Excursion Representation of Stochastic Block Model

Vitalii Konarovskyi

Bielefeld University

GPSD 2023 — Essen

joint work with David Clancy and Vlada Limic

National Academy of Sciences of Ukraine INSTITUTE OF MATHEMATICS

Vitalii Konarovskyi (Bielefeld University)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Table of Contents

2) Description via Excursions of a Random Field along a Curve

・ロト ・聞ト ・ ヨト ・ ヨト

æ

Stochastic Block Model

Stochastic Block Model G(n, p, q) is a random graph such that:

- consists of nm vertices divided into m subsets (m = 2);
- edges are drown independently;
- intra class edges appear with probability $p = p_n$;
- inter class edges appear with probability $q = q_n$.

A D > A A + P >

Stochastic Block Model

Stochastic Block Model G(n, p, q) is a random graph such that:

- consists of nm vertices divided into m subsets (m = 2);
- edges are drown independently;
- intra class edges appear with probability $p = p_n$;
- inter class edges appear with probability $q = q_n$.

We are interested in the scaling limit as $n \to \infty$ and $p_n, q_n \to 0$.

 $C_1(n)$ is the size of the largest connected component of the SBM

A I > A I > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

 $C_1(n)$ is the size of the largest connected component of the SBM

It is well-known:

• If $p_n = q_n = \frac{a}{mn}$, then SBM is an Erdős-Rényi graph for which:

- for $a>1,\ C_1(n)\sim \Theta(n);$
- for a < 1, $C_1(n) \sim \Theta(\ln n)$;
- for a = 1, $C_1(n) \sim \Theta(n^{2/3})$.

(Erdős, Rényi '60, '61)

 $C_1(n)$ is the size of the largest connected component of the SBM

It is well-known:

If p_n = q_n = ^a/_{mn}, then SBM is an Erdős-Rényi graph for which:
 for a > 1, C₁(n) ~ Θ(n);

• for a < 1, $C_1(n) \sim \Theta(\ln n)$; • for a < 1, $C_1(n) \sim \Theta(\ln n)$; (Erdős, Rényi '60, '61) • for a = 1, $C_1(n) \sim \Theta(n^{2/3})$.

• If
$$p_n = \frac{a}{mn}$$
, $q_n = \frac{b}{mn}$, then
• $a + (m-1)b > m$, $C_1(n) \sim \Theta(n)$;
• $a + (m-1)b \le m$, $C_1(n) \sim o(n)$. (Bollobás, Janson, Riordan '07)

 $C_1(n)$ is the size of the largest connected component of the SBM

It is well-known:

If p_n = q_n = ^a/_{mn}, then SBM is an Erdős-Rényi graph for which:
for a > 1, C₁(n) ~ Θ(n);
for a < 1, C₁(n) ~ Θ(ln n); (Erdős, Rényi '60, '61)
for a = 1, C₁(n) ~ Θ(n^{2/3}).
If p_n = ^a/_{mn}, q_n = ^b/_{mn}, then
a + (m - 1)b > m, C₁(n) ~ Θ(n);
a + (m - 1)b ≤ m, C₁(n) ~ o(n). (Bollobás, Janson, Riordan '07)

We are interested in the new critical regime: $q_n \ll p_n \sim \frac{1}{n}$.

Vitalii Konarovskyi (Bielefeld University)

Scaling Limit of Erdős-Rényi Graphs

G(n, p) – an Erdős-Rényi random graph with *n* vertices and edges appearing with prob.

$$p=p_n(t)=\frac{1}{n}+\frac{t}{n^{4/3}},\quad t\in\mathbb{R}$$

Scaling Limit of Erdős-Rényi Graphs

G(n, p) – an Erdős-Rényi random graph with n vertices and edges appearing with prob.

$$p=p_n(t)=rac{1}{n}+rac{t}{n^{4/3}},\quad t\in\mathbb{R}$$

Define

$$X^{(n)}(t) := rac{1}{n^{2/3}}(C_1, C_2, \dots, C_k, 0, 0, \dots,),$$

where $C_k = C_k(n, t)$ is the size of the k-th largest connected component.

