd and Ṽ : [0,∞)× Rd × Rd → Rd such that

V (t, x, µ) = V̄ (t, x) + ⟨Ṽ (t, x, ·), µ⟩

for all t ∈ [0,∞), x ∈ Rd, µ ∈ P2(Rd).
(ii) For all t ≥ 0, µ ∈ P2(Rd), x, y ∈ Rd, and some J ≥ d

2+4 one has that V̄ (t, ·) ∈ CJ
b (Rd),

Ṽ (t, ·, ·) ∈ CJ(Rd × Rd), and for every compact set K ∈ P2(Rd) and i ∈ [d]

sup
t∈[0,T ]

∥V̄i(t, ·)∥CJ
b
+ sup

t∈[0,T ]
∥Ṽi(t, ·, ·)∥CJ

b ×HJ + sup
t∈[0,T ],µ∈K

∥Ai,i(t, ·, µ)∥Cb
<∞,

where

∥f∥2Cm
b ×HJ =

∑
|α|≤m

∑
|β|≤J

sup
x∈Rd

∫
Rd

(
Dα

xD
β
y f(x, y)

)2
dy.

Now we can formulate the main result of this section.

Theorem 3.7 (Quantified CLT for the stochastic mean field equation). Let the coefficients A, V,G
of the equations (3.1), (3.2) satisfy Assumptions 2.1, 2.7, 3.6 for some J ≥ d

2 + 4. Let µεt , t ≥ 0,
be a superposition solution to the stochastic mean-field equation (3.1) started from µε0 ∈ P2(Rd)
for each ε > 0, µt, t ≥ 0, be a superposition solution to the PDE (3.2) started from µ00 ∈ P2(Rd)
and the continuous Gaussian process η0t , t ≥ 0, be a solution to the linear SPDE (3.4) started
from ϱ ∈ H−J+1(Rd). Furthermore, we assume that W2

2 (µ
ε
0, µ

0
0) ≤ Cε, ∥ηε0 − ϱ∥2−J ≤ Cε

and ⟨ϕ4, µε0⟩ ≤ C for some C > 0 and all ε ∈ (0, 1], and define the continuous process ηε =
1√
ε

(
µεt − µ0t

)
, t ≥ 0. Then for every T > 0 there exists a constant C > 0 such that the inequality

E sup
t∈[0,T ]

∥ηεt − η0t ∥2−J ≤ Cε

holds.

Proof. The existence of a unique solution η0t , t ∈ [0, T ], to the linear SPDE (3.4) follows from
Proposition 3.4. Moreover, it is a.s. a continuous H−J+1(Rd)-valued process such that

E sup
t∈[0,T ]

∥η0t ∥2−J+1 <∞.
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We also remark that ηεt , t ∈ [0, T ], is a.s. a continuous H−J+1(Rd)-valued process for every
ε > 0.

Define the functions Q = U + Ũ : [0, T ]×H−J+1(Rd)×P2(Rd) → H−J(Rd), R : [0, T ]×
P2(Rd) → H−J(Rd), and B : [0, T ]× P2(Rd) → L2(L2(Θ, ϑ), H

−J(Rd)) as follows

⟨U(t, f, µ), φ⟩0 := ⟨∇φ · V (t, ·, µ), f⟩0,

⟨Ũ(t, f, µ), φ⟩0 :=
〈
∇φ(x) · ⟨Ṽ (t, x, ·), f⟩0, µ(dx)

〉
⟨R(t, µ), φ⟩0 := ⟨D2φ : A(t, ·, µ), µ⟩

and
⟨B(t)h, φ⟩0 = ⟨h, ⟨∇φ(x) ·G(t, x, µ, ·), µ(dx)⟩⟩ϑ

for all φ ∈ C∞
c (Rd), f ∈ H−J+1(Rd), and h ∈ L2(Θ, ϑ). Then

ηεt = ηε0 +

√
ε

2

∫ t

0
R(s, µεs)ds+

∫ t

0
Q(s, ηεs, µ

ε
s)ds+

∫ t

0
B(s, µεs)dWs, t ∈ [0, T ],

for all ε ≥ 0.
Let ζε = ηεt − η0t , t ∈ [0, T ]. Then

ζεt = ζε0 +

√
ε

2

∫ t

0
R(s, µεs)ds+

∫ t

0

(
Q(s, ηεs, µ

ε
s)−Q(s, η0s , µ

0
s)
)
ds

+

∫ t

0

(
B(s, µεs)−B(s, µ0s)

)
dWs, t ∈ [0, T ].

