
E l e c t r o n i
c

J
o

u
r n a l

o
f

P
r

o b a b i l i t y

Electron. J. Probab. 26 (2021), article no. 30, 1–23.
ISSN: 1083-6489 https://doi.org/10.1214/21-EJP584

Stochastic block model in a new critical regime and
the interacting multiplicative coalescent

Vitalii Konarovskyi* Vlada Limic†

Abstract

This work exhibits a novel phase transition for the classical stochastic block model
(SBM). In addition we study the SBM in the corresponding near-critical regime,
and find the scaling limit for the component sizes. The two-parameter stochastic
process arising in the scaling limit, an analogue of the standard Aldous’ multiplicative
coalescent, is interesting in its own right. We name it the (standard) Interacting Mul-
tiplicative Coalescent . To the best of our knowledge, this object has not yet appeared
in the literature.

Keywords: multiplicative coalescent; stochastic block model; random graph; near-critical; phase
transition.
MSC2020 subject classifications: 60J75; 60K35; 60B12; 05C80.
Submitted to EJP on March 27, 2020, final version accepted on January 10, 2021.
Supersedes arXiv:2003.10958.
Supersedes HAL:hal-02520742.

1 Introduction

The multiplicative coalescent is a process constructed in [1]. The Aldous’ standard
multiplicative coalescent is the scaling limit of near-critical Erdős-Rényi graphs. The
entrance boundary for the multiplicative coalescent was exhibited in [2, 13].

Informally, the multiplicative coalescent takes values in the space of collections of
blocks with mass (a number in (0,∞)) and evolves according to the following dynamics:

each pair of blocks of mass x and y merges at rate xy
into a single block of mass x+ y.

(1.1)

We will soon recall its connection to Erdős-Rényi [10] random graph, viewed in continuous
time.
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New critical regime of the SBM

Erdős-Rényi-Stepanov (binomial) model is the prototype random graph. Over the
years more complicated random graphs (and networks) have been introduced, either
by theoretical or applied mathematicians, and many aspects of them were rigorously
studied in the meantime (see for example books by Bollobás [5], Durrett [9], R. van der
Hofstad [18, 19], or a survey by Bollobás and Riordan [7]).

In particular, Bollobás et al. [6] also consider a family of random graphs called the
finite-type case (see their Example 4.3) which includes the Stochastic Block Model (or
SBM for short) as a special case. Here we study SBM in a novel near critical regime. It
seems plausible that SBM is not the only (but it is the most natural or elementary) family
of random graphs exhibiting this phase-transition.

Let us briefly recall the basic SBM model with m classes, frequently denoted by
G(n, p, q). The issued random graph has the set of vertices divided (in a deterministic
way) into m subsets (classes or blocks) of equal size (here we set this size to n and
therefore there are mn vertices in total), and a random set of edges, where the edges are
drawn independently, and the intra (resp. inter) class edges are drawn with probability
p (resp. q). We prefer to use the word “class” in the present context, since in this area
“block” is frequently used interchangeably with “connected component”. We consider
large graphs (n will diverge to∞), and the connectivity parameters p and q will depend
on n. There is one considerable difference in the connectivity parameter scaling (as
n diverges) in our work with respect to that in [6], applied to finite-type graphs. Like
in [6], here pn scales inversely proportionally to n, but unlike in [6] our qn is of much
smaller asymptotic order (notably it scales like n−4/3). Regimes where qn << pn seem
quite natural from the perspective of applications (in view of the formation of clusters in
networks).

The scaling limit of Theorem 3.1 in Section 3, is to the best of our knowledge, a
completely new stochastic object, of an independent interest to probability theory and
applications. We name it the (standard) interacting multiplicative coalescent. Here two
or more (initially independent) multiplicative coalescents interact through an analogue
of the “color and collapse” mechanism (from [2, 13]), which will be made more explicit
in our work in progress [11].

The results of our study, proved rigorously for SBM, imply in some (imprecise) sense
that for many “typical” SBM-alike large neworks there may exist another phase transition
(for the formation of the giant component) when the intra-class connectivity is much (an
order of magnitude) larger than the inter-class connectivity. In Section 4 we provide
some further discussion.

We now introduce additional notation necessary for the presentation of our setting
and results in the forthcoming sections. While l2 typically denotes the usual Hilbert
space of all sequences x = (xk)k≥1 with ‖x‖2 :=

∑∞
k=1 x

2
k < ∞, we will henceforth

assume without further mention that any x ∈ l2 (of interest to us) also satisfies

xk ∈ [0,∞), ∀k ≥ 1.

The subset of l2 consisting of all x with non-increasing component will be denoted by
l2↘. Note that l2↘ is a Polish space with respect to the induced metric. In addition let
l↘ be the set of all infinite vectors with non-increasing components in [0,+∞] (here the
coordinates could take value∞). Let

ord(x) : [0,+∞]∞ 7→ l↘

be the map which non-increasingly orders the components (coordinates) of an infinite
vector (in case of ties, the ordering is specified in some natural way, not particularly
important for our study). Note that ord cannot be well-defined (in the sense that all the
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New critical regime of the SBM

coordinates of x become listed in ord(x)) unless for any finite M there are at most finitely
many coordinates of x which are larger than M . We implicitly assume this property here,
as it will be true (almost surely) in the sequel.

The multiplicative coalescent is a process taking values in l2↘. If it starts from an
initial value x in l1, it will reach the constant state (

∑
i xi, 0, . . .) in finite time. This is

not considered an interesting behavior. If it starts from an initial value x 6∈ l2, it will
immediately collapse to (∞, 0, . . .), which is even less interesting. Finally, if it starts from
x ∈ l2↘ \ l1, it will stay forever after in this state space. It is a Markov process with a
generator that we prefer to describe in words: if the current state is x then for any two
different i, j the jump to ord((xi + xj ,x

−i,−j)) happens at rate xixj . Here x−i,−j is the
vector obtained from x by deleting the ith and the jth coordinate.

The multiplicative coalescent has interesting entrance laws which live at all times (or
rather they are parametrized by R). The first and the most well-known such law is called
the Aldous standard (eternal) multiplicative coalescent . Following the tradition set in
[1], we denote it here by (X∗(t), t ∈ R). The law of X∗ is closely linked (see [1, 3, 8]) to
that of the following family of diffusions with non-constant drift{{

Bs + ts− s2

2
, s ≥ 0

}
, t ∈ R

}
.

There are uncountably many different non-standard extreme eternal multiplicative coale-
scent entrance laws and they have been classified in [2], and linked further in [15, 14]
to an analogous family of Lévy-type processes. We discuss and use these links in detail
in [11].

The rest of the paper is organized as follows. In Section 1.1 we introduce the notion of
restricted multiplicative merging RMM, and we also state its basic properties. Section 2
is devoted to the continuity of RMM which is used for the proof of the scaling limit
of stochastic block model in Section 3. A brief discussion of phase transition for the
stochastic block model and of the Markov property of the stochastic block model and the
interacting multiplicative coalescent is done in Section 4.

1.1 Restricted multiplicative merging and first consequences

A key initial observation in [1] is that Erdős-Rényi graph, viewed in continuous time,
is a (finite-state space) multiplicative coalescent. We extend this construction to fit our
purposes in Section 3.

For any triangular table (or matrix) a = {ai,j : i, j ∈ N, i < j} of non-negative
real numbers, any symmetric relation R on N and any t ≥ 0 we define the restricted
multiplicative merging (with respect to (a, R))

RMMt(·;a, R) : l2 → l↘

as follows: to an element x ∈ l2 associate a labelled graph, denoted by Gt(x;a, R)

• with the vertex set N and the edge set {{i, j} ∈ R : ai,j ≤ xixjt}, where it is natural
to extend the definition ai,j := aj,i whenever j < i;

• for each i assign label xi to vertex i, this label we also call the mass of i;

• each connected component (in the usual graph theoretic sense) of Gt(x;a, R) is
then endowed with its total mass – the sum of labels or masses x· over all of its
vertices.