Vitalii Konarovskyi (Bielefeld University)

Scaling Limit of Erdős-Rényi Graphs

Theorem. (Aldous '97, Anmerdariz '01, Limic '98,'19)

For every $t \in \mathbb{R}$ the sequence $X^{(n)}(t)$ converges in l^2 in distribution to a **standard Multiplicative Coalescent** (MC) $X^*(t)$, where

 $X^*(t)$ is the ordered excursion lengths of the Brownian motion with parabolic drift

$$B^t(r):=B(r)-\frac{1}{2}r^2+tr,\quad r\geq 0,$$

above past minima.

Stochastic Block Model

A I > A I > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Stochastic Block Model

$$ho=
ho_n(t)=rac{1}{n}+rac{t}{n^{4/3}} \quad q=q_n(s)=rac{s}{n^{4/3}}, \quad t\in\mathbb{R}, \ s\geq 0.$$

Define

$$Z^{(n)}(t,s):=rac{1}{n^{2/3}}(C_1,C_2,\ldots,C_k,0,0), \quad t\in\mathbb{R}, \;\; s\geq 0,$$

where $C_k = C_k(n, t, s)$ is the size of the k-th largest connected component of the SBM $G(n, p_n, q_n)$

э.

• • • • • • • •

Restricted Multiplicative Merging

Let $I_{\downarrow}^2 = \{x = (x_i)_{i \ge 1} \in I^2 : x_1 \ge x_2 \ge \cdots \ge 0\}.$

For $s \ge 0$ and a fixed family of indep. r.v. $\xi_{i,j} \sim \text{Exp}(rate \ 1)$, $i, j \ge 1$, define a random map $\text{RMM}_s : l_{\downarrow}^2 \times l_{\downarrow}^2 \to l_{\downarrow}^2$:

- consider coord. of $x, y \in I^2_{\downarrow}$ as a masses of corresponding vertices of a graph;
- for every $i, j \ge 1$ draw an edge between x_i and y_j iff $\xi_{i,j} \le sx_iy_j$;
- define $\text{RMM}_s(x, y)$ as the vector of the ordered masses of connected components.

Scaling Limit of SBM

Recall

$$egin{aligned} p &= p_n(t) = rac{1}{n} + rac{t}{n^{4/3}} \quad q = q_n(s) = rac{s}{n^{4/3}}, \quad t \in \mathbb{R}, \;\; s \geq 0 \ Z^{(n)}(t,s) &:= rac{1}{n^{2/3}}(C_1,C_2,\ldots,C_k,0,0), \quad t \in \mathbb{R}, \;\; s \geq 0, \end{aligned}$$

where $C_k = C_k(n, t, s)$ is the size of the k-th largest connected component of the SBM $G(n, p_n, q_n)$

Theorem. (K., Limic '21)

For every $t \in \mathbb{R}$ and $s \ge 0$ the process $Z^{(n)}(t, s)$ converges in l^2 in distribution to $\text{RMM}_s(X^*(t), Y^*(t))$, where X^*, Y^* are independent standard multiplicative coalescents that are independent of ξ .

Scaling Limit of SBM

Recall

$$egin{aligned} p &= p_n(t) = rac{1}{n} + rac{t}{n^{4/3}} \quad q = q_n(s) = rac{s}{n^{4/3}}, \quad t \in \mathbb{R}, \;\; s \geq 0 \ Z^{(n)}(t,s) &:= rac{1}{n^{2/3}}(C_1,C_2,\ldots,C_k,0,0), \quad t \in \mathbb{R}, \;\; s \geq 0, \end{aligned}$$

where $C_k = C_k(n, t, s)$ is the size of the k-th largest connected component of the SBM $G(n, p_n, q_n)$

Theorem. (K., Limic '21)

For every $t \in \mathbb{R}$ and $s \ge 0$ the process $Z^{(n)}(t, s)$ converges in l^2 in distribution to $\text{RMM}_s(X^*(t), Y^*(t))$, where X^*, Y^* are independent standard multiplicative coalescents that are independent of ξ .