Using Itô’s formula from [69, Theorem 4.2.4], we get

∥ζεt ∥2−J = ∥ζε0∥2−J +
√
ε

∫ t

0
⟨R(s, µεs), ζεs ⟩−Jds+ 2

∫ t

0
⟨Q(s, ηεs, µ

ε
s)−Q(s, η0s , µ

0
s), ζ

ε
s ⟩−Jds

+

∫ t

0
∥B(s, µεs)−B(s, µ0s)∥2HS,H−Jds+

∫ t

0
⟨ζεs , (B(s, µεs)−B(s, µ0s))dWs⟩−J

for all t ∈ [0, T ]. We fix an (Ft)-stopping time τ and apply the Burkholder–Davis–Gundy inequal-
ity to estimate E sup

s∈[0,τ ]
∥ζεs∥2−J = E sup

s∈[0,t]
∥ζεs∧τ∥2−J . We get

E sup
s∈[0,t]

∥ζεs∧τ∥2−J ≤ ∥ζε0∥2−J +
√
εE sup

s∈[0,t]

∣∣∣∣∫ s∧τ

0
⟨R(r, µεr), ζεr ⟩−Jdr

∣∣∣∣
+ 2E sup

s∈[0,t]

∣∣∣∣∫ s∧τ

0
⟨Q(r, ηεr , µ

ε
r)−Q(r, η0r , µ

0
r), ζ

ε
r ⟩−Jdr

∣∣∣∣
+ E sup

s∈[0,t]

∫ s∧τ

0
∥B(r, µεr)−B(r, µ0r)∥2HS,H−Jdr

+ E sup
s∈[0,t]

∣∣∣∣∫ s∧τ

0
⟨ζεr , (B(r, µεr)−B(r, µ0r))dWr⟩−J

∣∣∣∣
≤ ∥ζε0∥2−J +

√
εE
∫ t

0
|⟨R(s ∧ τ, µεs∧τ ), ζεs∧τ ⟩−J | ds

+ 2E
∫ t

0

∣∣⟨Q(s ∧ τ, ηεs∧τ , µεs∧τ )−Q(s ∧ τ, η0s∧τ , µ0s∧τ ), ζεs∧τ ⟩−J

∣∣ ds
+ E

∫ t

0
∥B(s ∧ τ, µεs∧τ )−B(s ∧ τ, µ0s∧τ )∥2HS,H−Jds
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+ CE
(∫ t

0
∥B̂ε(s ∧ τ)∥2HS,Rds

) 1
2

=:

5∑
i=1

Ii(t),

where B̂ε : [0, T ] → L2(L2(Θ, ϑ),R) is defined as follows

B̂ε(s)h := ⟨ζεs , B(s, µεs)h−B(s, µ0s)h⟩−J

for all s ∈ [0, T ] and h ∈ L2(Θ, ϑ), and C is the universal constant from the Burkholder–Davis–
Gundy inequality. We next estimate every term in the inequality above.

Estimate of I2. Using the Cauchy–Schwarz inequality and Young’s inequality, we get
√
ε|⟨R(s, µεs), ζεs ⟩−J | ≤

√
ε∥R(s, µεs)∥−J∥ζεs∥−J ≤ ε

2
∥R(s, µεs)∥2−J +

1

2
∥ζεs∥2−J .

Then, by the continuity of the embedding of HJ(Rd) into C2
b(Rd), Assumptions 2.1, 2.7 and

Remark 2.8, we have

∥R(s, µεs)∥2−J = sup
φ∈C∞

c (Rd)

1

∥φ∥2J
⟨D2φ : A(s, ·, µεs), µεs⟩2

≤ sup
φ∈C∞

c (Rd)

∥φ∥2
C2

b

∥φ∥2J
sup

t∈[0,T ]
⟨|A(t, ·, µεt )|, µεt ⟩2

≤ C sup
t∈[0,T ]

⟨∥|G(t, x, µεt , ·)|∥2ϑ, µεt (dx)⟩2

≤ C sup
t∈[0,T ]

⟨1 + |x|2 +W2
2 (µ

ε
t , δ0), µ

ε
t (dx)⟩2

≤ C

(
1 + 4 sup

t∈[0,T ]
W4

2 (µ
ε
t , δ0)

)
.

Using Corollary 2.10 and the fact that ⟨ϕ4, µε0⟩ < C for some constant C > 0 and each ε ∈ (0, 1],
we get

E sup
t∈[0,T ]

W4
2 (µ

ε
t , δ0) = E sup

t∈[0,T ]
⟨ϕ2, µεt ⟩2 ≤ E sup

t∈[0,T ]
⟨ϕ4, µεt ⟩ ≤ C

for all ε ∈ (0, 1]. Hence, for every ε ∈ (0, 1], we have

I2(t) ≤ Cε+ C

∫ t

0
∥ζεs∧τ∥2−Jds ≤ Cε+ C

∫ t

0
sup

r∈[0,s]
∥ζεr∧τ∥2−Jds, t ∈ [0, T ].

Estimate of I3. We estimate I3 as follows∣∣⟨U(s, ηεs, µ
ε
s)− U(s, η0s , µ

0
s), ζ

ε
s ⟩−J

∣∣ ≤ ∣∣⟨U(s, ηεs, µ
ε
s)− U(s, η0s , µ

ε
s), ζ

ε
s ⟩−J

∣∣
+
∣∣⟨U(s, η0s , µ

ε
s)− U(s, η0s , µ

0
s), ζ

ε
s ⟩−J

∣∣ .(3.14)

By Lemma 3.3,∣∣⟨U(s, ηεs, µ
ε
s)− U(s, η0s , µ

ε
s), ζ

ε
s ⟩−J

∣∣ = |⟨U(s, ζεs , µ
ε
s), ζ

ε
s ⟩−J |

≤ Cmax
i∈[d]

sup
t∈[0,T ]

∥Vi(t, ·, µεt )∥CJ
b
∥ζεs∥2−J .