Then RMMt(x;a, R) is defined as the vector of the ordered masses of components of
Gt(x;a, R). Note that RMMt(·;a, R) is a deterministic map, and it is clearly measurable
since, for each n, RMMt(·;a, R) : Rn → l↘ (defined in the same way as above except with
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finitely many initial blocks) is continuous except on the set {y : ∃i, j ∈ [n] s.t. ai,j = yiyjt},
a union of finitely many demi-hyperbolas (in particular a set of measure 0), and moreover
if πn(x) := (x1, x2, . . . , xn) then RMMt(π

n(·);a, R) converges in l2↘ to RMMt(·;a, R) point-
wise.

Furthermore if A = (Ai,j)i,j is a family of i.i.d. exponential (rate 1) random variables,
and the relation R∗ is maximal (meaning {i, j} ∈ R∗ for all i 6= j) then RMMt(x;A, R∗)

has the law of the multiplicative coalescent (from the introduction) started from ord(x)

and evaluated at time t. In particular P
{

RMMt(x;A, R∗) ∈ l2↘

}
= 1. Even more is

true: {RMMt(x;A, R∗), t ≥ 0} is equivalent to the Aldous graphical construction of the
multiplicative coalescent process started from ord(x) at time 0.

It now seems natural to extend the above graphical construction with any infinite
relation R as the third parameter. For our study a family of conveniently chosen relations
will be particularly interesting, as explained in Section 3.

For two elements x = (xk)k≥1,y = (yk)k≥1 ∈ l2 we will write x ≤ y if xk ≤ yk for
every k ≥ 1. The following lemma is a trivial consequence of the definitions (and the
inequality x2 + y2 ≤ (x+ y)2, x, y ≥ 0).

Lemma 1.1. For any two symmetric relations R1 ⊆ R2, x ≤ y and any two times
0 ≤ t1 ≤ t2 we have that Gt1(x;a, R1) ⊂ Gt2(x;a, R2) and

‖RMMt1(x;a, R1)‖ ≤ ‖RMMt2(y;a, R2)‖ ,

where we extend the definition of ‖ · ‖ to infinity on l↘ \ l2↘.

From now on we use notation
A

d∼ Exp∞(1)

to indicate a family of i.i.d. exponential (rate 1) random variables.

Remark 1.2. If x ∈ l↘ \ l2↘, A
d∼ Exp∞(1), and t > 0, it is not hard to check that almost

surely RMMt(x;A, R∗) = (∞, 0, 0, . . .), however the above lemma makes sense also for
stronger restrictions R1 and R2 where the l2 norm of one or both of the restricted
multiplicative mergers is finite.

We can also observe the following.

Lemma 1.3. Let A
d∼ Exp∞(1) be defined on a probability space (Ω,F ,P). Then for

every x ∈ l2 we have that

P
{

RMMt(x;A, R) ∈ l2↘, ∀R symmetric relation and ∀t ≥ 0
}

= 1.

Proof. Apply Lemma 1.1 together with the above made observations about the multipli-
cative coalescent graphical construction.

Remark 1.4. Note that one cannot strengthen the statement of Lemma 1.3 so that the
almost sure event stays universal over x ∈ l2 even for a single relation R, if R relates
one i ∈ N (for example i = 1) to infinitely many other numbers il, l ∈ N. Indeed, we
could define a random X ∈ l2 as follows: X1 = 1, Xi1 =

∑∞
m=1

1
mI{A1,i1∈(1/(m+1),1/m]},

and recursively for l ≥ 2

Xil =

∞∑
m=1

1

m
I{A1,il

∈( 1
m+1 ,

1
m ], 1

m 6∈{Xil−1
,Xil−2

,...,Xi1}}.

Note that due to the elementary properties of i.i.d, exponentials, with probability 1 for
each m ≥ 1, 1/m appears exactly once in the above sequence almost surely, and there
are infinitely many zeroes but this we can ignore. One can now conclude easily from the
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definition of RMM that RMM1(X;A, R) contains a component of infinite mass, almost
surely.

Mimicking the notation of [13], Section 2.1 let us denote, for any (think large) m ∈ N,
a[m↑] := {ai+m,j+m}i<j , x[m↑] = (xk+m)k≥1 and R[m↑] = {{i−m, j−m} : {i, j} ∈ R, i, j ≥
m + 1}. Note that R[m↑] is not the restriction of R to {m + 1,m + 2, . . .}, but rather a
“shift of R”.

Lemma 1.5. For every m ∈ N, x ∈ l2↘, a and R as specified above∥∥∥RMMt(x;a, R)[m↑]
∥∥∥ ≤ ∥∥∥RMMt(x

[m↑];a[m↑], R[m↑])
∥∥∥ ,

where we again allow value infinity on both sides of the inequality.

Proof. Let us first look at how Gt

(
x[m↑];a[m↑], R[m↑]) can be constructed from Gt(x;a, R).

The vertices with masses x1, . . . , xm are removed, as well as any of the edges in Gt(x;a, R)

connecting any of these vertices to any other vertex. The other vertices and edges in
Gt(x;a, R) are kept in Gt

(
x[m↑];a[m↑], R[m↑]), it is precisely the shift of R that ensures

this (deterministic) coupling of the two graphs.

The number of connected components of Gt(x;a, R) changed in the just described
procedure is km ≤ m. Let us assume that these components have indices i1, . . . , ikm . On
the other hand Gt(x;a, R)[m↑] is obtained from Gt(x;a, R) via removal of all the (vertices
and edges) in the first (and largest) m components of Gt(x;a, R). The claim now follows
since for all j ≤ km the j-th largest component of Gt(x;a, R) has mass larger or equal to
that of its ij-th largest component.

2 Continuity of the RMM in the spatial variable

2.1 Basic notation and formulation of the statement

In this section, we will state a type of continuity of the map RMM in the first variable.
This result will be used later for the proof of the SBM scaling limit.

Proposition 2.1. Let R be any symmetric relation on N, A
d∼ Exp∞(1) and sequences

x(n) → x in l2, tn → t in [0,+∞) as n→∞. Define

Z(n)(t) = RMMt

(
x(n);A, R

)
, n ≥ 1,

Z(t) = RMMt(x;A, R).

Then Z(n)(tn)→ Z(t) in l2↘ in probability as n→∞.

2.2 Auxiliary statements and proof of Proposition 2.1

In this section, a family of i.i.d. exponential (rate 1) random variables A = (Ai,j)i,j
and a symmetric relation R of N will be fixed.

Lemma 2.2. Let x(n) =
(
x

(n)
k

)
k≥1

, Z(n), x, Z be defined as in Proposition 2.1. Assume

that there exists m ∈ N such that x(n)
k = 0 for all k > m and n ≥ 1. Then Z(n)(tn)→ Z(t)

in l2↘ a.s. as n→∞.

Proof. The proof trivially follows from the fact that P {Ai,j = xixjt} = 0 for all i, j ∈ N.
On the complement of ∪i,j{Ai,j = xixjt}, the graphical construction of Z(n)(tn) clearly
converges to that of Z(t).
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For two natural numbers i, j we will write i ∼ j if the vertices i and j belong to the
same connected component of the graph Gt(x;A, R). Note that i ∼ j iff there exists a
finite path of edges

i = i0 ↔ i1 ↔ · · · ↔ il = j

connecting i and j.
Recall that ‖ · ‖ denotes the usual l2 norm.

Lemma 2.3. For every x = (xk)k≥1 ∈ l2 and t ∈
(
0, 1/‖x‖2

)
P {i ∼ j} ≤ xixjt

1− t‖x‖2
.

Proof. The estimate can be obtained (using the inequality 1− e−x ≤ x, x ≥ 0) as follows

P {i ∼ j} ≤
∞∑
k=1

 ∞∑
i1,...,ik−1=1

k∏
l=1

P
{
Ail−1,il ≤ xil−1

xilt
}

=

∞∑
k=1

 ∞∑
i1,...,ik−1=1

k∏
l=1

(
1− e−xil−1

xil t
)

≤
∞∑
k=1

 ∞∑
i1,...,ik−1=1

k∏
l=1

xil−1
xilt

 ≤ xixjt( ∞∑
k=1

tk−1‖x‖2k−2

)

=
xixjt

1− t‖x‖2
,

where i0 = i and ik = j.

