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Scaling Limit of SBM

Stochastic Block Model

Stochastic Block Model G(n, p, q) is a random graph such that:

consists of nm vertices divided into m subsets (m = 2);

edges are drown independently;

intra class edges appear with probability p = pn;

inter class edges appear with probability q = qn.

We are interested in the scaling limit as n → ∞ and pn, qn → 0.
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Scaling Limit of SBM

Largest Connected Component of SBM

C1(n) is the size of the largest connected component of the SBM

It is well-known:

If pn = qn = a
mn

, then SBM is an Erdős-Rényi graph for which:

for a > 1, C1(n) ∼ Θ(n);
for a < 1, C1(n) ∼ Θ(ln n); (Erdős, Rényi ’60, ’61)
for a = 1, C1(n) ∼ Θ(n2/3).

If pn = a
mn

, qn = b
mn

, then

a+ (m − 1)b > m, C1(n) ∼ Θ(n);
a+ (m − 1)b ≤ m, C1(n) ∼ o(n). (Bollobás, Janson, Riordan ’07)

We are interested in the new critical regime: qn ≪ pn ∼ 1
n
.
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Scaling Limit of SBM

Scaling Limit of Erdős-Rényi Graphs

G(n, p) – an Erdős-Rényi random graph with n vertices and edges appearing with prob.

p = pn(t) =
1

n
+

t

n4/3
, t ∈ R

Define

X (n)(t) :=
1

n2/3
(C1,C2, . . . ,Ck , 0, 0, . . . . . . ),

where Ck = Ck(n, t) is the size of the k-th largest connected component.
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Scaling Limit of SBM

Scaling Limit of Erdős-Rényi Graphs

Theorem. (Aldous ’97, Anmerdariz ’01, Limic ’98,’19)

For every t ∈ R the sequence X (n)(t) converges in l2 in distribution to a standard
Multiplicative Coalescent (MC) X ∗(t), where

X ∗(t) is the ordered excursion lengths
of the Brownian motion with parabolic
drift

B t(r) := B(r)− 1

2
r 2 + tr , r ≥ 0,

above past minima.
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Scaling Limit of SBM

Stochastic Block Model

p = pn(t) =
1

n
+

t

n4/3
q = qn(s) =

s

n4/3
, t ∈ R, s ≥ 0.

Define

Z (n)(t, s) :=
1

n2/3
(C1,C2, . . . ,Ck , 0, 0), t ∈ R, s ≥ 0,

where Ck = Ck(n, t, s) is the size of the k-th largest connected component of the SBM
G(n, pn, qn)
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Scaling Limit of SBM

Restricted Multiplicative Merging

Let l2↓ = {x = (xi )i≥1 ∈ l2 : x1 ≥ x2 ≥ · · · ≥ 0}.

For s ≥ 0 and a fixed family of indep. r.v. ξi,j ∼ Exp(rate 1), i , j ≥ 1, define a random
map RMMs : l

2
↓ × l2↓ → l2↓:

consider coord. of x , y ∈ l2↓ as a masses of corresponding vertices of a graph;

for every i , j ≥ 1 draw an edge between xi and yj iff ξi,j ≤ sxiyj ;

define RMMs(x , y) as the vector of the ordered masses of connected components.
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Scaling Limit of SBM

Scaling Limit of SBM

Recall

p = pn(t) =
1

n
+

t

n4/3
q = qn(s) =

s

n4/3
, t ∈ R, s ≥ 0.

Z (n)(t, s) :=
1

n2/3
(C1,C2, . . . ,Ck , 0, 0), t ∈ R, s ≥ 0,

where Ck = Ck(n, t, s) is the size of the k-th largest connected component of the SBM
G(n, pn, qn)

Theorem. (K., Limic ’21)

For every t ∈ R and s ≥ 0 the process Z (n)(t, s) converges in l2 in distribution
to RMMs(X

∗(t),Y ∗(t)), where X ∗,Y ∗ are independent standard multiplicative
coalescents that are independent of ξ.

We will call RMMs(X
∗(t),Y ∗(t)) an Interacting Multiplicative Coalescent
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Description via Excursions of a Random Field along a Curve

Main Problem

Question: Does the scaling limit of the SBM admit an excursion description?