We note that

sup
t∈[0,T ]

∥Vi(t, ·, µεt )∥CJ
b
≤ sup

t∈[0,T ]
∥V̄i(t, ·)∥CJ

b
+ sup

t∈[0,T ]
∥⟨Ṽi(t, ·, y), µεt (dy)⟩∥CJ

b

≤ sup
t∈[0,T ]

∥V̄i(t, ·)∥CJ
b
+ sup

t∈[0,T ],y∈Rd

∥Ṽi(t, ·, y)∥CJ
b
≤ C,
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where C is a non-random constant, according to Assumption 3.6 and the continuous embedding
of HJ(Rd) into Cb(Rd). In order to estimate the second term of the right hand side of (3.14), we
consider the following bilinear map Û : [0, T ] ×H−J+1(Rd) ×H−J(Rd) → H−J(Rd) defined
by

(3.15) ⟨Û(t, f1, f2), φ⟩0 :=
〈
∇φ(x) · ⟨Ṽ (t, x, ·), f1⟩0, f2(dx)

〉
0

for all φ ∈ C∞
c (Rd), which coincides with Ũ on [0, T ] × H−J+1(Rd) × P2(Rd). Then, using

Lemma 3.3, we obtain∣∣⟨U(s, η0s , µ
ε
s)− U(s, η0s , µ

0
s), ζ

ε
s ⟩−J

∣∣ = √
ε|⟨Û(s, η0s , η

ε
s), ζ

ε
s ⟩−J |

≤
√
ε|⟨Û(s, η0s , ζ

ε
s ), ζ

ε
s ⟩−J |+

√
ε|⟨Û(s, η0s , η

0
s), ζ

ε
s ⟩−J |

≤
√
εCmax

i∈[d]
∥⟨Ṽi(s, ·, x), η0s(dx)⟩0∥CJ

b
∥ζεs∥2−J

+
√
ε∥Û(s, η0s , η

0
s)∥−J∥ζεs∥−J .

(3.16)

We estimate separately

∥⟨Ṽi(s, ·, x), η0s(dx)⟩∥CJ
b
≤ ∥Ṽi(s, ·, ·)∥CJ

b ×HJ∥η0s∥−J

and

∥Û(s, η0s , η
0
s)∥−J = sup

φ∈C∞
c (Rd)

1

∥φ∥J
⟨∇φ(x) · ⟨Ṽ (t, x, ·), η0s⟩0, η0s(dx)⟩0

≤ sup
φ∈C∞

c (Rd)

1

∥φ∥J
∥∇φ∥J−1∥Ṽ (s, ·, ·)∥CJ−1

b ×HJ−1∥η0s∥2−J+1

≤ C sup
t∈[0,T ]

∥Ṽ (t, ·, ·)∥CJ−1
b ×HJ−1∥η0s∥2−J+1.

Therefore, by Assumption (3.6) and Young’s inequality,∣∣⟨U(s, η0s , µ
ε
s)− U(s, η0s , µ

0
s), ζ

ε
s ⟩−J

∣∣ ≤ √
εC∥η0s∥−J∥ζεs∥2−J +

√
εC∥η0s∥2−J+1∥ζεs∥−J

≤
√
εC∥η0s∥−J∥ζεs∥2−J + Cε∥η0s∥4−J+1 + C∥ζεs∥2−J .

(3.17)

We next estimate

|⟨Ũ(s, ηεs, µ
ε
s)− Ũ(s, η0s , µ

0
s), ζ

ε
s ⟩−J |

≤ |⟨Ũ(s, ηεs, µ
ε
s)− Ũ(s, η0s , µ

ε
s), ζ

ε
s ⟩−J |+ |⟨Ũ(s, η0s , µ

ε
s)− Ũ(s, η0s , µ

0
s), ζ

ε
s ⟩−J |

= |⟨Ũ(s, ζεs , µ
ε
s), ζ

ε
s ⟩|+

√
ε|⟨Û(s, η0s , η

ε
s), ζ

ε
s ⟩−J |

where Û is defined by (3.15). Then,

|⟨Ũ(s, ζεs , µ
ε
s), ζ

ε
s ⟩| ≤ ∥Ũ(s, ζεs , µ

ε
s)∥−J∥ζεs∥−J

≤ ∥ζεs∥−J sup
φ∈C∞

c (Rd)

1

∥φ∥J

〈
∇φ · ⟨Ṽ (s, x, ·), ζεs ⟩0, µεs(dx)

〉
≤ ∥ζεs∥2−J sup

φ∈C∞
c (Rd)

∥φ∥C1
b

∥φ∥J
∥Ṽ (s, ·, ·)∥Cb×HJ ≤ C sup

t∈[0,T ]
∥Ṽ (s, ·, ·)∥Cb×HJ∥ζεs∥2−J .