We next show that the tails of Z(n) =
(
Z

(n)
k

)
k≥1

can be uniformly estimated.

Lemma 2.4. Let R be a symmetric relation on N, A
d∼ Exp∞(1), and assume that

x(n) → x in l2. Then for every T > 0 and ε > 0 there exists m ∈ N such that for every
n ≥ 1

E sup
t∈[0,T ]

∥∥∥∥RMMt

((
x(n)

)[m↑]
;A[m↑], R[m↑]

)∥∥∥∥2

< ε.

Proof. We first estimate for t ∈ [0, T ]∥∥∥∥RMMt

((
x(n)

)[m↑]
;A[m↑], R[m↑]

)∥∥∥∥2

≤
∥∥∥∥RMMT

((
x(n)

)[m↑]
;A[m↑], R∗

)∥∥∥∥2

,

by Lemma 1.1, where R∗ denotes the maximal symmetric relation on N.
Since x(n) → x in l2 as n→∞,

sup
n≥1

∥∥∥∥(x(n)
)[m↑]

∥∥∥∥→ 0 as m→∞.

So, there exists m ∈ N such that

∥∥∥∥(x(n)
)[m↑]

∥∥∥∥2

+

∥∥∥(x(n)
)[m↑]∥∥∥4

T

1− T
∥∥∥(x(n)

)[m↑]∥∥∥2 < ε
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for all n ≥ 1. We fix n and write i ∼ j if vertices i and j belong to the same connected

component of the graph GT

((
x(n)

)[m↑]
;A[m↑], R∗

)
. Then

E

∥∥∥RMMT

((
x(n)

)[m↑]
;A[m↑], R∗

)∥∥∥2

=

∞∑
i=m+1

(
x

(n)
i

)2

+ 2

∞∑
m<i<j

x
(n)
i x

(n)
j EI{i∼j}

(Lemma 2.3) ≤
∞∑

i=m+1

(
x

(n)
i

)2

+ 2

∞∑
m<i<j

(
x

(n)
i x

(n)
j

)2

T

1− T
∥∥∥(x(n)

)[m↑]∥∥∥2

≤
∥∥∥∥(x(n)

)[m↑]
∥∥∥∥2

+

∥∥∥(x(n)
)[m↑]∥∥∥4

T

1− T
∥∥∥(x(n)

)[m↑]∥∥∥2 < ε.

Corollary 2.5. Under the assumptions of Proposition 2.1, for every T > 0 and ε > 0

there exists m ∈ N such that for every n ≥ 1

E sup
t∈[0,T ]

∞∑
k=m+1

(
Z

(n)
k (t)

)2

< ε.

Proof. The statement follows directly from Lemma 2.4 and Lemma 1.5, since

∞∑
k=m+1

(
Z

(n)
k (t)

)2

=

∥∥∥∥RMMt

(
x(n);A, R

)[m↑]
∥∥∥∥2

≤
∥∥∥∥RMMt

((
x(n)

)[m↑]
;A[m↑], R[m↑]

)∥∥∥∥2

.

For m ∈ N we introduce the notation

R[↓m↑] = R ∩ {{i, j} : i ≤ m, j > m} (2.1)

and

x[↓m] =
(
xkI{k≤m}

)
k≥1

.

We next prove an analog of Lemma 2.3 in a special case where R = R[↓m↑]. From
now on we will write i ∼m j for two natural numbers i, j if the vertices i and j belong
to the same connected component of the graph Gt(x;A, R[↓m↑]). Note that t is omitted
from the notation. For i, j ≤ m, i ∼m j if and only if there exists a finite path of edges in
Gt(x;A, R[↓m↑])

i = i0 ↔ j1 ↔ i1 ↔ · · · ↔ jk ↔ ik = j,

where i1, . . . , ik ≤ m and j1, . . . , jk > m are all different vertices.

Lemma 2.6. For every x = (xk)k≥1 ∈ l2, m ≥ 1 and t ∈
(
0, 1/(‖x[↓m]‖‖x[m↑]‖)

)
P {i ∼m j} ≤

xixj κ
m
t,i,j

(∥∥x[↓m]
∥∥ ,∥∥x[m↑]

∥∥)
1− t2

∥∥x[↓m]
∥∥2 ∥∥x[m↑]

∥∥2 ,
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where

κmt,i,j(x, y) =


t2y2, if i, j ≤ m,
t2x2, if i, j > m,

t, otherwise.

Proof. We only write the details of the proof for the case i, j ≤ m. Other cases can be
shown analogously. As in the proof of Lemma 2.3 we can estimate

P {i ∼m j} ≤
∞∑
k=1

 m∑
i1,...,ik−1=1

∞∑
j1,...,jk=m+1

k∏
l=1

(xil−1
x2
jl
xilt

2)


=

∞∑
k=1

m∑
i1,...,ik−1=1

∞∑
j1,...,jk=m+1

xixjt
2
k−1∏
l=1

(tx2
il

)

k∏
l=1

(tx2
jl

)

= xixjt
2
∥∥∥x[m↑]

∥∥∥2 ∞∑
k=1

(
t2
∥∥∥x[↓m]

∥∥∥2 ∥∥∥x[m↑]
∥∥∥2
)k−1

=
xixjt

2
∥∥x[m↑]

∥∥2

1− t2
∥∥x[↓m]

∥∥2 ∥∥x[m↑]
∥∥2 ,

where in the second line of the above expressions we used the fact that, for each k, i0 = i

and ik = j.

Lemma 2.7. For every ε ∈ (0, 1] and m ≥ 1

P

{∥∥∥RMMt

(
x;A, R[↓m↑]

)∥∥∥2

−
∥∥∥x[↓m]

∥∥∥2

≥ ε
}
≤ 1

ε

∥∥∥x[m↑]
∥∥∥2

Pt

(∥∥∥x[↓m]
∥∥∥2
)
,

where Pt(s) = 2 + (4t+ 2t2)s+ 2t2s2.

Remark 2.8. Clearly Pt(s) is a polynomial of two parameters. The degree in t is not
important for our purposes. However, the fact that the degree in s equals two is reflected
in the proof of Proposition 2.1 given below. In particular, the fourth moment estimate of
Lemma 2.10 is necessary for our argument.

Proof. For simplicity of notation we set a :=
∥∥x[↓m]

∥∥2
, b :=

∥∥x[m↑]
∥∥2

and c := 1/(1− t2ab).
We first assume that t2ab ≤ 1

2 , so that c ≤ 2. Due to Chebyshev’s inequality and
Lemma 2.6,

P

{∥∥∥RMMt

(
x;A, R[↓m↑]

)∥∥∥2

−
∥∥∥x[↓m]

∥∥∥2

≥ ε
}

≤ 1

ε

 ∞∑
k=1

x2
k +

∑
i 6=j

xixj P {i ∼m j} −
m∑
k=1

x2
k


≤ 1

ε

b+
∑
i6=j

x2
ix

2
j κ

m
t,i,j(
√
a,
√
b) c


≤ 1

ε

b+ t2bc

m∑
i,j=1

x2
ix

2
j + t2ac

∞∑
i,j=m+1

x2
ix

2
j + 2tc

m∑
i=1

∞∑
j=m+1

x2
ix

2
j


=

1

ε

(
b+ t2a2bc+ t2ab2c+ 2tabc

)
.
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If t2ab ≥ 1
2 , then we can estimate the probability by 1. Hence,

P

{∥∥∥RMMt

(
x;A, R[↓m↑]

)∥∥∥2

−
∥∥∥x[↓m]

∥∥∥2

≥ ε
}

≤ 1

ε

(
b+ t2a2bc+ t2ab2c+ 2tabc

)
I{t2ab≤ 1

2 , c≤2} + I{t2ab> 1
2}

≤ 1

ε

(
b+ 2t2a2b+ b+ 4tab

)
I{t2ab≤ 1

2} + 2t2abI{t2ab> 1
2}

≤ b

ε

(
2 +

(
4t+ 2t2

)
a+ 2t2a2

)
.

