A Quantitative Central Limit Theorem for Simple Symmetric Exclusion Process

Vitalii Konarovskyi

University of Hamburg

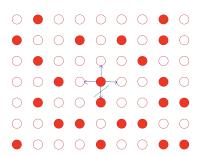
Recent Developments in SPDEs and BSDEs meet Harmonic and Functional Analysis joint work with Benjamin Gess

Simple symmetric exclusion process

On the d-dim discrete torus

$$\mathbb{T}_n^d := \left\{ \frac{k}{n} : \ k \in \mathbb{Z}_n^d := \left\{ 0, \dots, n-1 \right\}^d
ight\} \subset \mathbb{T}^d = (\mathbb{R}/\mathbb{Z})^d$$

we consider a Simple Symmetric Exclusion Process (SSEP)



State space and generator

Particle configuration $\eta \in \{0,1\}^{\mathbb{T}_n^d}$:

$$\eta(x) = 0 \Leftrightarrow \text{side } x \text{ is empty}$$
 $\eta(x) = 1 \Leftrightarrow \text{side } x \text{ is occupied}$

$$\eta^{x \leftrightarrow y}(z) = \begin{cases} \eta(z), & z \neq x, y, \\ \eta(y), & z = x, \\ \eta(x), & z = y, \end{cases}$$

State space and generator

Particle configuration $\eta \in \{0,1\}^{\mathbb{T}_n^d}$:

$$\eta(x) = 0 \Leftrightarrow \text{side } x \text{ is empty}$$
 $\eta(x) = 1 \Leftrightarrow \text{side } x \text{ is occupied}$

$$\eta^{x \leftrightarrow y}(z) = \begin{cases} \eta(z), & z \neq x, y, \\ \eta(y), & z = x, \\ \eta(x), & z = y, \end{cases}$$

$$\mathcal{G}_n^{\mathsf{EP}} F(\eta) := \frac{n^2}{2} \sum_{i=1}^d \sum_{x \in \mathbb{T}_n} \left[F(\eta^{x \leftrightarrow x + e_j}) - F(\eta) \right] \quad [\mathsf{Kipnis}, \, \mathsf{Landim} \,\, '99]$$

SSEP is already parabolically rescaled: space $\sim \frac{1}{n}$ time $\sim n^2!$

Let η_t^n , $t \geq 0$, be a SSEP and $\rho_0 : \mathbb{T}^d \to [0,1]$ be an initial profile.

Let $\eta^n_t,\ t\geq 0$, be a SSEP and $\rho_0:\mathbb{T}^d\to [0,1]$ be an initial profile.

Assume that $\eta_0^n(x) \sim \text{Bernulli}(\rho_0(x)), x \in \mathbb{T}_n^d$, are independent.

Let η_t^n , $t \geq 0$, be a SSEP and $\rho_0 : \mathbb{T}^d \to [0,1]$ be an initial profile.

Assume that $\eta_0^n(x) \sim \text{Bernulli}(\rho_0(x)), x \in \mathbb{T}_n^d$, are independent.

The process $\rho_t^n(x) := \mathbb{E} \eta_t^n(x)$ solves the discrete stochastic Heat equation

$$d\rho_t^n(x) = \frac{1}{2} \Delta_n \rho_t^n(x) dt$$

Let η_t^n , $t \ge 0$, be a SSEP and $\rho_0 : \mathbb{T}^d \to [0,1]$ be an initial profile.

Assume that $\eta_0^n(x) \sim \text{Bernulli}(\rho_0(x)), x \in \mathbb{T}_n^d$, are independent.

The process $\rho_t^n(x) := \mathbb{E} \eta_t^n(x)$ solves the discrete stochastic Heat equation

$$d\rho_t^n(x) = \frac{1}{2} \Delta_n \rho_t^n(x) dt$$

Thus,

$$\widetilde{\rho}_t^n := rac{1}{n^d} \sum_{\mathbf{x} \in \mathbb{T}_n^d} \rho_t^n(\mathbf{x}) \delta_{\mathbf{x}}
ightarrow
ho_t^{\infty},$$

where $\rho_t^{\infty} := P_t^{HE} \rho_0$ solves

$$d\rho_t^{\infty} = \frac{1}{2}\Delta\rho_t^{\infty}dt, \quad \rho_0^{\infty} = \rho_0.$$

Law of large numbers

Theorem [see e.g. in Kipnis, Landim '99]

Let $\rho_0: \mathbb{T}^d \to [0,1]$ be an initial density profile and $\eta_0^n(x) \sim \mathrm{Bernulli}(\rho_0(x))$ be independent. Then

$$ilde{\eta}_t^n := rac{1}{n^d} \sum_{x \in \mathbb{T}_a^d} \eta_t^n(x) \delta_x, \quad t \geq 0$$

converges in probability to $ho_t^\infty(x)$, $t\geq 0$, where $ho_t^\infty:=P_t^{HE}
ho_0$ solves

$$d\rho_t^{\infty} = \frac{1}{2}\Delta\rho_t^{\infty}dt, \quad \rho_0^{\infty} = \rho_0.$$

Convergence of generator

Note that $\langle \varphi, \tilde{\eta}_t^n \rangle$ solves the martingale problem

$$f\left(\langle \varphi, \tilde{\eta}_t^n \rangle\right) - \int_0^t \mathcal{G}_n^{EP} f\left(\langle \varphi, \tilde{\eta}_s^n \rangle\right) ds$$
 is a mart.,