Using the first equality in the estimate (3.16) and then (3.17), we can conclude that
√
ε|⟨Û(s, η0s , η

ε
s), ζ

ε
s ⟩−J | ≤

√
εC∥η0s∥−J∥ζεs∥2−J + Cε∥η0s∥4−J+1 + C∥ζεs∥2−J .
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Thus, we have shown that there exists a constant C > 0 such that

I3(t) ≤ C

∫ t

0
E∥ζεs∧τ∥2−Jds+ C

√
ε

∫ t

0
E∥η0s∧τ∥−J∥ζεs∧τ∥2−Jds+ Cε

∫ t

0
E∥η0s∧τ∥4−J+1ds

≤ C

∫ t

0
E sup

r∈[0,s]
∥ζεr∧τ∥2−Jds+ C

√
ε

∫ t

0
E

[
∥η0s∧τ∥−J sup

r∈[0,s]
∥ζεr∧τ∥2−J

]
ds

+ CεE sup
s∈[0,T ]

∥η0s∥4−J+1

for all t ∈ [0, T ].
Estimate of I4. Let {hk, k ≥ 1} be an orthonormal basis in L2(Θ, ϑ) and Ḡk(t, x, µ) =

⟨G(t, x, µ, ·), hk⟩, k ≥ 1. Then

∥B(s, µεs)−B(s, µ0s)∥2HS,H−J =
∞∑
k=1

∥B(s, µεs)hk −B(s, µ0s)hk∥2−J

=
∞∑
k=1

sup
φ∈C∞

c (Rd)

1

∥φ∥2J

(
⟨∇φ · Ḡk(s, ·, µεs), µεs⟩ − ⟨∇φ · Ḡk(s, ·, µ0s), µ0s⟩

)2
≤ 2

∞∑
k=1

sup
φ∈C∞

c (Rd)

1

∥φ∥2J

(
⟨∇φ · Ḡk(s, ·, µεs), µεs⟩ − ⟨∇φ · Ḡk(s, ·, µ0s), µεs⟩

)2
(3.18)

+ 2
∞∑
k=1

sup
φ∈C∞

c (Rd)

1

∥φ∥2J

(
⟨∇φ · Ḡk(s, ·, µ0s), µεs⟩ − ⟨∇φ · Ḡk(s, ·, µ0s), µ0s⟩

)2
= 2

∞∑
k=1

sup
φ∈C∞

c (Rd)

1

∥φ∥2J

〈
∇φ · (Ḡk(s, ·, µεs)− Ḡk(s, ·, µ0s)), µεs

〉2
+ 2

∞∑
k=1

sup
φ∈C∞

c (Rd)

1

∥φ∥2J

〈
∇φ · Ḡk(s, ·, µ0s), µεs − µ0s

〉2
.

Using Jensen’s inequality, Fubini’s theorem, Parseval’s identity, and Assumption 2.7, we get

∞∑
k=1

sup
φ∈C∞

c (Rd)

1

∥φ∥2J

〈
∇φ · (Ḡk(s, ·, µεs)− Ḡk(s, ·, µ0s)), µεs

〉2
≤

∞∑
k=1

sup
φ∈C∞

c (Rd)

1

∥φ∥2J
∥φ∥2C1

b

〈
|Ḡk(s, ·, µεs)− Ḡk(s, ·, µ0s)|2, µεs

〉
≤ C

〈 ∞∑
k=1

|Ḡk(s, ·, µεs)− Ḡk(s, ·, µ0s)|2, µεs

〉

= C
d∑

i=1

〈
∥Gi(s, ·, µεs)−Gi(s, ·, µ0s)∥2ϑ, µεs

〉
≤ CLW2

2 (µ
ε
s, µ

0
s).

In order to estimate the second term in the right hand side of (3.18), we use the fact that µεt ,
t ≥ 0, is a superposition solution for every ε ≥ 0. Therefore, for every ε ≥ 0 there exists a solution
Xε to the corresponding SDE with interaction (2.3) such that µεt = µε0◦Xε(t, ·), t ≥ 0. Let χ be an
arbitrary probability measure on Rd ×Rd with marginals µε0 and µ00. Then, by Jensen’s inequality
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and the mean value theorem, we have

⟨∇φ · Ḡk(s, ·, µ0s), µεs − µ0s⟩2 =
(∫

Rd

∫
Rd

(
∇φ(Xε(u, s)) · Ḡk(s,Xε(u, s), µ

0
s)

−∇φ(X0(v, s)) · Ḡk(s,X0(v, s), µ
0
s)
)
χ(du, dv)

)2

≤ 2

∫
Rd

∫
Rd

[
∇φ(Xε(u, s)) ·

(
Ḡk(s,Xε(u, s), µ

0
s)− Ḡk(s,X0(v, s), µ

0
s)
)]2

χ(du, dv)

+ 2

∫
Rd

∫
Rd

[
(∇φ(Xε(u, s))−∇φ(X0(v, s))) · Ḡk(s,X0(v, s), µ

0
s)
]2
χ(du, dv)

≤ 2∥φ∥2C1
b

∫
Rd

∫
Rd

∣∣∣Ḡk(s,Xε(u, s), µ
0
s)− Ḡk(s,X0(v, s), µ

0
s)
∣∣∣2 χ(du, dv)

+ 2∥φ∥C2
b

∫
Rd

∫
Rd

|Xε(u, s)−X0(v, s)|2|Ḡk(s,X0(v, s), µ
0
s)|2χ(du, dv).