For x ∈ l2↘ we set len(x) to be the index of the last non-zero coordinate in x in case it
exists, and otherwise len(x) = +∞. Recall (2.1) and note that

{{i, j} : i ≤ len(x), j > len(x)} ≡ (R∗)[↓len(x)↑].

We denote x ] y =
(
xkI{k≤m} + yk−mI{k>m}

)
k≥1

for x,y ∈ l2, where m = len(x) < ∞.
Note that x ] y 6= y ] x in general.

Lemma 2.9. For m ≥ 1 we set R̃m = R ∪ (R∗)
[↓m↑] and

Z̃m(t) = RMMt

(
x;A, R̃m

)
,

Z≤m(t) = RMMt

(
x[↓m];A, R

)
and

Z>m(t) = RMMt

(
x[m↑];A[m↑], R[m↑]

)
.

Let also Ã
d∼ Exp∞(1) be independent of A. Then

Law
(
Z̃m(t),Z≤m(t),Z>m(t)

)
= Law

(
Ỹm(t),Z≤m(t),Z>m(t)

)
,

where

Ỹm(t) = RMMt

(
Z≤m(t) ] Z>m(t); Ã, (R∗)[↓len(Z≤m(t))↑]

)
. (2.2)

Proof. The claim says that, conditionally on Z≤m(t),Z>m(t), the infinite random vector
Z̃m(t) can be constructed via procedure (2.2). Its proof follows from properties of the
exponential distribution and the definition of RMM. We provide three figures to help any
interested reader construct a detailed argument. In the figures there are nine blocks in
total and m equals five. The general setting (with infinitely many blocks, and arbitrary
finite m) is analogous.

Figure 1: As the legend suggests, the open edges in R are indicated in black, and the
open edges in (R∗)[↓m↑] are indicated in red.
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Figure 2: Here the previously red edges are indicated in pink, the open edges in
R \ (R∗)[↓m↑] are indicated in blue or green.

Figure 3: The figure shows the configuration with connected components formed based
on the (lightly indicated) blue and green open edges. The pink (or red) edges can now
be superimposed, and combining them results in purple edges between the blocks of
Z≤m and Z>m.

Note that due to elementary properties of independent exponentials, a purple edges
in Figure 3 connects the ith block of Z≤m and the jth block of Z>m with probability

1− e−tZ
≤m
i Z>mj .

Lemma 2.10. For every x ∈ l2, T > 0 and a symmetric relation R on N, one has

E sup
t∈[0,T ]

‖RMMt (x;A, R)‖4 < +∞.

Proof. The statement directly follows from Lemma 1.1 and Theorem A.4 in the appendix.

We now use Lemmas 2.7 and 2.9 to obtain the following important uniform bound.

Lemma 2.11. Let Z(t) = RMMt (x;A, R) and Z≤m(t), Z>m(t) be as in Lemma 2.9. Then
for every ε > 0 and m ≥ 1

P
{
‖Z(t)‖2 −

∥∥Z≤m(t)
∥∥2 ≥ ε

}
≤ 1

ε
E
∥∥Z>m(t)

∥∥2
EPt

(∥∥Z≤m(t)
∥∥2
)
,

where the polynomial Pt is defined in Lemma 2.7.

Proof. Let Z̃m(t) = RMMt

(
x;A, R̃m

)
and Ỹm(t) be defined by (2.2), where R̃m =

R ∪ (R∗)
[↓m↑] as before. Due to Lemma 1.1 we have ‖Z(t)‖2 ≤ ‖Z̃m(t)‖2 a.s., so

P
{
‖Z(t)‖2 −

∥∥Z≤m(t)
∥∥2 ≥ ε

}
≤ P

{∥∥∥Z̃m(t)
∥∥∥2

−
∥∥Z≤m(t)

∥∥2 ≥ ε
}

(Lemma 2.9) = P

{∥∥∥Ỹm(t)
∥∥∥2

−
∥∥Z≤m(t)

∥∥2 ≥ ε
}

= E

(
P

{∥∥∥Ỹm(t)
∥∥∥2

−
∥∥Z≤m(t)

∥∥2 ≥ ε
∣∣∣∣Z≤m(t),Z>m(t)

})
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(Lemma 2.7) ≤ 1

ε
E
[∥∥Z>m(t)

∥∥2
Pt

(∥∥Z≤m(t)
∥∥2
)]

=
1

ε
E
∥∥Z>m(t)

∥∥2
EPt

(∥∥Z≤m(t)
∥∥2
)
.

The final identity follows from the independence of Z≤m and Z>m.

Proof of Proposition 2.1. Let x(n) → x in l2 and tn → t in [0,+∞) as n → ∞. We recall
that Z(n)(t) = RMMt

(
x(n);A, R

)
and Z(t) = RMMt (x;A, R). For m ≥ 1 we set

Z≤m(t) = RMMt

(
x[↓m];A, R

)
,

Z>m(t) = RMMt

(
x[m↑];A[m↑], R[m↑]

)
,

Zn,≤m(t) = RMMt

((
x(n)

)[↓m]

;A, R

)
, and

Zn,>m(t) = RMMt

((
x(n)

)[m↑]
;A[m↑], R[m↑]

)
.

We fix any subsequence {ni}i≥1 of N and first choose a subsequence {nil}l≥1 of

{ni}i≥1, denoted by {n′l}l≥1 such that
∑∞
l=1

∥∥∥x(n′l) − x
∥∥∥2

< ∞. We first show that for

every T > 0

sup
l≥1

E sup
m

sup
t∈[0,T ]

∥∥∥Zn′l,≤m(t)
∥∥∥4

<∞. (2.3)

Let y = (yk)k≥1 :=

(
sup
l≥1

(
max

{
x

(n′l)
k , xk

}))
k≥1

. Then y ∈ l2 and x
(n′l)
k ≤ yk for every

k ≥ 1. Indeed, the fact that y belongs to l2 follows from the estimate

‖y − x‖2 =

∞∑
k=1

(yk − xk)2 ≤
∞∑
k=1

∞∑
l=1

(x
(n′l)
k − xk)2 =

∞∑
l=1

∥∥∥x(n′l) − x
∥∥∥2

<∞.

Hence, by Lemmas 1.1 and 2.10, we obtain that

sup
l≥1

E sup
t∈[0,T ]

∥∥∥Z(n′l)(t)
∥∥∥4

≤ E ‖RMMT (y,A, R∗)‖4 <∞, (2.4)

which implies (2.3) due to Lemma 1.1.

Let ε > 0 be fixed. Due to Lemma 1.3, we have limm→∞
∥∥Z≤m(t)

∥∥ = ‖Z(t)‖, and
combining this with Lemmas 2.4, 2.7, 2.11 and (2.3), we can conclude that there exists
m ≥ 1 sufficiently large so that

P

{
‖Z(t)‖2 −

∥∥Z≤m(t)
∥∥2 ≥ ε2

9

}
≤ ε

3
, (2.5)

and

P

{∥∥∥Z(n′l)(tn′l)
∥∥∥2

−
∥∥∥Zn′l,≤m(tn′l)

∥∥∥2

≥ ε2

9

}
≤ ε

3
. (2.6)

Next, by Lemma 2.2, there exists L ∈ N such that for all l ≥ L

P
{∥∥∥Z≤m(t)− Zn

′
l,≤m(tn′l)

∥∥∥ ≥ ε

3

}
≤ ε

3
.
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We can conclude that for all l ≥ L

P
{∥∥∥Z(t)− Z(n′l)(tn′l)

∥∥∥ ≥ ε} ≤ P{∥∥Z(t)− Z≤m(t)
∥∥ ≥ ε

3

}
+ P

{∥∥∥Z≤m(t)− Zn
′
l,≤m(tn′l)

∥∥∥ ≥ ε

3

}
+ P

{∥∥∥Zn′l,≤m(tn′l)− Z(n′l)(tn′l)
∥∥∥ ≥ ε

3

}
≤ ε

3
+
ε

3
+
ε

3
= ε,

where we applied (2.5,2.6) and [1], Lemma 17 in order to bound from above the right-
hand-side in the first and the third line.