Naive Guess: Probably, interacting MC can be described via “excursions” of a random
field or a family of Brownian motions with interactions.
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Description via Excursions of a Random Field along a Curve

Standard MC as Jumps of Hitting Times

X ∗(t) is the ordered excursion lengths
of the Brownian motion with parabolic
drift

B t(r) := B(r)− 1

2
r 2 + tr , r ≥ 0,

above past minima.

Define for y ≥ 0

T (y) := min{r : B t(r) = −y} = min{r : B t(r) = −y}

where B t(r) = min
[0,r ]

B t .

Observation

X ∗(t) is the collection of decreasingly ordered jumps T (y+)− T (y), y ≥ 0.
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Description via Excursions of a Random Field along a Curve

Hitting times for fields

Consider X⃗ : [0,∞)m → Rm defined by

Xi (r1, . . . , rm) = Xi,i (ri ) +
∑
j ̸=i

Xi,j(rj),

such that

1 Xi,i are continuous

2 Xi,j , i ̸= j , are non-decreasing and continuous

Lemma (Chaumont, Marolleau ’20)

For every y⃗ ∈ [0,∞)m there exists a (component-wise) minimal solution

T⃗ = T⃗ (y) ∈ [0,∞]m to the equation

Xi (T⃗ ) = −yi , ∀i such that Ti < ∞,

denoted by

T⃗ (y) := min
{
r⃗ : X⃗ (r⃗) = −y⃗

}
.
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Description via Excursions of a Random Field along a Curve

Scaling limit of SBM as Jumps of Hitting Times

For fixed t ∈ R and s ≥ 0 define

Xi,i (r) := B t
i (r) = Bi (r)−

1

2
r 2 + tr , r ≥ 0

Xi,j(r) = sr , i ̸= j , r ≥ 0.

Let m = 2 and

X1(r1, r2) = X1,1(r1) + X1,2(r2) = B t
1(r1) + sr2,

X2(r1, r2) = X2,1(r1) + X2,2(r2) = sr1 + B t
2(r2),

Set for y ≥ 0

T⃗ (y) := min {(r1, r2) : X1(r1, r2) = −y , X2(r1, r2) = −y}

Theorem. (Clancy, K., Limic ’23)

For every t ∈ R and s ≥ 0, the distribution of RMMs(X
∗(t),Y ∗(t)) coincides with

the law of decreasingly ordered sequence of norms of jumps ∥T⃗ (y+) − T⃗ (y)∥1,
where ∥r⃗∥1 = r1 + r2, ri ≥ 0.
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Description via Excursions of a Random Field along a Curve

Construction of a continuous Curve

Note that

T⃗ (y) = min {(r1, r2) : X1(r1, r2) = −y , X2(r1, r2) = −y}
= min {(r1, r2) : X 1(r1, r2) = −y , X 2(r1, r2) = −y} ,

where X 1(r1, r2) = B t
1(r1) + sr2, X 2(r1, r2) = sr1 + B t

2(r2), B t
i (r) = min

[0,r ]
B t

i .

We define a curve γ : [0,∞) → [0,∞)2 by

X 1(γ(u)) = X 2(γ(u)), ∥γ(u)∥1 = u

Lemma

Take gi (r) := sr − B t
i (r), κ :=

(
g−1
1 + g−1

2

)−1
. Then γ is uniquely determined

by γi (u) = g−1
i ◦ κ(u). Moreover, for every y ≥ 0 the hitting time

S(y) := inf {u : Xi ◦ γ(u) = −y} , i = 1, 2

satisfies T⃗ = γ ◦ S , ∥T⃗∥1 = ∥γ ◦ S∥1 = S

=⇒ ∥T⃗ (y+)− T⃗ (y)∥1 = S(y+)− S(y).
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Excursion Description of SBM along the Curve

Theorem. (Clancy, K., Limic ’23)

Let

gi (r) = sr − B t
i (r) = sr −min

[0,r ]
B t

i ,

κ =
(
g−1
1 + g−1

2

)−1

γi = g−1
i ◦ κ.

Then for every t ∈ R and s ≥ 0, the distribution of the scaling limit of the
stochastic block model RMMs(X

∗(t),Y ∗(t)) coincides with the law of ordered
excursion lengths of Xi ◦ γ⃗ above past minima, where

X1(r⃗) = B t
1(r1) + sr2, ri ≥ 0
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