Thus, using the continuous embedding of HJ(Rd) into C2
b(Rd), Fubini’s theorem, and Parseval’s

identity, the second term of the right hand side of (3.18) can be estimated as follows
∞∑
k=1

sup
φ∈C∞

c (Rd)

1

∥φ∥2J
⟨∇φ · Ḡk(s, ·, µ0s), µεs − µ0s⟩2

≤ C
∞∑
k=1

∫
Rd

∫
Rd

∣∣∣Ḡk(s,Xε(u, s), µ
0
s)− Ḡk(s,X0(v, s), µ

0
s)
∣∣∣2 χ(du, dv)

+ C
∞∑
k=1

∫
Rd

∫
Rd

|Xε(u, s)−X0(v, s)|2|Ḡk(s,X0(v, s), µ
0
s)|2χ(du, dv)

= C

∫
Rd

∫
Rd

∣∣∥G(s,Xε(u, s), µ
0
s)−G(s,X0(u, s), µ

0
s)∥ϑ

∣∣2 χ(du, dv)
+ C

∫
Rd

∫
Rd

|Xε(u, s)−X0(v, s)|2
∣∣∥G(s,X0(v, s), µ

0
s)∥ϑ

∣∣2 χ(du, dv).
Using Assumption 2.7 and the expression ∥Gi(t, x, µ)∥2ϑ = Ai,i(t, x, µ) for all i ∈ [d], we can
bound the expression above by

C

(
L+

d∑
i=1

∥Ai,i(s, ·, µ0s)∥2Cb

)∫
Rd

∫
Rd

|Xε(u, s)−X0(v, s)|2χ(du, dv).

Using Assumption 3.6, Theorem 3.1, Remark 3.2, and the estimate above, we get

I4(t) ≤ C

∫ t

0
EW2

2 (µ
ε
s∧τ , µ

0
s∧τ )ds+ C

∫ t

0

∫
Rd

∫
Rd

E|Xε(u, s ∧ τ)−X0(v, s ∧ τ)|2χ(du, dv)ds

≤ CTE sup
s∈[0,T ]

W2
2 (µ

ε
s, µ

0
s) + CT

∫
Rd

∫
Rd

E sup
s∈[0,T ]

|Xε(u, s)−X0(v, s)|2χ(du, dv)

≤ CW2
2 (µ

ε
0, µ

0
0) + εC(1 + ⟨ϕ2, µε0⟩) + C

∫
Rd

∫
Rd

|u− v|2χ(du, dv).

Taking infimum over all measures χ on Rd × Rd with marginals µε0 and µ00, the last term on the
right hand side of the above inequality will give W2

2 (µ
ε
0, µ

0
0). Hence, by the inequality

⟨ϕ2, µε0⟩ = W2
2 (µ

ε
0, δ0) ≤ 2W2

2 (µ
ε
0, µ

0
0) + 2W2

2 (µ
0
0, δ0) ≤ C
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and the assumption of the theorem, we obtain

I4(t) ≤ Cε

for all t ∈ [0, T ].
For the final term I5, we have

∥B̂ε(s)∥2HS,R =

∞∑
k=1

⟨ζεs , B(s, µεs)hk −B(s, µ0s)hk⟩2−J

≤∥ζεs∥2−J

∞∑
k=1

∥B(s, µεs)hk −B(s, µ0s)hk∥2−J

≤∥ζεs∥2−J∥B(s, µεs)−B(s, µ0s)∥2HS,H−J .

Therefore, for every t ∈ [0, T ]

I5(t) ≤ CE
(∫ t

0
∥ζεs∧τ∥2−J∥B(s ∧ τ, µεs∧τ )−B(s ∧ τ, µ0s∧τ )∥2HS,H−Jds

) 1
2

≤ CE

[
sup
s∈[0,t]

∥ζεs∧τ∥−J

(∫ t

0
∥B(s ∧ τ, µεs∧τ )−B(s ∧ τ, µ0s∧τ )∥2HS,H−Jds

) 1
2

]

≤ 1

2
E sup

s∈[0,t]
∥ζεs∧τ∥2−J +

C2

2

∫ t

0
E∥B(s ∧ τ, µεs∧τ )−B(s ∧ τ, µ0s∧τ )∥2HS,H−Jds

=
1

2
E sup

s∈[0,t]
∥ζεs∧τ∥2−J +

C2

2
I4(t) ≤

1

2
E sup

s∈[0,t]
∥ζεs∧τ∥2−J +

C2C

2
ε.

We remark that η0t , t ∈ [0, T ], is a Gaussian random element in C([0, T ], H−J+1(Rd)) and
E sup

t∈[0,T ]
∥ηt∥2−J+1 < ∞, by Proposition 3.4. Using [39, Proposition 3.14], one can see that there

exists a constant C > 0 such that

(3.19) E sup
t∈[0,T ]

∥η0t ∥4−J+1 ≤ C

(
E sup

t∈[0,T ]
∥η0t ∥2−J+1

)2

<∞.

Defining for each ε > 0 the stopping time

τ ε = inf

{
t ≥ 0 : ∥η0t ∥−J ≥ 1√

ε

}
and combining the estimates of Ii(t), i ∈ [5], with τ = τ ε, we get

E sup
s∈[0,t]

∥ζεs∧τε∥2−J ≤ Cε+ C

∫ t

0
E sup

r∈[0,s]
∥ζεr∧τε∥2−Jds

for all t ∈ [0, T ], where C is independent of ε. Using Gronwall’s lemma, we obtain

(3.20) E sup
s∈[0,t]

∥ζεs∧τε∥2−J ≤ CeTCε, t ∈ [0, T ].