This implies that
∥∥∥Z(t)− Z(n′l)(tn′l)

∥∥∥→ 0 in probability as l→∞. So, we have shown

that for any subsequence {ni}i≥1 there exists a subsubsequence {nil}l≥1 such that∥∥∥Z(t)− Z(n′l)(tn′l)
∥∥∥→ 0 in probability as l→∞. Therefore∥∥∥Z(t)− Z(n)(tn)

∥∥∥→ 0 in probability as n→∞.

3 Scaling limit of near-critical stochastic block models

Let n,m ≥ 2 be given. Let Gmn;p,q be the random graph issued from the stochastic
block model (SBM) Gm(n, p, q), with m classes of size n. The structure of Gmn;p,q was
described in the Introduction. Recall that the edges are drawn independently at random,
and each intra-class edge is present (or open) with probability p, while each inter-class
edge is present (or open) with probability q.

Here we introduce some additional notation. Denote the vertices of Gmn;p,q by [nm] :=

{1, 2, . . . , nm}, and for each l = 1, . . . ,m interpret the subset Bl = {l,m+ l, 2m+ l . . . , (n−
1)m+ l} of [nm] as the l-th class. In addition we define the “round-robin join” map ρm1
from l↘ × . . .× l↘ to l∞ as follows: for m vectors x1, . . . ,xm ∈ l↘ let

ρm1 (x1, . . . ,xm) := (x1
1, x

2
1, . . . , x

m
1 , x

1
2, x

2
2, . . . , x

m
2 , x

1
3, x

2
3, . . .).

Note that ρm1 is not commutative.
The main point of RMM and of the study conducted in Section 2 is that a graphical

construction of the connected component sizes of Gmn;1−e−t,1−e−u (completely analogous
to the one for the multiplicative coalescent as discussed in the introduction) can be
conveniently given as follows:
(i) let x = (1, 1, . . . , 1, 0, 0, . . .) where there are exactly nm coordinates equal to 1,
(ii) for each l ∈ 1, . . . ,m define relations

R
(m),n;l
intra = {{i, j} : i, j ∈ Bl}, (3.1)

and also define (note that i ∈ Bl iff i mod m = l)

R
(m)
inter = {{i, j} : (i− j) mod m 6= 0}. (3.2)

(iii) The three-step procedure

RMMu

(
ρm1

(
RMMt

(
x;A, R

(m),n;1
intra

)
, . . . ,RMMt

(
x;A, R

(m),n;m
intra

))
;A′, R

(m)
inter

)
,

where A,A′
d∼ Exp∞(1) are independent, has the law of the connected component sizes

of Gmn;1−e−t,1−e−u . Indeed, in the first step

Rl
t := RMMt

(
x;A, R

(m),n;l
intra

)
(3.3)
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gives the connected component sizes when all the intra-Bl open edges and no other
edges are taken into account. The second step consists of conveniently assembling the
data on all the component sizes of all the m classes (here all the intra-class edges and
none of the inter-class edges are accounted for) into a single vector

Rt := ρm1
(
R1
t ,R

2
t · · · ,Rm

t

)
. (3.4)

In the third step, due to the elementary properties of independent exponentials, applying

RMMu

(
·;A′, R(m)

inter

)
to Rt gives the connected component sizes when all the open edges

between different classes are also taken into account. This is similar in spirit to the
construction in Lemma 2.9.

For t ∈ R, u ≥ 0 and n ≥ n0 sufficiently large, let ζ̃(n)(t, u) denote the vector of
decreasingly ordered component sizes of Gm

n;n−1+tn−4/3,un−4/3 . Let also

ζ(n)(t, u) = n−2/3ζ̃(n)(t, u), t ∈ R, u ≥ 0, n ≥ n0.

We consider ζ(n)(t, u) to be a random element of l2↘ (for this we append infinitely many
zero entries). As discussed above we have

ζ(n)(t, u) = RMMun

(
ρm1

(
RMMtn

(
x(n);A, R

(m),n;1
intra

)
, (3.5)

. . . ,RMMtn

(
x(n);A, R

(m),n;m
intra

))
;A′, R

(m)
inter

)
,

where x(n) =
(
n−2/3, n−2/3, . . . , n−2/3, 0, 0, . . .

)
has exactly nm components equal to

n−2/3, where A,A′
d∼ Exp∞(1) are independent, and also

tn = −n4/3 ln
(

1− n−1 − tn−4/3
)
,

un = −n4/3 ln
(

1− un−4/3
)

for all n≥n0. Note that tn and un are chosen according to the identities 1−e−tnn−2/3n−2/3

=
1
n + t

n4/3 and 1− e−unn−2/3n−2/3

= u
n4/3 and that x(n) differs from x, defined above, by the

normalization factor n−2/3. Note that the multipliers in the exponent are compatible
with the restricted multiplicative merging, since the mass of the particles is now n−2/3.
In the original graphical construction all the masses were equal to 1, and this is implicit
in the expression for the first connectivity parameter (which is equal to 1− e−t in the
construction comprising (3.1)–(3.4)).

Let {Z1(t), t ∈ R}, . . . , {Zm(t), t ∈ R} be independent standard multiplicative coales-
cents. We set

Z(t) =
(
Z1(t), . . . ,Zm(t)

)
, t ∈ R,

and define
ζ(t, u) = RMMu

(
ρm1 (Z(t)) ;A, R

(m)
inter

)
, t ∈ R, u ≥ 0, (3.6)

where A
d∼ Exp∞(1) is independent of Zl, l = 1, . . . ,m.

Theorem 3.1. For every t ∈ R and u ≥ 0,

ζ(n)(t, u)→ ζ(t, u) as n→∞

in distribution with respect to the topology on l2↘.

Proof. In order to prove the theorem, we are going to use the continuity of RMM, stated
in Proposition 2.1, together with the fact that the standard multiplicative coalescent
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arises as the scaling limit of near-critical Erdős-Rényi graph component sizes. Indeed,
it is clear that for each l the (deterministic) intersection of Gm

n;n−1+tn−4/3,un−4/3 with
Bl, where all the inter-class edges are not taken into account, is a realization from
G(n, n−1 + tn−4/3). In other words, if x(n) equals the vector given immediately below
(3.5), then for each l, the random vector

Zl,(n)(t) := RMMtn

(
x(n);A, R

(m),n;l
intra

)
,

multiplied by n2/3, is precisely the ordered listing of component sizes of an Erdős-
Rényi graph on n vertices with near-critical connectivity pn = n−1 + tn−4/3. Moreover,
{Zl,(n)}ml=1 is clearly an independent family. Let us abbreviate

Z(n)(t) =
(
Z1,(n)(t), . . . ,Zm,(n)(t)

)
.

We thus rewrite (3.5) as

ζ(n)(t, u) = RMMun

(
ρm1

(
Z(n)(t)

)
;A, R

(m)
inter

)
, n ≥ n0. (3.7)

It remains to show the right hand side of (3.7) converges in distribution to ζ(t, u) as
n→∞. As a corollary of Theorem 3 [1] and independence, we have that Z(n)(t)→ Z(t)

in (l2)m in distribution as n→∞. Since ρm1 is continuous map, the convergence in law
extends to ρm1 (Z(n)(t)). The rest is a standard application of continuity of RMM operation
from Section 2. We include an argument for self-containment.

By the Skorokhod representation theorem, we can choose a probability space (Ω,F ,P)

and a sequence of random elements Ẑ(n)(t), n ≥ n0, and Ẑ(t) in
(
l2
)m

such that

Ẑ(n)(t)
d
= Z(n)(t), n ≥ n0, Ẑ(t)

d
= Z(t),

and
Ẑ(n)(t)→ Ẑ(t) in

(
l2
)m

a.s. as n→∞.