We will call $\text{RMM}_{s}(X^{*}(t), Y^{*}(t))$ an Interacting Multiplicative Coalescent

Vitalii Konarovskyi (Bielefeld University)

< □ > < 同 > < 三 > < 三 >

Table of Contents

2 Description via Excursions of a Random Field along a Curve

・ロト ・聞ト ・ ヨト ・ ヨト

æ

Main Problem

Question: Does the scaling limit of the SBM admit an excursion description?

< ロ > < 回 > < 回 > < 回 > < 回 >

æ

Main Problem

Question: Does the scaling limit of the SBM admit an excursion description?

Naive Guess: Probably, interacting MC can be described via "excursions" of a random field or a family of Brownian motions with interactions.

Standard MC as Jumps of Hitting Times

 $X^*(t)$ is the ordered excursion lengths of the Brownian motion with parabolic drift

$$B^t(r):=B(r)-\frac{1}{2}r^2+tr,\quad r\geq 0,$$

above past minima.

• • • • • • • • • •

2/17

Standard MC as Jumps of Hitting Times

 $X^*(t)$ is the ordered excursion lengths of the Brownian motion with parabolic drift

$$B^{t}(r) := B(r) - \frac{1}{2}r^{2} + tr, \quad r \geq 0,$$

above past minima.

Define for $y \ge 0$

 $T(y) := \min\{r : B^{t}(r) = -y\} = \min\{r : \underline{B}^{t}(r) = -y\}$

where $\underline{B}^t(r) = \min_{[0,r]} B^t$.

Standard MC as Jumps of Hitting Times

 $X^*(t)$ is the ordered excursion lengths of the Brownian motion with parabolic drift

$$B^{t}(r) := B(r) - \frac{1}{2}r^{2} + tr, \quad r \geq 0,$$

above past minima.

Define for $y \ge 0$

$$T(y) := \min\{r : B^{t}(r) = -y\} = \min\{r : \underline{B}^{t}(r) = -y\}$$

where $\underline{B}^t(r) = \min_{[0,r]} B^t$.

Observation

 $X^*(t)$ is the collection of decreasingly ordered jumps T(y+) - T(y), $y \ge 0$.

Vitalii Konarovskyi (Bielefeld University)

< ロ > < 回 > < 回 > < 回 > < 回 >

Hitting times for fields

Consider $\vec{X} : [0,\infty)^m \to \mathbb{R}^m$ defined by

$$X_i(r_1,\ldots,r_m)=X_{i,i}(r_i)+\sum_{j\neq i}X_{i,j}(r_j),$$

such that

- X_{i,i} are continuous
- **2** $X_{i,j}$, $i \neq j$, are non-decreasing and continuous

æ

Hitting times for fields

Consider $\vec{X} : [0, \infty)^m \to \mathbb{R}^m$ defined by

$$X_i(r_1,\ldots,r_m)=X_{i,i}(r_i)+\sum_{j\neq i}X_{i,j}(r_j),$$

such that

- X_{i,i} are continuous
- **2** $X_{i,j}$, $i \neq j$, are non-decreasing and continuous

Lemma (Chaumont, Marolleau '20)

For every $\vec{y} \in [0, \infty)^m$ there exists a (component-wise) minimal solution $\vec{T} = \vec{T}(y) \in [0, \infty]^m$ to the equation

$$X_i(\vec{T}) = -y_i, \quad \forall i \text{ such that } T_i < \infty,$$

denoted by

$$\vec{T}(y) := \min\left\{ \vec{r} : \vec{X}(\vec{r}) = -\vec{y} \right\}.$$

For fixed $t \in \mathbb{R}$ and $s \ge 0$ define

$$\begin{aligned} X_{i,i}(r) &:= B_i^t(r) = B_i(r) - \frac{1}{2}r^2 + tr, \quad r \ge 0\\ X_{i,j}(r) &= sr, \quad i \ne j, \ r \ge 0. \end{aligned}$$

イロト イヨト イヨト イヨト

æ

For fixed $t \in \mathbb{R}$ and $s \ge 0$ define

$$\begin{aligned} X_{i,i}(r) &:= B_i^t(r) = B_i(r) - \frac{1}{2}r^2 + tr, \quad r \ge 0\\ X_{i,j}(r) &= sr, \quad i \ne j, \ r \ge 0. \end{aligned}$$