Set
η∗ := sup

t∈[0,T ]
∥η0t ∥−J .

and note that
sup

t∈[0,T ]
∥ηεt ∥−J =

1√
ε

sup
t∈[0,T ]

∥µεt − µ0t ∥−J ≤ 2√
ε
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for all ε > 0. Thus, by (3.19), (3.20), and Chebyshev’s inequality, we obtain

E sup
t∈[0,T ]

∥ζεt ∥2−J = E

[
sup

t∈[0,T ]
∥ζεt ∥2−JI{η∗< 1√

ε

}
]
+ E

[
sup

t∈[0,T ]
∥ζεt ∥2−JI{η∗≥ 1√

ε

}
]

≤ E sup
t∈[0,T ]

∥ζεt∧τε∥2−J + E

[
sup

t∈[0,T ]
∥ηεt − η0t ∥2−JI{η∗≥ 1√

ε

}
]

≤ Cε+ 4E

[
sup

t∈[0,T ]
∥ηεt ∥2−JI{η∗≥ 1√

ε

}
]
+ 4E

[
sup

t∈[0,T ]
∥η0t ∥2−JI{η∗≥ 1√

ε

}
]

≤ Cε+
4

ε
EI{

η∗≥ 1√
ε

} + 4εE sup
t∈[0,T ]

∥η0t ∥4−J

≤ Cε+

(
4ε2

ε
+ 4ε

)
E sup

t∈[0,T ]
∥η0t ∥4−J ≤ Cε

for all ε > 0. This completes the proof of the theorem. □

4. MEAN FIELD LIMIT AND STOCHASTIC GRADIENT DESCENT

In this section, we consider the one-hidden layer neural network fM defined by (1.1) for the
approximation of a function f : Rn0 → R, where ci ∈ R, Ui is an 1 × n0-matrix, θ ∈ Rn0 ,
xi = (ci, yi) ∈ R × Rn0 =: Rd, bi = 0 and ϕ ∈ C∞

b (R) is a fixed activation function. We also
assume that θ is a random element in Θ := Rn0 with distribution ϑ. To minimize the risk function
L defined by (1.2), the parameter x = (xi)i∈M can be estimated using the stochastic gradient de-
scent (1.3) with P = 1 and the learning rate α = β

M , where θk, k ∈ N0, are i.i.d. random variables
with distribution ϑ and xi(0), i ∈ [M ], are i.i.d. random variables generated from a distribution

µ0. We define the empirical distribution ν
M, β

M
t , t ≥ 0, of the network parameters by (1.15) which

is a random element in the Skorohod space D([0,∞),P(Rd)) of all càdlàg functions from [0,∞)
to P(Rd) equipped with the Skorohod topology.

We next consider the stochastic mean-field equation (3.1) with the coefficients A, V,G defined
by (1.5) with Φ(xi, θ) replaced by βΦ(xi, θ). Using the assumptions on the activation function ϕ, it
is easy to see that A, V,G satisfy Assumptions 2.1, 2.7. Thus, by Theorem 2.16, for every M ∈ N
there exists a unique superposition solution µ

1
M
t , t ≥ 0, to the stochastic mean-field equation (3.1)

with ε = 1
M started from ν

M, β
M

0 .

We will further consider µ
1
M
t , t ≥ 0, and ν

M, β
M

t , t ≥ 0, as random processes in the Sobolev
space H−J(Rd) with J > d

2 . Let LawT,−J(ρ) denote the distribution of a random element ρt,
t ∈ [0, T ], in the Skorohod space D([0, T ], H−J(Rd)). The distribution of the marginals ρt will
be denoted by Law−J(ρt). The following theorem is the main result of this section.

Theorem 4.1. Let the measure ϑ be compactly supported on Θ, f be bounded on the support of

ϑ and the processes µ
1
M
t , t ≥ 0, ν

M, β
M

t , t ≥ 0, be defined as above. Then for every J ≥ 3d
2 + 7,

T > 0 and p ∈ [1, 2)

W̃p

(
LawT,−J(µ

1
M ),LawT,−J(ν

M, β
M )
)
= o(M− 1

2 ),
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where W̃p is the p-Wasserstein distance on the space D([0, T ], H−J(Rd)) that is equipped with
the uniform norm. In particular,

(4.1) sup
t∈[0,T ]

Wp(Law−J(µ
1
M
t ),Law−J(ν

M, β
M

t )) = o(M− 1
2 )

and for every φ ∈ C∞
c (Rd)

(4.2) sup
t∈[0,T ]

|E⟨φ, µ
1
M
t ⟩ − E⟨φ, νM, β

M
t ⟩| = o(M− 1

2 ).

Proof. To simplify the notation, we will write µMt and νMt instead of µ
1
M
t and ν

M, β
M

t , respectively.
Let T > 0 and J ≥ 3d

2 + 7 be fixed. Using [78, Theorem 1.2], we get that the process νMt ,
t ∈ [0, T ], converges in D([0, T ],P(Rd)) in distribution to the unique superposition solution µ0t ,
t ≥ 0, to the PDE (3.2) started from µ0. We next consider the fluctuation field

ξMt =
√
M(νMt − µ0t ), t ∈ [0, T ].