where

$$\begin{split} \mathcal{G}_{n}^{\textit{EP}}f\left(\langle\varphi,\tilde{\eta}\rangle\right) &:= \frac{n^{2}}{2}\sum_{j=1}^{d}\sum_{x\in\mathbb{T}_{n}}\left[f\left(\left\langle\varphi,\tilde{\eta}^{x\leftrightarrow x+e_{j}}\right\rangle\right) - f\left(\left\langle\varphi,\tilde{\eta}\right\rangle\right)\right] \\ &= \frac{n^{2}}{2}\sum_{j=1}^{d}\sum_{x\in\mathbb{T}_{n}}f'\left(\langle\varphi,\tilde{\eta}\rangle\right)\underbrace{\left(\left\langle\varphi,\tilde{\eta}^{x\leftrightarrow x+e_{j}}\right\rangle - \left\langle\varphi,\tilde{\eta}\right\rangle\right)}_{\left[\varphi(x+e_{j})-\varphi(x)\right]\left[\eta(x)-\eta(x+e_{j})\right]} \\ &+ \frac{n^{2}}{4}\sum_{j=1}^{d}\sum_{x\in\mathbb{T}_{n}}f''\left(\langle\varphi,\tilde{\eta}\rangle\right)\left(\left\langle\varphi,\tilde{\eta}^{x\leftrightarrow x+e_{j}}\right\rangle - \left\langle\varphi,\tilde{\eta}\right\rangle\right)^{2} \\ &= \frac{1}{2}f'\left(\left\langle\varphi,\tilde{\eta}\right\rangle\right)\left\langle\Delta_{n}\varphi,\tilde{\eta}\right\rangle \\ &+ \frac{1}{4n^{d}}f''\left(\left\langle\varphi,\tilde{\eta}\right\rangle\right)\sum_{j=1}^{d}\left\langle\left|\partial_{n,j}\varphi\right|^{2},\widetilde{\gamma_{j}}\tilde{\eta} + \tilde{\eta} - 2\widetilde{\eta_{j}}\tilde{\eta}\right\rangle + \ldots, \end{split}$$

Density fluctuation field and CLT

We now consider the fluctuations of the SSEP around its mean:

$$\zeta_t^n(x) := n^{\frac{d}{2}} \left(\eta_t^n(x) - \rho_t^n(x) \right).$$

Density fluctuation field and CLT

We now consider the fluctuations of the SSEP around its mean:

$$\zeta_t^n(x) := n^{\frac{d}{2}} \left(\eta_t^n(x) - \rho_t^n(x) \right).$$

The generator of

$$\tilde{\zeta}_t^n := \frac{1}{n^d} \sum_{x \in \mathbb{T}_n^d} \zeta_t(x) \delta_x$$

can be expanded as follows

$$\begin{split} \mathcal{G}_{n}^{\textit{FF}} f\left(\langle \varphi, \tilde{\zeta} \rangle\right) &= \frac{1}{2} f'\left(\langle \varphi, \tilde{\zeta} \rangle\right) \langle \Delta_{n} \varphi, \tilde{\zeta} \rangle + \frac{\textcolor{red}{n^{d}}}{4 \textcolor{black}{n^{d}}} f''\left(\langle \varphi, \tilde{\zeta} \rangle\right) \sum_{j=1}^{d} \left\langle \left|\partial_{n,j} \varphi\right|^{2}, \widetilde{\tau_{j}} \widetilde{\eta} + \widetilde{\eta} - 2 \widetilde{\eta \tau_{j}} \widetilde{\eta} \right\rangle \\ &+ O\left(1/\textcolor{black}{n^{\frac{d}{2}+1}}\right) \end{split}$$

$$\mathcal{G}^{\textit{SPDE}} f\left(\left\langle \varphi, \tilde{\zeta} \right\rangle\right) = \frac{1}{2} f'\left(\left\langle \varphi, \tilde{\zeta} \right\rangle\right) \left\langle \Delta \varphi, \tilde{\zeta} \right\rangle + \frac{1}{4} f''\left(\left\langle \varphi, \tilde{\zeta} \right\rangle\right) \left\langle \left| \nabla \varphi \right|^2, \tilde{\rho} + \tilde{\rho} - 2\tilde{\rho}^2 \right\rangle$$

Central limit theorem

Theorem 2 [Galves, Kipnis, Spohn; Ravishankar '90]

Let the initial density profile ρ_0 be smooth. Then the density fluctuation field

$$\tilde{\zeta}_t^n := \frac{1}{n^d} \sum_{x \in \mathbb{T}_n^d} \zeta_t(x) \delta_x$$

converges in $D\left([0,T],\mathcal{D}'\right)$ to the generalized Ornstein-Uhlenbeck process that solves the linear SPDE

$$d\zeta_t^\infty = rac{1}{2}\Delta\zeta_t^\infty dt +
abla \cdot \left(\sqrt{
ho_t^\infty(1-
ho_t^\infty)}dW_t
ight)$$

with the centered Gaussian initial condition such that

$$\mathbb{E}\left[\left\langle \zeta_0^\infty, \varphi \right\rangle^2\right] = \left\langle \rho_0 (1 - \rho_0) \varphi, \varphi \right\rangle$$

Our goal: Obtain the rate of convergence of

$$\tilde{\zeta}_t^n - \zeta_t^\infty = O(?)$$

Our goal: Obtain the rate of convergence of

$$\sup_{t \in [0,T]} \left| \mathbb{E} f \left(\langle \varphi, \tilde{\zeta}_t^n \rangle \right) - \mathbb{E} f \left(\langle \varphi, \zeta_t^\infty \rangle \right) \right| \to 0$$

Our goal: Obtain the rate of convergence of

$$\sup_{t \in [0,T]} \left| \mathbb{E} f \left(\langle \varphi, \tilde{\zeta}_t^n \rangle \right) - \mathbb{E} f \left(\langle \varphi, \zeta_t^\infty \rangle \right) \right| \to 0$$

Difficulty: The tightness argument and the Holley-Stroock theory do not give the rate of convergence.

Our goal: Obtain the rate of convergence of

$$\sup_{t \in [0,T]} \left| \mathbb{E} f \left(\langle \varphi, \tilde{\zeta}_t^n \rangle \right) - \mathbb{E} f \left(\langle \varphi, \zeta_t^\infty \rangle \right) \right| \to 0$$

Difficulty: The tightness argument and the Holley-Stroock theory do not give the rate of convergence.

Quantitative results for SPDEs:

 [Gess, Wu, Zhang '24; Djurdjevac, Gerencsér, Kremp '24]: Higher order approximation of SPDEs. (SPDEs defined on the same probability space)

Our goal: Obtain the rate of convergence of

$$\sup_{t \in [0,T]} \left| \mathbb{E} f \left(\langle \varphi, \widetilde{\zeta}_t^n \rangle \right) - \mathbb{E} f \left(\langle \varphi, \zeta_t^\infty \rangle \right) \right| \to 0$$

Difficulty: The tightness argument and the Holley-Stroock theory do not give the rate of convergence.

Quantitative results for SPDEs:

- [Gess, Wu, Zhang '24; Djurdjevac, Gerencsér, Kremp '24]: Higher order approximation of SPDEs. (SPDEs defined on the same probability space)
- [Cornalba, Fischer '23; Djurdjevac, Kremp, Perkowski '24]: Higher order approximation of Dean-Kawasaki equation (duality of approach, structure of noise is important)

Our goal: Obtain the rate of convergence of

$$\sup_{t \in [0,T]} \left| \mathbb{E} f \left(\langle \varphi, \tilde{\zeta}_t^n \rangle \right) - \mathbb{E} f \left(\langle \varphi, \zeta_t^\infty \rangle \right) \right| \to 0$$

Difficulty: The tightness argument and the Holley-Stroock theory do not give the rate of convergence.