Let m = 2 and

$$X_1(r_1, r_2) = X_{1,1}(r_1) + X_{1,2}(r_2) = B_1^t(r_1) + sr_2,$$

$$X_2(r_1, r_2) = X_{2,1}(r_1) + X_{2,2}(r_2) = sr_1 + B_2^t(r_2),$$

æ

For fixed $t \in \mathbb{R}$ and $s \ge 0$ define

$$X_{i,i}(r) := B_i^t(r) = B_i(r) - \frac{1}{2}r^2 + tr, \quad r \ge 0$$

$$X_{i,j}(r) = sr, \quad i \ne j, \quad r \ge 0.$$

Let m = 2 and

$$X_1(r_1, r_2) = X_{1,1}(r_1) + X_{1,2}(r_2) = B_1^t(r_1) + sr_2,$$

$$X_2(r_1, r_2) = X_{2,1}(r_1) + X_{2,2}(r_2) = sr_1 + B_2^t(r_2),$$

Set for $y \ge 0$ $\vec{T}(y) := \min \{ (r_1, r_2) : X_1(r_1, r_2) = -y, X_2(r_1, r_2) = -y \}$

For fixed $t \in \mathbb{R}$ and $s \ge 0$ define

$$X_{i,i}(r) := B_i^t(r) = B_i(r) - \frac{1}{2}r^2 + tr, \quad r \ge 0$$

 $X_{i,j}(r) = sr, \quad i \ne j, \quad r \ge 0.$

Let m = 2 and

$$X_1(r_1, r_2) = X_{1,1}(r_1) + X_{1,2}(r_2) = B_1^t(r_1) + sr_2,$$

$$X_2(r_1, r_2) = X_{2,1}(r_1) + X_{2,2}(r_2) = sr_1 + B_2^t(r_2),$$

Set for $y \ge 0$ $\vec{T}(y) := \min \{ (r_1, r_2) : X_1(r_1, r_2) = -y, X_2(r_1, r_2) = -y \}$

Theorem. (Clancy, K., Limic '23)

For every $t \in \mathbb{R}$ and $s \ge 0$, the distribution of $\text{RMM}_s(X^*(t), Y^*(t))$ coincides with the law of decreasingly ordered sequence of norms of jumps $\|\vec{T}(y+) - \vec{T}(y)\|_1$, where $\|\vec{r}\|_1 = r_1 + r_2$, $r_i \ge 0$.

Vitalii Konarovskyi (Bielefeld University)

Note that

$$\vec{T}(y) = \min\{(r_1, r_2) : X_1(r_1, r_2) = -y, X_2(r_1, r_2) = -y\}$$

= min { $(r_1, r_2) : \underline{X}_1(r_1, r_2) = -y, \underline{X}_2(r_1, r_2) = -y$ },
where $\underline{X}_1(r_1, r_2) = \underline{B}_1^t(r_1) + sr_2, \underline{X}_2(r_1, r_2) = sr_1 + \underline{B}_2^t(r_2), \underline{B}_i^t(r) = \min_{[0,r]} B_i^t.$

イロト イヨト イヨト イヨト

æ

Note that

$$\vec{T}(y) = \min\{(r_1, r_2): X_1(r_1, r_2) = -y, X_2(r_1, r_2) = -y\}$$

= min {(r_1, r_2): X_1(r_1, r_2) = -y, X_2(r_1, r_2) = -y},

where $\underline{X}_1(r_1, r_2) = \underline{B}_1^t(r_1) + sr_2$, $\underline{X}_2(r_1, r_2) = sr_1 + \underline{B}_2^t(r_2)$, $\underline{B}_i^t(r) = \min_{[0,r]} B_i^t$.