According to [77, Lemma 4.3], there exists a rectangle [−R,R]d such that µ0t , νMt and ξMt are
supported on it for each t ∈ [0, T ] and M ≥ 1. We take Γ = (−3

√
dR, 3

√
dR)d. Then, by [77,

Theorem 1.5], the process ξMt , t ∈ [0, T ], converges in D([0, T ], H−J(Γ)) in distribution to the
continuous Gaussian process ξt, t ∈ [0, T ], in H−J(Γ) satisfying for every φ ∈ C∞

c (Γ)

⟨φ, ξt⟩0,Γ = ⟨φ, ξ0⟩0,Γ +

∫ t

0

(〈
∇φ · V (·, µ0s), ξs

〉
0,Γ

+
〈
∇φ · ⟨Ṽ (x, ·), ξs⟩0,Γ, µ0s(dx)

〉)
ds

+Mφ
t , t ∈ [0, T ],

(4.3)

where Mφ
t , t ∈ [0, T ], is a mean-zero Gaussian process with variance

(4.4) Var(Mφ
t ) =

∫ t

0

∫
Θ
⟨∇φ ·G(·, µ0s, θ), µ0s⟩2ϑ(dθ)ds, t ∈ [0, T ].

Moreover, by [77, Theorem 6.2], such a process ξt, t ∈ [0, T ], is unique. Using the Skorohod theo-
rem [32, Theorem 3.1.8], we may assume that the process ξM converges to ξ in D([0, T ], H−J(Γ))
a.s. Since ξt, t ∈ [0, T ], is continuous in H−J(Γ), it is easy to see that

sup
t∈[0,T ]

∥ξMt − ξt∥−J,Γ → 0 a.s.

as M → ∞. Finally, we remark that

sup
M≥1

E sup
t∈[0,T ]

∥ξMt ∥2−J,Γ <∞,

according to [77, Lemma 4.8]. Hence, by the de la Vallée-Poussin theorem [63, Theorem 1.8], the
sequence sup

t∈[0,T ]
∥ξMt ∥p−J,Γ, M ≥ 1, is uniformly integrable for every p ∈ [1, 2). Therefore,

(4.5) W̃p
p

(
LawT,−J,Γ(ξ

M ),LawT,−J,Γ(ξ)
)
≤ E sup

t∈[0,T ]
∥ξMt − ξt∥p−J,Γ → 0

asM → ∞ for every p ∈ [1, 2), where LawT,−J,Γ(ρ) is the law of a random element ρt, t ∈ [0, T ],
in D([0, T ], H−J(Γ)).

We next consider the fluctuation field ηMt =
√
M(µMt − µ0t ), t ∈ [0, T ], and note that, by

Theorem 3.7,
E sup

t∈[0,T ]
∥ηMt − ηt∥2−J,Rd → 0 as M → ∞,
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where ηt, t ≥ 0, is a unique solution to the linear SPDE (3.4). Thus,

(4.6) W̃p

(
LawT,−J,Γ(η

M ),LawT,−J,Γ(η)
)
→ 0 as M → ∞

for every p ∈ [1, 2].
Let us make the following observations. Since µMt , t ∈ [0, T ], is a superposition solution to the

stochastic mean-field equation (3.1) and µ0 is compactly supported, without loss of generality we
may assume that the support of µMt is contained in Γ for each M ≥ 1 and t ∈ [0, T ], otherwise,
we may choose Γ larger. Taking an arbitrary φ ∈ C∞

c (Γ), it is easily seen that ⟨φ, ηt⟩, t ∈ [0, T ],
satisfies (4.3), (4.4). Hence ηt, t ∈ [0, T ], is a continuous process in H−J(Γ) and has the same
distribution as ξt, t ∈ [0, T ]. We can see also that for every p ∈ [1, 2)

√
MpW̃p

(
LawT,−J(µ

M
t ),LawT,−J(ν

M
t )
)p

=
√
Mp inf

{
E sup

t∈[0,T ]
∥µ̃Mt − ν̃Mt ∥p−J,Rd : µ̃M ∼ Law(µM ), ν̃M ∼ Law(νM )

}

=
√
Mp inf

{
E sup

t∈[0,T ]
∥µ̃Mt − ν̃Mt ∥p−J,Γ : µ̃M ∼ Law(µM ), ν̃M ∼ Law(νM )

}

= inf

{
E sup

t∈[0,T ]

∥∥∥√M(µ̃Mt − µ0t )−
√
M(ν̃Mt − µ0t )

∥∥∥p
−J,Γ

:

µ̃M ∼ Law(µM ), ν̃M ∼ Law(νM )

}

= inf

{
E sup

t∈[0,T ]
∥η̃Mt − ξ̃Mt ∥p−J,Γ : η̃M ∼ Law(ηM ), ξ̃M ∼ Law(ξM )

}
= W̃p

(
LawT,−J,Γ(η

M ),LawT,−J,Γ(ξ
M )
)
.

Therefore, using the previous observations, we can estimate for every p ∈ [1, 2)
√
MW̃p

(
LawT,−J(µ

M ),LawT,−J(ν
M )
)
= W̃p

(
LawT,−J,Γ(η

M ),LawT,−J,Γ(ξ
M )
)

≤ W̃p(LawT,−J,Γ(η
M ),LawT,−J,Γ(η)) + W̃p

(
LawT,−J,Γ(ξ),LawT,−J,Γ(ξ

M )
)

≤ W̃p(LawT,−J(η
M ),LawT,−J(η)) + W̃p

(
LawT,−J,Γ(ξ),LawT,−J,Γ(ξ

M )
)
.