Quantitative results for SPDEs:

- [Gess, Wu, Zhang '24; Djurdjevac, Gerencsér, Kremp '24]: Higher order approximation of SPDEs. (SPDEs defined on the same probability space)
- [Cornalba, Fischer '23; Djurdjevac, Kremp, Perkowski '24]: Higher order approximation of Dean-Kawasaki equation (duality of approach, structure of noise is important)
- [Chassagneux, Szpruch, Tse '22]: Weak quantitative propagation of chaos (mean field limit)
- [Kolokoltsov '10] Central limit theorem for the Smoluchovski coagulation model (mean field limit, non-local Smoluchowski's coagulation equation)
- ..

Main result

Theorem 3 [Gess, K. '24]

Let

- ullet the initial density profile $ho_0:\mathbb{T}^d o[0,1]$ be smooth enough,
- η_t^n be SSEP with $\eta_0^n(x) \sim \mathrm{Bernulli}(\rho_0(x))$ and independent.

Then

$$\sup_{t \in [0,T]} \left| \mathbb{E} f \left(\langle \vec{\varphi}, \tilde{\zeta}_t^n \rangle \right) - \mathbb{E} f \left(\langle \vec{\varphi}, \zeta_t^\infty \rangle \right) \right| \leq \frac{C}{n^{\frac{d}{2} \wedge 1}} \left\| f \right\|_{\mathrm{C}_l^3} \| \vec{\varphi} \|_{\mathrm{C}^l}$$

for all $n \geq 1$, $f \in \mathrm{C}^3_b(\mathbb{R}^m)$ and $\vec{\varphi} \in \left(\mathrm{C}^I(\mathbb{T}^d)\right)^m$, where I is large enough.

Main result

Theorem 3 [Gess, K. '24]

Let

- the initial density profile $\rho_0: \mathbb{T}^d \to [0,1]$ be smooth enough,
- η_t^n be SSEP with $\eta_0^n(x) \sim \mathrm{Bernulli}(\rho_0(x))$ and independent.

Then

$$\sup_{t \in [0,T]} \left| \mathbb{E} f \left(\langle \vec{\varphi}, \tilde{\zeta}_t^n \rangle \right) - \mathbb{E} f \left(\langle \vec{\varphi}, \zeta_t^\infty \rangle \right) \right| \leq \frac{C}{n^{\frac{d}{2} \wedge 1}} \| f \|_{\mathcal{C}_l^3} \| \vec{\varphi} \|_{\mathcal{C}^l}$$

for all $n \geq 1$, $f \in \mathrm{C}^3_b(\mathbb{R}^m)$ and $\vec{\varphi} \in \left(\mathrm{C}^I(\mathbb{T}^d)\right)^m$, where I is large enough.

The rate $\frac{1}{n^{\frac{d}{2} \wedge 1}}$ is optimal:

 $\frac{1}{n}$ – lattice discretization error, $\frac{1}{n^{\frac{d}{2}}}$ – particle approximation error

Main tool

Idea of proof: Compare two (time-homogeneous) Markov processes X_t , Y_t taking values in the same state space and $X_0 = Y_0 = x$ using

$$\mathbb{E}F(X_t) - \mathbb{E}F(Y_t) = \int_0^t P_s^X \left(\mathcal{G}^X - \mathcal{G}^Y\right) P_{t-s}^Y F(x) ds,$$
$$= \int_0^t \mathbb{E}\left[\left(\mathcal{G}^X - \mathcal{G}^Y\right) P_{t-s}^Y F(X_s)\right] ds,$$

[see e.g. Ethier, Kurtz '86]

Recall

$$\mathbb{E}F(X_t) - \mathbb{E}F(Y_t) = \int_0^t \mathbb{E}\left[\left(\mathcal{G}^X - \mathcal{G}^Y\right)P_{t-s}^Y F(X_s)\right]ds,$$

where $X_0 = Y_0 = x$.

Recall

$$\mathbb{E}F(X_t) - \mathbb{E}F(Y_t) = \int_0^t \mathbb{E}\left[\left(\mathcal{G}^X - \mathcal{G}^Y\right)P_{t-s}^Y F(X_s)\right]ds,$$

where $X_0 = Y_0 = x$.

We consider the Markov processes:

- particle means and fluctuation field: $(\tilde{\rho}_t^n, \tilde{\zeta}_t^n)$
- solution to heat equation and generalized OU process $(\rho_t^{\infty}, \zeta_t^{\infty})$.

Recall

$$\mathbb{E}F(X_t) - \mathbb{E}F(Y_t) = \int_0^t \mathbb{E}\left[\left(\mathcal{G}^X - \mathcal{G}^Y\right)P_{t-s}^Y F(X_s)\right]ds,$$

where $X_0 = Y_0 = x$.

We consider the Markov processes:

- particle means and fluctuation field: $(\tilde{\rho}_t^n, \tilde{\zeta}_t^n)$
- solution to heat equation and generalized OU process $(\rho_t^{\infty}, \zeta_t^{\infty})$.

The processes starts from different initial conditions!

Recall

$$\mathbb{E}F(X_t) - \mathbb{E}F(Y_t) = \int_0^t \mathbb{E}\left[\left(\mathcal{G}^X - \mathcal{G}^Y\right)P_{t-s}^Y F(X_s)\right] ds,$$

where $X_0 = Y_0 = x$.

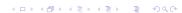
We consider the Markov processes:

- particle means and fluctuation field: $(\tilde{\rho}_t^n, \tilde{\zeta}_t^n)$
- solution to heat equation and generalized OU process $(\rho_t^{\infty}, \zeta_t^{\infty})$.

The processes starts from different initial conditions!

We will compare:

- $X_t := (\tilde{\rho}_t^n, \tilde{\zeta}_t^n)$ an $Y_t := (\rho_t^{\infty,n}, \zeta_t^{\infty,n})$ [comparison of dynamics] where the generalized OU process $(\rho_t^{\infty,n}, \zeta_t^{\infty,n})$ started from $(\tilde{\rho}_0^n, \tilde{\zeta}_0^n)$;
- $(\rho_t^{\infty,n}, \zeta_t^{\infty,n})$ and $(\rho_t^{\infty}, \zeta_t^{\infty})$ [comparison of initial conditions] (both are defined by the same equation).