We define a curve $\gamma: [0,\infty)
ightarrow [0,\infty)^2$ by

 $\underline{X}_1(\gamma(u)) = \underline{X}_2(\gamma(u)), \quad \|\gamma(u)\|_1 = u$

イロト イポト イヨト イヨト

æ

Note that

$$\vec{T}(y) = \min \{ (r_1, r_2) : X_1(r_1, r_2) = -y, X_2(r_1, r_2) = -y \}$$

= min { (r_1, r_2) : X_1(r_1, r_2) = -y, X_2(r_1, r_2) = -y },

where $\underline{X}_1(r_1, r_2) = \underline{B}_1^t(r_1) + sr_2$, $\underline{X}_2(r_1, r_2) = sr_1 + \underline{B}_2^t(r_2)$, $\underline{B}_i^t(r) = \min_{[0,r]} B_i^t$.

We define a curve $\gamma: [0,\infty)
ightarrow [0,\infty)^2$ by

 $\underline{X}_1(\gamma(u)) = \underline{X}_2(\gamma(u)), \quad \|\gamma(u)\|_1 = u$

Lemma

Take $g_i(r) := sr - \underline{B}_i^t(r)$, $\kappa := (g_1^{-1} + g_2^{-1})^{-1}$. Then γ is uniquely determined by $\gamma_i(u) = g_i^{-1} \circ \kappa(u)$. Moreover, for every $y \ge 0$ the hitting time

$$S(y) := \inf \{ u : X_i \circ \gamma(u) = -y \}, \quad i = 1, 2$$

satisfies $\vec{T} = \gamma \circ S$, $\|\vec{T}\|_1 = \|\gamma \circ S\|_1 = S$

Note that

$$\vec{T}(y) = \min \{ (r_1, r_2) : X_1(r_1, r_2) = -y, X_2(r_1, r_2) = -y \}$$

= min { (r_1, r_2) : X_1(r_1, r_2) = -y, X_2(r_1, r_2) = -y },

where $\underline{X}_1(r_1, r_2) = \underline{B}_1^t(r_1) + sr_2$, $\underline{X}_2(r_1, r_2) = sr_1 + \underline{B}_2^t(r_2)$, $\underline{B}_i^t(r) = \min_{[0,r]} B_i^t$.

We define a curve $\gamma: [0,\infty) \to [0,\infty)^2$ by

 $\underline{X}_1(\gamma(u)) = \underline{X}_2(\gamma(u)), \quad \|\gamma(u)\|_1 = u$

Lemma

Take $g_i(r) := sr - \underline{B}_i^t(r)$, $\kappa := (g_1^{-1} + g_2^{-1})^{-1}$. Then γ is uniquely determined by $\gamma_i(u) = g_i^{-1} \circ \kappa(u)$. Moreover, for every $y \ge 0$ the hitting time

$$S(y) := \inf \{ u : X_i \circ \gamma(u) = -y \}, \quad i = 1, 2$$

satisfies $\vec{T} = \gamma \circ S$, $\|\vec{T}\|_1 = \|\gamma \circ S\|_1 = S$

$$\implies \qquad \|\vec{T}(y+) - \vec{T}(y)\|_1 = S(y+) - S(y).$$

Excursion Description of SBM along the Curve

Theorem. (Clancy, K., Limic '23)

Let

$$g_i(r) = sr - \underline{B}_i^t(r) = sr - \min_{[0,r]} B_i^t,$$

$$\kappa = \left(g_1^{-1} + g_2^{-1}\right)^{-1}$$

$$\gamma_i = g_i^{-1} \circ \kappa.$$

Then for every $t \in \mathbb{R}$ and $s \geq 0$, the distribution of the scaling limit of the stochastic block model $\text{RMM}_{s}(X^{*}(t), Y^{*}(t))$ coincides with the law of ordered excursion lengths of $X_{i} \circ \vec{\gamma}$ above past minima, where

 $X_1(\vec{r}) = B_1^t(r_1) + sr_2, \quad r_i \ge 0$

References

V. Konarovskyi, V. Limic

Stochastic Block Model in a new critical regime and the Interacting Multiplicative Coalescent.

Electronic Journal of Probability. Vol. 26 (2021), 23 pp.

D. Clancy, V. Konarovskyi, V. Limic Excursion representation of Stochastic Block Model. *In preparation (2023)*

Thank you!

(日) (日) (日) (日) (日)