Thus, √
MW̃p

(
LawT,−J(µ

M ),LawT,−J(ν
M )
)
→ 0 as M → ∞,

by (4.5) and (4.6). This completes the proof of the first part of the theorem.
The asymptotics (4.1), (4.2) directly follow from the inequalities

sup
t∈[0,T ]

Wp

(
Law−J(µ

M
t ),Law−J(ν

M
t )
)
≤ W̃p

(
Law−J,T (µ

M ),Law−J,T (ν
M )
)

and ∣∣E⟨φ, µMt ⟩ − E⟨φ, νMt ⟩
∣∣ ≤ ∥φ∥JWp(Law−J(µ

M
t ),Law−J(ν

M
t )),

for every φ ∈ C∞
c (Rd) and t ∈ [0, T ], respectively. □

Remark 4.2. Note that the optimal rate in the quantified central limit Theorem 3.7 implies that

W̃p(LawT,−J(η
M ),LawT,−J(η)) = O(M− 1

2 ).
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Therefore, a quantified CLT for the SGD dynamics νM with the same rate of convergence would
imply the stronger approximation error

W̃p

(
LawT,−J(µ

M ),LawT,−J(ν
M )
)
= O(M−1).

However, proving a quantified CLT for SGD is an open problem.

Acknowledgements. The first and third authors were supported by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) – SFB 1283/2 2021 – 317210226. BG acknowl-
edges support by the Max Planck Society through the Research Group ”Stochastic Analysis in
the Sciences (SAiS)”. The third author thanks the Max Planck Institute for Mathematics in the
Sciences for its warm hospitality, where a part of this research was carried out.

REFERENCES

[1] Robert A. Adams, Sobolev spaces, Pure and Applied Mathematics, Vol. 65, Academic Press
[Harcourt Brace Jovanovich, Publishers], New York-London, 1975. MR 0450957

[2] Alnur Ali, Edgar Dobriban, and Ryan Tibshirani, The Implicit Regularization of Stochas-
tic Gradient Flow for Least Squares, Proceedings of the 37th International Conference on
Machine Learning, PMLR, November 2020, pp. 233–244.

[3] Luigi Ambrosio, Transport equation and Cauchy problem forBV vector fields, Invent. Math.
158 (2004), no. 2, 227–260. MR 2096794

[4] , Transport equation and Cauchy problem for non-smooth vector fields, Calculus of
variations and nonlinear partial differential equations, Lecture Notes in Math., vol. 1927,
Springer, Berlin, 2008, pp. 1–41. MR 2408257

[5] Luigi Ambrosio and Gianluca Crippa, Existence, uniqueness, stability and differentiability
properties of the flow associated to weakly differentiable vector fields, Transport equations
and multi-D hyperbolic conservation laws, Lect. Notes Unione Mat. Ital., vol. 5, Springer,
Berlin, 2008, pp. 3–57. MR 2409676

[6] Anna Amirdjanova and Jie Xiong, Large deviation principle for a stochastic Navier-Stokes
equation in its vorticity form for a two-dimensional incompressible flow, Discrete Contin.
Dyn. Syst. Ser. B 6 (2006), no. 4, 651–666. MR 2223901

[7] Sebastian Andres and Max-K. von Renesse, Particle approximation of the Wasserstein diffu-
sion, J. Funct. Anal. 258 (2010), no. 11, 3879–3905. MR 2606878

[8] Mikhail Belkin, Daniel Hsu, and Ji Xu, Two models of double descent for weak features,
SIAM J. Math. Data Sci. 2 (2020), no. 4, 1167–1180. MR 4186534

[9] M. A. Belozerova, Asymptotic behavior of solutions to stochastic differential equations with
interaction, Theory Stoch. Process. 25 (2020), no. 2, 1–8. MR 4354470

[10] Simone Bianco, Remi Cadene, Luigi Celona, and Paolo Napoletano, Benchmark analysis of
representative deep neural network architectures, IEEE Access 6 (2018), 64270–64277.

[11] Le Chen, Davar Khoshnevisan, David Nualart, and Fei Pu, Central limit theorems for par-
abolic stochastic partial differential equations, Ann. Inst. Henri Poincaré Probab. Stat. 58
(2022), no. 2, 1052–1077. MR 4421618

[12] Zhengdao Chen, Grant Rotskoff, Joan Bruna, and Eric Vanden-Eijnden, A dynamical central
limit theorem for shallow neural networks, Advances in Neural Information Processing Sys-
tems (H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, eds.), vol. 33, Curran
Associates, Inc., 2020, pp. 22217–22230.

[13] Lenaic Chizat and Francis Bach, Implicit bias of gradient descent for wide two-layer neu-
ral networks trained with the logistic loss, Conference on Learning Theory, PMLR, 2020,
pp. 1305–1338.



60 SPDES AND SGD
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[69] Claudia Prévôt and Michael Röckner, A concise course on stochastic partial differential
equations, Lecture Notes in Mathematics, vol. 1905, Springer, Berlin, 2007. MR 2329435



SPDES AND SGD 63

[70] Maria Refinetti, Sebastian Goldt, Florent Krzakala, and Lenka Zdeborová, Classifying high-
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