We take Ã
d∼ Exp∞(1) defined on another probability space (Ω̃, F̃ , P̃) and set

ζ̂(n)(ω, ω̃, t, un) = RMMun

(
ρm1

(
Ẑ(n)(ω, t)

)
; Ã(ω̃), R

(m)
inter

)
, (ω, ω̃) ∈ Ω× Ω̃,

ζ̂(ω, ω̃, t, u) = RMMu

(
ρm1

(
Ẑ(ω, t)

)
; Ã(ω̃), R

(m)
inter

)
, (ω, ω̃) ∈ Ω× Ω̃.

Then one can conclude ζ(n)(t, un)
d
= ζ̂(n)(t, un), n ≥ n0, ζ(t, u)

d
= ζ̂(t, u) and

ζ̂(n)(t, un)→ ζ̂(t, u) in probability as n→∞,

with respect to the l2 norm on l2↘. Indeed, for ε > 0, we have

P⊗ P̃
{∥∥∥ζ̂(n)(t, un)− ζ̂(t, u)

∥∥∥ ≥ ε}
= E

(
P̃
{∥∥∥ζ̂(n)(ω, t, un)− ζ̂(ω, t, u)

∥∥∥ ≥ ε})
= E

(
P̃

{∥∥∥∥∥RMMun

(
ρm1

(
Ẑ(n)(ω, t)

)
; Ã, R

(m)
inter

)
− RMMu

(
ρm1

(
Ẑ(ω, t)

)
; Ã, R

(m)
inter

)∥∥∥∥∥ ≥ ε
})
→ 0,

where the convergence a.s. of the random sequence (of probabilities) inside the expecta-
tion is due to Proposition 2.1, and the final conclusion due to the dominated convergence
theorem. As already explained, this completes the proof of the theorem.
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4 Concluding remarks

Phase transition of the SBM

We recall that if f and g are two sequences, then f(n) � g(n) (or equivalently g(n) �
f(n)) means that limn g(n)/f(n) = 0, and f(n) ∼ g(n) means that limn g(n)/f(n) = 1.

Let C(n, pn, qn) denote the size of largest component of G(n, pn, qn). We can conclude
from Theorem 3.1 in the previous section that

(i) if pn − 1
n ∼

t
n4/3 and qn ∼ u

n4/3 , n→∞, then for all M ∈ (0,∞)

lim
n→∞

P
{
n−2/3C(n, pn, qn) > M

}
∈ (0, 1); (4.1)

(ii) if pn − 1
n �

t
n4/3 without any assumption on (qn)n, or pn − 1

n ∼
t

n4/3 , qn � u
n4/3 ,

n→∞, then for every M > 0

lim
n→∞

P
{
n−2/3C(n, pn, qn) > M

}
= 1;

(iii) if pn − 1
n �

t
n4/3 , qn ∼ u

n4/3 , then for every M > 0

lim
n→∞

P
{
n−2/3C(n, pn, qn) > M

}
= 0.

We remark that in the case pn − 1
n ∼

t
n4/3 , qn � u

n4/3 , n→∞, the scaling limit of the
stochastic block model G(n, pn, qn) is described by a family on m independent standard
multiplicative coalescent without interaction. Hence, (4.1) remains true.

We also have from the pure homogenous graph setting that if pn − 1
mn ∼

t
n4/3 and

qn − 1
mn ∼

t
n4/3 , then the normalized vector of ordered sizes of connected components of

G(n, pn, qn) converges to a value of standard multiplicative coalescent at time m4/3t. In
particular, (4.1) is also satisfied.

In addition, the main result of Bollobás et al. [6], applied to the SBM, says that if
pn ∼ c

mn and qn ∼ d
mn and

(i) if c+(m−1)d > m, then 1
nC(n, pn, qn) converges to a non-zero number in probability.

(ii) if c+ (m− 1)d ≤ m, then 1
nC(n, pn, qn) converges to zero in probability.

Markov property of the interacting multiplicative coalescent

Recall the notation of Section 3 and in particular the construction resulting in (3.4). It
should be clear that Rt, t ≥ 0, is a Markov process. However, for any fixed u > 0 the
process

RMMu

(
Rt;A

′, R
(m)
inter

)
, t ≥ 0,

does no longer have the Markov property. The main obstacle is in the “loss of information”
on the class membership once the restricted merging RMMu is applied. For the same
reason, for any fixed t, the process

RMMu

(
Rt;A

′, R
(m)
inter

)
, u ≥ 0,

is no longer Markov. These observations are made on the discrete level, before passing
to the limit. The same remains true for the interacting multiplicative coalescent.

Nevertheless, the first process above and its scaling limit, given in Section 3, are not
far from being Markov (they are hidden Markov), and they are still amenable to analysis.
In a forthcoming work [11] we construct an excursion representation of interacting
multiplicative coalescent, analogous to those obtained by [1, 2, 3, 8, 15, 14], however
more complicated, and its complexity increases with m.
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A Appendix

This auxiliary material is included for reader’s benefit. The multiplicative coalescent
properties proved below are interested in their own right, and our intention is to obtain
their generalizations in a separate work in progress [12].

A.1 Preliminaries

We rely on the notation introduced above. In particular, if x is a vector in l2 or l2↘,
then ‖x‖ is its l2-norm. We reserve the notation X := (X(t), t ≥ 0) for any multiplicative
coalescent process, where its initial state will be clear from the context. Recall that
X(t) = (X1(t), X2(t), . . .) where Xj(t) is the size of the jth largest component at time t.

If n ∈ N then [n] = {1, 2, . . . , n}. Here and below A denotes a matrix (or equivalently,
a two-parameter family) of i.i.d. exponential (rate 1) random variables.

Let (Gt(x;A, R∗))t,x be the family of evolving random graphs on (Ω,F ,P) as con-
structed in the introduction. We now fix x ∈ l2 and t > 0, and describe a somewhat
different construction of the random graph Gt(x;A, R∗).

Set N2
< := {(i, j) : i < j, i, j ∈ N} and

Ω0 = {0, 1}N
2
< .

We also define the product σ-field F0 = 2Ω0

and the product measure

P0
x,t =

⊗
i<j

Pi,j ,

where Pi,j is the law of a Bernoulli random variable with success probability Pi,j{1} =

P {Ai,j ≤ xixjt}. Elementary events from Ω0 will specify a family of open edges in
Gt(x;A, R∗). More precisely, a pair of vertices {i, j} is connected in Gt(x;A, R∗) by
an edge if and only if ωi,j = 1 for ω = (ωi,j)i<j ∈ Ω0. In other words, P0

x,t is an
“inhomogeneous percolation process on the complete infinite graph (N, {{i, j} : i, j ∈ N})”
(we include the loops connecting each i to itself on purpose). It is clear that the law of
thus obtained random graph Gt(x;A, R∗) is the same (modulo loops {i, i}) as the one
constructed in the introduction. Note that R∗ is the maximal partition, so these are all
graphical constructions of the multiplicative coalescent, equivalent to the Aldous [1]
original one.
For two i, j ∈ N we write {i↔ j} = {{i, j} is an edge of Gt(x;A, R∗)} and we may also
write it as at {{i, j} is open}. We also write {i ∼ j} for the event that i and j belong to
the same connected component of the graph Gt(x;A, R∗). Then we have, ω-by-ω, that
i ∼ j if and only if there exists a finite path of edges

i = i0 ↔ i1 ↔ · · · ↔ il = j.

Then one can trivially recognize

P {i ∼ j} = P0
x,t {i ∼ j} .

Part of our argument relies on disjoint occurrence. We follow the notation from [4],
since they work on infinite product spaces. We will use an analog of the van den Berg-
Kesten inequality [17], the theorem cited below is an analog of Reimer’s theorem [16].
Given a finite family of events Ak, k ∈ [n], from F0 we define the event

n

�
k=1

Ak = {Ak, k ∈ [n], jointly occur for disjoint reasons}.
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Readers familiar with percolation can skip the next paragraph and continue reading
either at Lemma A.1 or Section A.2.