Generators

We start from the formal computation for cylindrical functions:

$$F(\tilde{\rho}, \tilde{\zeta}) := f\left(\langle \psi, \tilde{\rho} \rangle, \langle \varphi, \tilde{\zeta} \rangle\right)$$

Generators

We start from the formal computation for cylindrical functions:

$$F(\tilde{\rho}, \tilde{\zeta}) := f\left(\langle \psi, \tilde{\rho} \rangle, \langle \varphi, \tilde{\zeta} \rangle\right)$$

Using Taylor's formula, we get for states $\tilde{\rho}$ and $\tilde{\zeta}=n^{d/2}(\tilde{\eta}-\tilde{\rho})$ (states for particles):

$$\begin{split} \mathcal{G}_{n}^{FF}F(\tilde{\rho},\tilde{\zeta}) &= ... + \frac{1}{4}\partial_{2}^{2}f\left\langle \left|\partial_{n,j}\varphi\right|^{2},\tau_{j}\tilde{\eta} + \tilde{\eta} - 2\widetilde{\eta\tau_{j}\eta}\right\rangle + O\left(1/n^{\frac{d}{2}+1}\right), \\ \mathcal{G}^{OU}F(\tilde{\rho},\tilde{\zeta}) &= ... + \frac{1}{4}\partial_{2}^{2}f\left\langle \left|\partial_{j}\varphi\right|^{2},2\tilde{\rho} - 2\tilde{\rho}^{2}\right\rangle. \end{split}$$

Generators

We start from the formal computation for cylindrical functions:

$$F(\tilde{\rho}, \tilde{\zeta}) := f\left(\langle \psi, \tilde{\rho} \rangle, \langle \varphi, \tilde{\zeta} \rangle\right)$$

Using Taylor's formula, we get for states $\tilde{\rho}$ and $\tilde{\zeta}=n^{d/2}(\tilde{\eta}-\tilde{\rho})$ (states for particles):

$$\begin{split} \mathcal{G}_{n}^{FF}F(\tilde{\rho},\tilde{\zeta}) &= ... + \frac{1}{4}\partial_{2}^{2}f\left\langle \left|\partial_{n,j}\varphi\right|^{2},\tau_{j}\tilde{\eta} + \tilde{\eta} - 2\widetilde{\eta\tau_{j}\eta}\right\rangle + O\left(1/n^{\frac{d}{2}+1}\right), \\ \mathcal{G}^{OU}F(\tilde{\rho},\tilde{\zeta}) &= ... + \frac{1}{4}\partial_{2}^{2}f\left\langle \left|\partial_{j}\varphi\right|^{2},2\tilde{\rho} - 2\tilde{\rho}^{2}\right\rangle. \end{split}$$

Thus

$$\begin{split} \left(\mathcal{G}_{n}^{FF}-\mathcal{G}^{OU}\right)F(\tilde{\rho},\tilde{\zeta}) &= ... + \frac{1}{4}\partial_{2}^{2}f\left[\left\langle\left|\partial_{n,j}\varphi\right|^{2},\tau_{j}\tilde{\eta}+\tilde{\eta}-2\widetilde{\eta\tau_{j}\eta}\right\rangle - \left\langle\left|\partial_{j}\varphi\right|^{2},2\tilde{\rho}-2\tilde{\rho}^{2}\right\rangle\right] \\ &+ O\left(\frac{1}{n^{\frac{d}{2}+1}}\right). \end{split}$$

$$\left\langle \left|\partial_{n,j}\varphi\right|^{2},\tau_{j}\tilde{\eta}+\tilde{\eta}-2\widetilde{\eta\tau_{j}\eta}\right\rangle -\left\langle \left|\partial_{j}\varphi\right|^{2},2\tilde{\rho}-2\tilde{\rho}^{2}\right\rangle$$

• $\tilde{\rho}^2$ is not well-defined for empirical distribution.

$$\left\langle \left| \partial_{n,j} \varphi \right|^2, \tau_j \widetilde{\eta} + \widetilde{\eta} - 2 \widetilde{\eta \tau_j \eta} \right\rangle - \left\langle \left| \partial_j \varphi \right|^2, 2 \widetilde{\rho} - 2 \widetilde{\rho}^2 \right\rangle$$

- $\tilde{\rho}^2$ is not well-defined for empirical distribution.
- $\langle \left| \partial_{n,j} \varphi \right|^2, \widetilde{\eta \tau_j \eta} \rangle \langle \left| \partial_j \varphi \right|^2, \widetilde{\rho}^2 \rangle$?

$$\left\langle \left| \partial_{n,j} \varphi \right|^2, \tau_j \tilde{\eta} + \tilde{\eta} - 2 \widetilde{\eta \tau_j \eta} \right\rangle - \left\langle \left| \partial_j \varphi \right|^2, 2 \tilde{\rho} - 2 \widetilde{\rho}^2 \right\rangle$$

- $\tilde{\rho}^2$ is not well-defined for empirical distribution.
- $\langle |\partial_{n,j}\varphi|^2, \widetilde{\eta\tau_j\eta} \rangle \langle |\partial_j\varphi|^2, \widetilde{\rho}^2 \rangle$?
- Semigroup associated with OU process is not (Frechet) differentiable at $\tilde{\rho}$.

$$\left\langle \left| \partial_{\textit{n,j}} \varphi \right|^2, \tau_{\textit{j}} \tilde{\eta} + \tilde{\eta} - 2 \widetilde{\eta \tau_{\textit{j}} \eta} \right\rangle - \left\langle \left| \partial_{\textit{j}} \varphi \right|^2, 2 \tilde{\rho} - 2 \tilde{\rho}^2 \right\rangle$$

- $\tilde{
 ho}^2$ is not well-defined for empirical distribution.
- $\langle |\partial_{n,j}\varphi|^2, \widetilde{\eta\tau_j\eta} \rangle \langle |\partial_j\varphi|^2, \widetilde{\rho}^2 \rangle$?
- Semigroup associated with OU process is not (Frechet) differentiable at $\tilde{\rho}$.