Let for ω ∈ Ω0 and K ⊂ N2
<

Cyl(K,ω) := {ω̄ : ω̄i,j = ωi,j , (i, j) ∈ K} .

be the thin cylinder specified through K. Then the event

[A]K := {ω : Cyl(K,ω) ⊂ A}

is the largest cylinder set contained in A, such that it is free in the directions indexed by
Kc. Define

n

�
k=1

Ak = A1 � . . .�An :=
⋃

J1,...,Jn

[A1]J1 ∩ · · · ∩ [An]Jn ,

where the union is taken over finite disjoint subsets Jk, k ∈ [n], of N2
<.

Let ik, jk ∈ N and ik 6= jk, k ∈ [n]. Then we have clearly

n

�
k=1

{ik ∼ jk} =
{
ik ∼ jk, k ∈ [n], via mutually disjoint paths

}
.

The following lemma follows directly from Theorem 11 [4], but since the events in
question are simple (and monotone increasing in t) this could be derived directly in a
manner analogous to [17].

Lemma A.1. For any ik, jk ∈ N and ik 6= jk, k ∈ [n], we have

P0
x,t

(
n

�
k=1

{ik ∼ jk}
)
≤

n∏
k=1

P (ik ∼ jk) .

A.2 Some auxiliary statements

Recall Lemma 2.3. The goal of this section is to obtain a similar estimate for triples
and four-tuples of vertices.

Proposition A.2. There exists a constant C such that for every x = (xk)k≥1 ∈ l2 and
t ∈ (0, 1/‖x‖2)

P (i1 ∼ i2 ∼ i3) ≤ Cxi1xi2xi3t
3/2

(1− t‖x‖2)
3

and

P (i1 ∼ i2 ∼ i3 ∼ i4) ≤ Cxi1xi2xi3xi4t
2

(1− t‖x‖2)
5

for distinct natural numbers ik, k ∈ [4].

Remark A.3. We conjecture analogous estimates for k-tuples of vertices.

Proof of Proposition A.2. We will focus on the proof of the second inequality. The proof
of the first one is similar and simpler. Let I := {i1, . . . , i4} and Ic = N \ I. We consider
{i1 ∼ · · · ∼ i4} as an event in the probability space (Ω0,F0,P0

x,t) and observe that it can
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be written as a union of the following five events:

A1 : =
⋃
σ

⋃
k,l∈Ic
k 6=l

{iσ(1) ∼ k}�{k ∼ iσ(2)}�{iσ(3) ∼ l}�{l ∼ iσ(4)}�{k ∼ l},

A2 : =
⋃
σ

⋃
k∈Ic
{iσ(1) ∼ iσ(2)}�{iσ(1) ∼ k}�{iσ(3) ∼ k}�{k ∼ iσ(4)},

A3 : =
⋃
σ

⋃
k∈Ic
{iσ(1) ∼ k}�{k ∼ iσ(2)}�{iσ(3) ∼ k}�{k ∼ iσ(4)},

A4 : =
⋃
σ

{iσ(1) ∼ iσ(2)}�{iσ(1) ∼ iσ(3)}�{iσ(1) ∼ iσ(4)},

A5 : =
⋃
σ

{iσ(1) ∼ iσ(2)}�{iσ(2) ∼ iσ(3)}�{iσ(3) ∼ iσ(4)},

where the unions
⋃
σ are taken over all the permutations σ ∈ S4. The following pictures

are the graphical representation of events presented in definition of Ak, k ∈ [5], for
σ(i) = i. The long double arrows illustrate connections by paths.

Using Lemma A.1 and the inequalities t‖x‖2 < 1 and
∑∞
k=1 x

p
k ≤ ‖x‖p (recall that ‖ · ‖ is

the norm in l2) for every p ≥ 2, we can now estimate

P0
x,t (A1) ≤

∑
σ

xi1xi2xi3xi4t
5

(1− t‖x‖2)5

∞∑
k,l=1

x3
kx

3
l ≤ 4!

xi1xi2xi3xi4t
5

(1− t‖x‖2)5
‖x‖6 ≤ 4!

xi1xi2xi3xi4t
2

(1− t‖x‖2)5
.

Similarly, we obtain (using xiσ(j) ≤ ‖x‖ repeatedly)

P0
x,t (A2) ≤

∑
σ

xi1xi2xi3xi4t
4

(1− t‖x‖2)4
xiσ(1)

∞∑
k=1

x3
k ≤ 4!

xi1xi2xi3xi4t
4

(1− t‖x‖2)4
‖x‖4 ≤ 4!

xi1xi2xi3xi4t
2

(1− t‖x‖2)5
,

P0
x,t (A3) ≤

∑
σ

xi1xi2xi3xi4t
4

(1− t‖x‖2)4

∞∑
k=1

x4
k ≤ 4!

xi1xi2xi3xi4t
4

(1− t‖x‖2)4
‖x‖4 ≤ 4!

xi1xi2xi3xi4t
2

(1− t‖x‖2)5
,
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P0
x,t (A4) ≤

∑
σ

xi1xi2xi3xi4t
3

(1− t‖x‖2)3
x2
iσ(1)
≤ 4!

xi1xi2xi3xi4t
3

(1− t‖x‖2)3
‖x‖2 ≤ 4!

xi1xi2xi3xi4t
2

(1− t‖x‖2)5
,

P0
x,t (A5) ≤

∑
σ

xi1xi2xi3xi4t
3

(1− t‖x‖2)3
xiσ(2)xiσ(3) ≤ 4!

xi1xi2xi3xi4t
3

(1− t‖x‖2)3
‖x‖2 ≤ 4!

xi1xi2xi3xi4t
2

(1− t‖x‖2)5
.

Hence, adding over all the five terms above gives

P {i1 ∼ i2 ∼ i3 ∼ i4} ≤ 5!
xi1xi2xi3xi4t

2

(1− t‖x‖2)5
,

as stated.

A.3 Finiteness of the fourth moment of the multiplicative coalescent

Let X(t) = RMMt (x;A, R∗), t ≥ 0, be a multiplicative coalescent starting from x ∈ l2↘.
The main goal of this section is to prove the following theorem.

Theorem A.4. For every t ≥ 0 one has

E‖X(t)‖4 < +∞.

In order to prove the theorem, we first show the finiteness of the fourth moment of
the multiplicative coalescent for small t and then extend this result for all t.

Lemma A.5. There exists a constant C > 0 such that for every x ∈ l2 and t ∈ (0, 1/‖x‖2)

the inequality
∞∑
k=1

EX4
k(t) <

C‖x‖4

(1− t‖x‖2)
5

holds.

Proof. For convenience of notation we will here use a natural convention that for each i
we have i ∼ i almost surely, as indicated in Section A.1. Using Proposition A.2 and the
fact t‖x‖2 < 1, we estimate

∞∑
k=1

EX4
k(t) ≤

∞∑
i1,i2,i3,i4=1

xi1xi2xi3xi4P (i1 ∼ i2 ∼ i3 ∼ i4)

≤
∞∑
i=1

x4
i + 12

∑
i1 6=i2

xi1x
3
i2P (i1 ∼ i2) + 6

∑
i1 6=i2

x2
i1x

2
i2P (i1 ∼ i2)

+ 12
∑

i1 6=i2 6=i3

xi1xi2x
2
i3P (i1 ∼ i2 ∼ i3)

+
∑

i1 6=i2 6=i3 6=i4

xi1xi2xi3xi4P (i1 ∼ i2 ∼ i3 ∼ i4)

≤ ‖x‖4 + 12
∑
i1 6=i2

xi1x
3
i2

xi1xi2t

1− t‖x‖2
+ 6

∑
i1 6=i2

x2
i1x

2
i2

xi1xi2t

1− t‖x‖2

+ 12C
∑

i1 6=i2 6=i3

xi1xi2x
2
i3

xi1xi2xi3t
3/2

(1− t‖x‖2)
3

+ C
∑

i1 6=i2 6=i3 6=i3

xi1xi2xi3xi4
xi1xi2xi3xi4t

2

(1− t‖x‖2)
5 ≤ ‖x‖

4 +
12‖x‖6t

1− t‖x‖2

+
6‖x‖6t

1− t‖x‖2
+

12C‖x‖7t3/2

(1− t‖x‖2)
3 +

C‖x‖8t2

(1− t‖x‖2)
5 ≤

C̃‖x‖4

(1− t‖x‖2)
5 .