Idea: Note that $\rho_t^{\infty} \in H_J$ and $\zeta_t^{\infty} \in H_{-I}$.

$$\left\langle \left| \partial_{\textit{n,j}} \varphi \right|^2, \tau_{\textit{j}} \tilde{\eta} + \tilde{\eta} - 2 \widetilde{\eta \tau_{\textit{j}} \eta} \right\rangle - \left\langle \left| \partial_{\textit{j}} \varphi \right|^2, 2 \tilde{\rho} - 2 \tilde{\rho}^2 \right\rangle$$

- $\tilde{
 ho}^2$ is not well-defined for empirical distribution.
- $\langle |\partial_{n,j}\varphi|^2, \widetilde{\eta\tau_j\eta} \rangle \langle |\partial_j\varphi|^2, \widetilde{\rho}^2 \rangle$?
- Semigroup associated with OU process is not (Frechet) differentiable at $\tilde{\rho}$.

Idea: Note that $\rho_t^{\infty} \in H_J$ and $\zeta_t^{\infty} \in H_{-I}$.

We need different lifting of the particle system to the Sobolev spaces.

Discrete and continuous Fourier transform

Replace $\tilde{\rho} = \frac{1}{n^d} \sum_{\mathbf{x} \in \mathbb{T}_n^d} \rho(\mathbf{x}) \delta_{\mathbf{x}}$ and $\tilde{\zeta} = \frac{1}{n^d} \sum_{\mathbf{x} \in \mathbb{T}_n^d} \zeta(\mathbf{x}) \delta_{\mathbf{x}}$ by a smooth interpolation.

Discrete and continuous Fourier transform

Replace $\tilde{\rho} = \frac{1}{n^d} \sum_{x \in \mathbb{T}_n^d} \rho(x) \delta_x$ and $\tilde{\zeta} = \frac{1}{n^d} \sum_{x \in \mathbb{T}_n^d} \zeta(x) \delta_x$ by a smooth interpolation.

• Let $L_2(\mathbb{T}_n^d)$ be the Hilbert space of all functions on \mathbb{T}_n^d with inner product

$$\langle \rho_1, \rho_2 \rangle_n := \frac{1}{n^d} \sum_{x \in \mathbb{T}_n^d} \rho_1(x) \rho_2(x)$$

Discrete and continuous Fourier transform

Replace $\tilde{\rho} = \frac{1}{n^d} \sum_{x \in \mathbb{T}_n^d} \rho(x) \delta_x$ and $\tilde{\zeta} = \frac{1}{n^d} \sum_{x \in \mathbb{T}_n^d} \zeta(x) \delta_x$ by a smooth interpolation.

• Let $L_2(\mathbb{T}_n^d)$ be the Hilbert space of all functions on \mathbb{T}_n^d with inner product

$$\langle \rho_1, \rho_2 \rangle_n := \frac{1}{n^d} \sum_{x \in \mathbb{T}_n^d} \rho_1(x) \rho_2(x)$$

• $L_2(\mathbb{T}^d)$ be the usual L_2 -space of function on \mathbb{T}^d with

$$\langle g_1,g_2\rangle:=\int_{\mathbb{T}^d}g_1(x)g_2(x)dx.$$

Discrete and continuous Fourier transform

Replace $\tilde{\rho} = \frac{1}{n^d} \sum_{x \in \mathbb{T}_n^d} \rho(x) \delta_x$ and $\tilde{\zeta} = \frac{1}{n^d} \sum_{x \in \mathbb{T}_n^d} \zeta(x) \delta_x$ by a smooth interpolation.

• Let $L_2(\mathbb{T}_n^d)$ be the Hilbert space of all functions on \mathbb{T}_n^d with inner product

$$\langle \rho_1, \rho_2 \rangle_n := \frac{1}{n^d} \sum_{x \in \mathbb{T}_n^d} \rho_1(x) \rho_2(x)$$

• $L_2(\mathbb{T}^d)$ be the usual L_2 -space of function on \mathbb{T}^d with

$$\langle g_1,g_2\rangle:=\int_{\mathbb{T}^d}g_1(x)g_2(x)dx.$$

- $\varsigma_k(x) = e^{2\pi i k \cdot x}$, $k \in \mathbb{Z}^d$, $x \in \mathbb{T}^d \supset \mathbb{T}_n^d$
 - basis vectors on $L_2(\mathbb{T}_n^d)$ and $L_2(\mathbb{T}^d)$, and
 - eigenvectors for discrete and continuous diff. operators

Discrete and continuous Fourier transform

Replace $\tilde{\rho} = \frac{1}{n^d} \sum_{x \in \mathbb{T}^d} \rho(x) \delta_x$ and $\tilde{\zeta} = \frac{1}{n^d} \sum_{x \in \mathbb{T}^d} \zeta(x) \delta_x$ by a smooth interpolation.

• Let $L_2(\mathbb{T}_n^d)$ be the Hilbert space of all functions on \mathbb{T}_n^d with inner product

$$\langle \rho_1, \rho_2 \rangle_n := \frac{1}{n^d} \sum_{x \in \mathbb{T}_n^d} \rho_1(x) \rho_2(x)$$

• $L_2(\mathbb{T}^d)$ be the usual L_2 -space of function on \mathbb{T}^d with

$$\langle g_1,g_2\rangle:=\int_{\mathbb{T}^d}g_1(x)g_2(x)dx.$$

- $\varsigma_k(x) = e^{2\pi i k \cdot x}$, $k \in \mathbb{Z}^d$, $x \in \mathbb{T}^d \supset \mathbb{T}_n^d$
 - basis vectors on $L_2(\mathbb{T}_n^d)$ and $L_2(\mathbb{T}^d)$, and
 - eigenvectors for discrete and continuous diff. operators

$$L_2(\mathbb{T}_n^d)
i
ho = \sum_{k \in \mathbb{Z}_n^d} \langle
ho, \varsigma_k \rangle_n \varsigma_k \text{ on } \mathbb{T}_n^d, \quad L_2(\mathbb{T}^d)
i g = \sum_{k \in \mathbb{Z}_n^d} \langle g, \varsigma_k \rangle \varsigma_k \text{ on } \mathbb{T}^d$$

New (smooth) lifting of discrete space

For functions $\rho \in L_2(\mathbb{T}_n^d)$ and $\varphi \in L_2(\mathbb{T}^d)$ define

$$\operatorname{ex}_n \rho := \sum_{k \in \mathbb{Z}_n^d} \langle \rho, \varsigma_k \rangle_n \varsigma_k \quad \text{on } \mathbb{T}^d, \quad \operatorname{pr}_n \varphi := \sum_{k \in \mathbb{Z}_n^d} \langle \varphi, \varsigma_k \rangle_{\varsigma_k} \quad \text{on } \mathbb{T}^d$$

New (smooth) lifting of discrete space

For functions $\rho \in L_2(\mathbb{T}_n^d)$ and $\varphi \in L_2(\mathbb{T}^d)$ define

$$\operatorname{ex}_n \rho := \sum_{k \in \mathbb{Z}_n^d} \langle \rho, \varsigma_k \rangle_n \varsigma_k \quad \text{on } \mathbb{T}^d, \quad \operatorname{pr}_n \varphi := \sum_{k \in \mathbb{Z}_n^d} \langle \varphi, \varsigma_k \rangle_{\varsigma_k} \quad \text{on } \mathbb{T}^d$$

Basic properties of $ex_n f$ and $pr_n g$

- $\exp \rho = \rho$ on \mathbb{T}_n^d and $\exp \rho \in \mathbb{C}^\infty(\mathbb{T}^d)$
- $\operatorname{pr}_n \varphi$ is well defined on \mathbb{T}_n^d for each $\varphi \in H_J$, $J \in \mathbb{R}$.
- $\langle \rho_1, \rho_2 \rangle_n = \langle \exp_n \rho_1, \exp_n \rho_2 \rangle$ and $\langle \rho, \operatorname{pr}_n g \rangle_n = \langle \exp_n \rho, g \rangle$
- $\|\operatorname{pr}_n g g\|_{H_J} \le \frac{1}{n} \|g\|_{H_{J+1}}$, $\|\operatorname{ex}_n \varphi \varphi\|_{H_J} \le \frac{C}{n} \|\varphi\|_{C^{J+2+\frac{d}{2}}}$,...

Comparison of generators for smooth interpolations

We replace

$$\tilde{\rho} \leadsto \operatorname{ex}_n \rho =: \hat{\rho}, \qquad \tilde{\zeta} \leadsto \operatorname{ex}_n \zeta =: \hat{\zeta}$$

in particular

$$\langle \varphi, \mathrm{ex}_n \zeta \rangle = \langle \mathrm{pr}_n \varphi, \zeta \rangle_n = \langle \mathrm{pr}_n \varphi, \tilde{\zeta} \rangle$$

Comparison of generators for smooth interpolations

We replace

$$\tilde{\rho} \leadsto \operatorname{ex}_n \rho =: \hat{\rho}, \qquad \tilde{\zeta} \leadsto \operatorname{ex}_n \zeta =: \hat{\zeta}$$

in particular

$$\langle \varphi, \mathrm{ex}_n \zeta \rangle = \langle \mathrm{pr}_n \varphi, \zeta \rangle_n = \langle \mathrm{pr}_n \varphi, \tilde{\zeta} \rangle$$

Thus

Comparison of generators for smooth interpolations

We replace

$$\tilde{\rho} \leadsto \operatorname{ex}_n \rho =: \hat{\rho}, \qquad \tilde{\zeta} \leadsto \operatorname{ex}_n \zeta =: \hat{\zeta}$$

in particular

$$\langle \varphi, \mathrm{ex}_n \zeta \rangle = \langle \mathrm{pr}_n \varphi, \zeta \rangle_n = \langle \mathrm{pr}_n \varphi, \tilde{\zeta} \rangle$$

Thus

$$\begin{split} \left(\mathcal{G}_{n}^{FF}-\mathcal{G}^{OU}\right) F(\hat{\rho},\hat{\zeta}) &= \frac{1}{2} \partial_{1} f[...] \\ &+ \frac{1}{4} \partial_{2}^{2} f\left[\left\langle \exp_{n}\left|\partial_{n,j} \operatorname{pr}_{n} \varphi\right|^{2}, \tau_{j} \hat{\eta} + \hat{\eta} - 2 \mathrm{ex}_{n} (\eta \tau_{j} \eta)\right\rangle - \left\langle\left|\partial_{j} \varphi\right|^{2}, 2 \hat{\rho} - 2 \hat{\rho}^{2}\right\rangle\right] \\ &+ O\left(\frac{1}{n^{\frac{d}{2}+1}}\right). \end{split}$$

We deal with the most problematic term $\operatorname{ex}_n(\eta \tau_j \eta) - \hat{\rho}^2$ as follows

• The term $\hat{\rho}^2$ is well defined.

We deal with the most problematic term $\exp_n(\eta \tau_j \eta) - \hat{\rho}^2$ as follows

- The term $\hat{\rho}^2$ is well defined.
- We can rewrite

$$\eta \tau_j \eta_t = \rho \tau_j \rho + \frac{1}{n^{d/2}} \left(\rho \tau_j \zeta + \zeta \tau_j \rho \right) + \frac{1}{n^d} \zeta \tau_j \zeta.$$

Thus

$$\operatorname{ex}_n(\eta\tau_j\eta) - \hat{\rho}^2 = \operatorname{ex}_n(\rho\tau_j\rho) - \hat{\rho}^2 + \frac{1}{n^{d/2}}\left(\operatorname{ex}_n(\rho\tau_j\zeta) + \operatorname{ex}_n(\zeta\tau_j\rho)\right) + \frac{1}{n^d}\operatorname{ex}_n(\zeta\tau_j\zeta)$$

We deal with the most problematic term $\operatorname{ex}_n(\eta \tau_j \eta) - \hat{\rho}^2$ as follows

- The term $\hat{\rho}^2$ is well defined.
- We can rewrite

$$\eta \tau_j \eta_t = \rho \tau_j \rho + \frac{1}{n^{d/2}} \left(\rho \tau_j \zeta + \zeta \tau_j \rho \right) + \frac{1}{n^d} \zeta \tau_j \zeta.$$

Thus

$$\operatorname{ex}_n(\eta \tau_j \eta) - \hat{\rho}^2 = \operatorname{ex}_n(\rho \tau_j \rho) - \hat{\rho}^2 + \frac{1}{n^{d/2}} \left(\operatorname{ex}_n(\rho \tau_j \zeta) + \operatorname{ex}_n(\zeta \tau_j \rho) \right) + \frac{1}{n^d} \operatorname{ex}_n(\zeta \tau_j \zeta)$$

• $\|\exp(\rho \tau_j \zeta)\| \le \|\hat{\rho}\|_{\mathbf{C}^J} \|\hat{\zeta}\|_{H_{-I}}$.