This finishes the proof of the lemma.
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Recall that the multiplicative coalescent X(t), t ≥ 0, is a Markov process taking
values in l2↘. Using its generator (in particular, applying it to ‖X(t)‖2) one concludes
that the process

M(t) := ‖X(t)‖2 −
∫ t

0

(
‖X(s)‖4 −

∞∑
k=1

X4
k(s)

)
ds, t ≥ 0, (A.1)

is a local martingale (see also equality (68) in [2]). We will use this fact in order to show
the finiteness of the fourth moment of the multiplicative coalescent at small times.

Proposition A.6. There exists a constant C such that for every x ∈ l2 and t ∈ [0, 1/‖x‖2)

E

∫ t

0

‖X(s)‖4ds ≤ C‖x‖2

(1− t‖x‖2)
4 . (A.2)

In particular, E‖X(t)‖4 < +∞.

Proof. We set
τn := inf {t : ‖X(t)‖ ≥ n} , n ≥ 1.

Then M(t ∧ τn), t ≥ 0, is a martingale for every n ≥ 1, where M is defined by (A.1).
Consequently,

EM(t ∧ τn) = E‖X(t ∧ τn)‖2 − E
∫ t∧τn

0

(
‖X(s)‖4 −

∞∑
k=1

X4
k(s)

)
ds = ‖x‖2

for all n ≥ 1.
Using Lemma A.5, the monotonicity of ‖X(t)‖ in t (see for example Lemma 1.1) and

the estimate for the second moment of the multiplicative coalescent, which can be
obtained in a way similar to the proof of Lemma A.5 (see also Lemma 2.4), we get

E

∫ t∧τn

0

‖X(s)‖4ds = E‖X(t ∧ τn)‖2 − ‖x‖2 + E

∫ t∧τn

0

∞∑
k=1

X4
k(s)ds

≤ C‖x‖2

1− t‖x‖2
− ‖x‖2 + C

∫ t

0

‖x‖4

(1− s‖x‖2)
5 ds ≤

C‖x‖2

(1− t‖x‖2)
4 .

By Fatou’s lemma, we derive (A.2). The finiteness of E‖X(t(1 − δ))‖4 for any small
positive δ now follows again from the monotonicity of E‖X(t)‖4 in t, and this in turn
implies the stated claim.

Let A′ = (A′i,j)i,j be an independent copy of A = (Ai,j)i,j . As in Section A.1 let
(ω′i,j)i<j be an independent family of Bernoulli random variables, where ω′i,j has success
probability P′i,j{1} = P

{
A′i,j ≤ xixjs

}
. We say that “{i, j} is open via A′” on the event

{ω′i,j = 1}. Note that this does not exclude {ωi,j = 1} from happening. Similarly we say
that “{i, j} is open via A” on the event {ωi,j = 1}. We will write i↔A j whenever {i, j}
is open via A.

Denote by G̃t,s (x;A,A′, R∗) the graph (in fact, it is a multi-graph) constructed by su-
perimposing the edges open via A′ onto Gt (x;A, R∗). Elementary properties of indepen-
dent exponentials imply that the vector of ordered component sizes of G̃t,s (x;A,A′, R∗)

is equal in law to RMMt+s (x;A, R∗).
Furthermore, the following property should be clear: if i < j,

vector of ordered component sizes of G̃t,s (x;A,A′, R∗) given {i↔A j}
d
= vector of ordered component sizes of G̃t,s

(
x
′,i,j ;A,A′, R∗

)
,

(A.3)
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where x
′,i,j = (x1, . . . , xi−1, xi + xj , xi+1, . . . , xj−1, 0, xj+1, . . . ). Indeed, one could couple

the constructions of the two graphs in (A.3) so that if {k, l} ∩ {i, j} = ∅ one uses the
exponential thresholds Ak,l,A

′
k,l on both sides, (Ak,l){k,l}∩{i,j}6=∅ and (A′k,l){k,l}∩{i,j}6=∅

are used only on the left hand side, while for l 6∈ {i, j} the “combined” thresholds
Āi,l := (xi + xj)(Ai,l/xi ∧ Aj,l/xj) and Ā′i,l := (xi + xj)(A

′
i,l/xi ∧ Aj,l/xj) (note that

these are again exponential (rate 1) random variables, independent of each other and
of (Ak,l,A

′
k,l){k,l}∩{i,j}=∅) are used on the right hand side. The jth component of x

′,i,j is
here set to 0 out of convenience, and it is clear that this “fake block” will not contribute
to the connected component masses. It is also clear that the exact (coordinate specified)
form of x

′,i,j is irrelevant for the statement in (A.3), the important thing is that the two
masses corresponding to i and j are removed from, and another mass of size xj + xj is
added to, the configuration.

Remark A.7. In different words, the reasoning above says that one can construct
a realization of connected components of G̃t,s (x;A,A′, R∗) given {i ↔A j} from a
realization of G̃t,s (x;A,A′, R∗) by declaring {i, j} being open via A and keeping all the
other A,A′ thresholds, but now the block which (surely) contains both i and j has mass
xi + xj , and the edges via A or A′, which previously separately connected the blocks
indexed by i and j to another block indexed by l, can (and must) be combined into a
single edge which connects the new merger of i and j to l. The fact that these combined
edges again give rise to multiplicative merging is the key property which makes such
processes amenable to analysis. This is not the case if the merging mechanism is
different (e.g. exchangeable, additive, or more complicated).

Proof of Theorem A.4. Our argument by contradiction is analogous to “finite modifica-
tion” reasoning in percolation theory.
Let us assume that there exist t > 0 and x ∈ l2 such that

E ‖RMMt (x;A, R∗)‖4 = +∞. (A.4)

We take m,M ∈ N sufficiently large so that the vector

xg =
(x1

M
, . . . ,

x1

M
,
x2

M
, . . . ,

x2

M
, . . . ,

xm
M

, . . . ,
xm
M

,xm+1, xm+2, . . .
)
, (A.5)

obtained by “grinding” the first m components (blocks) of x each into M new components
(blocks) of equal mass, has sufficiently small l2 norm. More precisely, we take m,M ∈ N
so that

t ‖xg‖2 = t

(
x2

1

M
+
x2

2

M
+ · · ·+ x2

m

M
+ x2

m+1 + x2
m+2 + . . .

)
<

1

2
.

Then E ‖RMM2t (xg;A, R∗)‖4 < +∞ due to Proposition A.6.
We next consider the event

A =

m−1⋂
l=0

{(lM + 1)↔A · · · ↔A (lM +M)} .

In words, the grinding done in (A.5) is reversed in Gt (x;A, R∗) on A. It is clear that A
has positive probability. Other edges may (and typically will) be open but this can only
help the chain of inequalities given below.

Using (A.3) and induction we conclude that

vector of ordered component sizes of G̃t, t2 (xg;A,A′, R∗) given A

d
= vector of ordered component sizes of G̃t, t2 (x;A,A′, R∗) .
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Due to the reasoning of the paragraph above (A.3), the vector of ordered connected
component masses of the graph on the right-hand side is distributed as RMM 3t

2
(x;A, R∗).

Denote by Y the vector of order connected component sizes of G̃t, t2 (xg;A,A′, R∗), and

observe that Y
d
= RMM 3t

2
(xg;A, R∗) for the very same reason. Therefore,

∞ > E
(
‖Y‖4

)
≥ E

[
E
(
‖Y‖4

∣∣∣ IA) IA] = E

[
E

∥∥∥RMM 3t
2

(x;A, R∗)
∥∥∥4

IA

]
= P (A)E

∥∥∥RMM 3t
2

(x;A, R∗)
∥∥∥4

=∞,

a contradiction.
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