We deal with the most problematic term $\exp_n(\eta \tau_j \eta) - \hat{\rho}^2$ as follows

- The term $\hat{\rho}^2$ is well defined.
- We can rewrite

$$\eta \tau_j \eta_t = \rho \tau_j \rho + \frac{1}{n^{d/2}} \left(\rho \tau_j \zeta + \zeta \tau_j \rho \right) + \frac{1}{n^d} \zeta \tau_j \zeta.$$

Thus

$$\operatorname{ex}_n(\eta\tau_j\eta) - \hat{\rho}^2 = \operatorname{ex}_n(\rho\tau_j\rho) - \hat{\rho}^2 + \frac{1}{n^{d/2}}\left(\operatorname{ex}_n(\rho\tau_j\zeta) + \operatorname{ex}_n(\zeta\tau_j\rho)\right) + \frac{1}{n^d}\operatorname{ex}_n(\zeta\tau_j\zeta)$$

- $\|\exp(\rho \tau_j \zeta)\| \le \|\hat{\rho}\|_{C^J} \|\hat{\zeta}\|_{H_{-I}}$.
- The term $\mathbb{E}\left\langle \frac{1}{n^d} \exp_n(\zeta_t^n \tau_j \zeta_t^n), ... \right\rangle^2$ can be controlled via 4-point correlation function

$$\mathbb{E}\prod_{i=1}^4\left(\eta_t^n(\mathsf{x}_i)-\rho_t^n(\mathsf{x}_i)\right)\lesssim\frac{1}{n}$$

We deal with the most problematic term $\exp_n(\eta \tau_j \eta) - \hat{\rho}^2$ as follows

- The term $\hat{\rho}^2$ is well defined.
- We can rewrite

$$\eta \tau_j \eta_t = \rho \tau_j \rho + \frac{1}{n^{d/2}} \left(\rho \tau_j \zeta + \zeta \tau_j \rho \right) + \frac{1}{n^d} \zeta \tau_j \zeta.$$

Thus

$$\operatorname{ex}_n(\eta\tau_j\eta) - \hat{\rho}^2 = \operatorname{ex}_n(\rho\tau_j\rho) - \hat{\rho}^2 + \frac{1}{n^{d/2}}\left(\operatorname{ex}_n(\rho\tau_j\zeta) + \operatorname{ex}_n(\zeta\tau_j\rho)\right) + \frac{1}{n^d}\operatorname{ex}_n(\zeta\tau_j\zeta)$$

- $\|\exp(\rho \tau_j \zeta)\| \le \|\hat{\rho}\|_{C^J} \|\hat{\zeta}\|_{H_{-I}}$.
- The term $\mathbb{E}\left\langle \frac{1}{n^d} \exp_n(\zeta_t^n \tau_j \zeta_t^n), \ldots \right\rangle^2$ can be controlled via 4-point correlation function

$$\mathbb{E}\prod_{i=1}^{4}\left(\eta_{t}^{n}(\mathsf{x}_{i})-\rho_{t}^{n}(\mathsf{x}_{i})\right)\lesssim\frac{1}{n}$$

All computations and estimates for $(\mathcal{G}_n^{FF} - \mathcal{G}^{OU}) F(\hat{\rho}, \hat{\zeta})$ can be easily transferred to the case $F \in C^{1,3}(H_I \times H_{-I})$.

Differentiability of $P_t^{OU}F(\hat{\rho},\hat{\zeta})$

A solution to

$$egin{aligned} d
ho_t^\infty &= rac{1}{2}\Delta
ho_t^\infty dt \ d\zeta_t^\infty &= rac{1}{2}\Delta\zeta_t^\infty dt +
abla \cdot \left(\sqrt{
ho_t^\infty (1-
ho_t^\infty)}dW_t
ight) \end{aligned}$$

exists for all $\rho_0^\infty \in L_2(\mathbb{T}^d;[0,1])$ and $\zeta_0^\infty \in H_{-I}$ for $I > \frac{d}{2} + 1$.

Differentiability of $P_t^{OU}F(\hat{\rho},\hat{\zeta})$

A solution to

$$egin{aligned} d
ho_t^\infty &= rac{1}{2}\Delta
ho_t^\infty dt \ d\zeta_t^\infty &= rac{1}{2}\Delta\zeta_t^\infty dt +
abla \cdot \left(\sqrt{
ho_t^\infty (1-
ho_t^\infty)}dW_t
ight) \end{aligned}$$

exists for all $\rho_0^\infty \in L_2(\mathbb{T}^d;[0,1])$ and $\zeta_0^\infty \in H_{-I}$ for $I>\frac{d}{2}+1.$

For
$$F \in C(H_J \times H_{-I})$$
 (e.g. $F = f(\langle \psi, \cdot \rangle, \langle \varphi, \cdot \rangle)$) define $U_t(\rho_0^{\infty}, \zeta_0^{\infty}) := \mathbb{E}F(\rho_t^{\infty}, \zeta_t^{\infty})$

Differentiability of $P_t^{OU}F(\hat{\rho},\hat{\zeta})$

A solution to

$$egin{aligned} d
ho_t^\infty &= rac{1}{2}\Delta
ho_t^\infty dt \ d\zeta_t^\infty &= rac{1}{2}\Delta\zeta_t^\infty dt +
abla \cdot \left(\sqrt{
ho_t^\infty (1-
ho_t^\infty)}dW_t
ight) \end{aligned}$$

exists for all $\rho_0^{\infty} \in L_2(\mathbb{T}^d; [0,1])$ and $\zeta_0^{\infty} \in H_{-I}$ for $I > \frac{d}{2} + 1$.

For
$$F \in C(H_J \times H_{-I})$$
 (e.g. $F = f(\langle \psi, \cdot \rangle, \langle \varphi, \cdot \rangle)$) define $U_t(\rho_0^{\infty}, \zeta_0^{\infty}) := \mathbb{E}F(\rho_t^{\infty}, \zeta_t^{\infty})$

Proposition [Gess, K. '24]

Let $I>\frac{d}{2}+1$ and $F\in \mathrm{C}^{2,4}_b(H_{-I})$. Then $U_t(\rho_0^\infty,\zeta_0^\infty)=\mathbb{E}F\left(\zeta_t^\infty\right)\in \mathrm{C}^{1,3}_b(H_J\times H_{-I})$ for $J>\frac{d}{2}$. Moreover,

$$D_1 U_t(\rho_0^{\infty}, \zeta_0^{\infty})[h] = \frac{1}{2} \mathbb{E} \left[D^2 F(\zeta_t^{\infty}) : DV_t(\rho_0^{\infty})[h] \right]$$

with

$$egin{aligned} V_t(
ho_0^\infty)(arphi,\psi) &= \mathrm{Cov}\left(\langle arphi, \zeta_t^\infty
angle, \langle \psi, \zeta_t^\infty
angle
ight) \ &= rac{1}{2} \int_0^t \left\langle
abla P_{t-s}^{\mathsf{HE}} arphi \cdot
abla P_{t-s}^{\mathsf{HE}} \psi,
ho_s^\infty \left(1 -
ho_s^\infty \right)
ight
angle \, ds \end{aligned}$$

It remains only to compare

$$\mathbb{E}F(\rho_t^{\infty,n},\zeta_t^{\infty,n}) - \mathbb{E}F(\rho_t^{\infty},\zeta_t^{\infty}) = P_t^{OU}F(\hat{\rho}_0^n,\hat{\zeta}_0^n) - P_t^{OU}F(\rho_0,\zeta_0)$$

where ρ_t^∞ started from the initial profile ρ_0 and ζ_t started from the centered Gaussian distribution with

$$\mathbb{E}\langle \zeta_0, \varphi \rangle^2 = \langle \rho_0(1 - \rho_0)\varphi, \varphi \rangle.$$

It remains only to compare

$$\mathbb{E}F(\rho_t^{\infty,n},\zeta_t^{\infty,n}) - \mathbb{E}F(\rho_t^{\infty},\zeta_t^{\infty}) = P_t^{OU}F(\hat{\rho}_0^n,\hat{\zeta}_0^n) - P_t^{OU}F(\rho_0,\zeta_0)$$

where ρ_t^∞ started from the initial profile ρ_0 and ζ_t started from the centered Gaussian distribution with

$$\mathbb{E}\langle \zeta_0, \varphi \rangle^2 = \langle \rho_0 (1 - \rho_0) \varphi, \varphi \rangle.$$

It is enough to compare only

$$\mathbb{E}G(\operatorname{ex}_n\zeta_0^n)-\mathbb{E}G(\operatorname{pr}_n\zeta_0),$$

where $G \in C^3(H_{-I})$, where

$$\operatorname{ex}_n \zeta_0^n := \sum_{k \in \mathbb{Z}_n^d} \langle \zeta_0^n, \varsigma_k \rangle_n \varsigma_k, \quad \operatorname{pr}_n \zeta_0 := \sum_{k \in \mathbb{Z}_n^d} \langle \zeta_0, \varsigma_k \rangle_{\varsigma_k}$$

It remains only to compare

$$\mathbb{E}F(\rho_t^{\infty,n},\zeta_t^{\infty,n}) - \mathbb{E}F(\rho_t^{\infty},\zeta_t^{\infty}) = P_t^{OU}F(\hat{\rho}_0^n,\hat{\zeta}_0^n) - P_t^{OU}F(\rho_0,\zeta_0)$$

where ρ_t^∞ started from the initial profile ρ_0 and ζ_t started from the centered Gaussian distribution with

$$\mathbb{E}\langle \zeta_0, \varphi \rangle^2 = \langle \rho_0(1 - \rho_0)\varphi, \varphi \rangle.$$

It is enough to compare only

$$\mathbb{E}G(\mathrm{ex}_n\zeta_0^n)-\mathbb{E}G(\mathrm{pr}_n\zeta_0),$$

where $G \in C^3(H_{-I})$, where

$$\operatorname{ex}_n \zeta_0^n := \sum_{k \in \mathbb{Z}_n^d} \langle \zeta_0^n, \varsigma_k \rangle_n \varsigma_k, \quad \operatorname{pr}_n \zeta_0 := \sum_{k \in \mathbb{Z}_n^d} \langle \zeta_0, \varsigma_k \rangle_{\varsigma_k}$$

ullet Is enough to compare for $g\in\mathrm{C}^3\left(\mathbb{R}^{\mathbb{Z}_n^d}
ight)$

$$\mathbb{E} g\left(\left(\left(1+\left|k\right|^{2}\right)^{-1/2}\langle\zeta_{0}^{n},\varsigma_{k}\rangle_{n}\right)_{k\in\mathbb{Z}_{n}^{d}}\right)-\mathbb{E} g\left(\left(\left(1+\left|k\right|^{2}\right)^{-1/2}\langle\zeta_{0},\varsigma_{k}\rangle\right)_{k\in\mathbb{Z}_{n}^{d}}\right).$$

It remains only to compare

$$\mathbb{E}F(\rho_t^{\infty,n},\zeta_t^{\infty,n}) - \mathbb{E}F(\rho_t^{\infty},\zeta_t^{\infty}) = P_t^{OU}F(\hat{\rho}_0^n,\hat{\zeta}_0^n) - P_t^{OU}F(\rho_0,\zeta_0)$$

where ρ_t^∞ started from the initial profile ρ_0 and ζ_t started from the centered Gaussian distribution with

$$\mathbb{E}\langle \zeta_0, \varphi \rangle^2 = \langle \rho_0(1 - \rho_0)\varphi, \varphi \rangle.$$

It is enough to compare only

$$\mathbb{E}G(\operatorname{ex}_n\zeta_0^n)-\mathbb{E}G(\operatorname{pr}_n\zeta_0),$$

where $G \in C^3(H_{-1})$, where

$$\operatorname{ex}_n\zeta_0^n := \sum_{k \in \mathbb{Z}_n^d} \langle \zeta_0^n, \varsigma_k \rangle_n \varsigma_k, \quad \operatorname{pr}_n\zeta_0 := \sum_{k \in \mathbb{Z}_n^d} \langle \zeta_0, \varsigma_k \rangle_{\varsigma_k}$$

ullet Is enough to compare for $g\in\mathrm{C}^3\left(\mathbb{R}^{\mathbb{Z}_n^d}
ight)$

$$\mathbb{E}g\left(\left(\left(1+|k|^2\right)^{-1/2}\langle\zeta_0^n,\varsigma_k\rangle_n\right)_{k\in\mathbb{Z}_n^d}\right)-\mathbb{E}g\left(\left(\left(1+|k|^2\right)^{-1/2}\langle\zeta_0,\varsigma_k\rangle\right)_{k\in\mathbb{Z}_n^d}\right).$$

• Apply multidimensional Berry-Essen theorem [e.g., Meckes '09]

References

[1] Benjamin Gess and Vitalii Konarovskyi. A quantitative central limit theorem for the simple symmetric exclusion process (2024), arXiv:2408.01238

Thank you!