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Derivation of SPDE and application in Machine Learning

Supervised Learning

Having a large sets of data {(θi , γi ), i ∈ I}, one needs to find a function
f : Θ → R such that f (θi ) = γi .

Usually one approximates f by

fn(θ) =
1

n

n∑
k=1

U(θ, xk),

where xk ∈ Rd , k ∈ {1, . . . , n}, are parameters which have to be found.
Example: U(θ, x) = c · h(a · θ + b), x = (a, b, c)

We measure the distance between f and fn by the generalization error

L[fn] =
1

2
Em =

1

2

∫
Θ

m(dθ),

where m is the distribution of θi .
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Derivation of SPDE and application in Machine Learning

Stochastic Gradient Descent and (deterministic) PDE

The parameters xk , k ∈ {1, . . . , n}, can be learned by stochastic gradient descent

xk(ti+1) = xk(ti )−∇xk |f (θi )− fn(θi ; x)|2∆t

where ∆t is a learning rate, ti = i∆t, {θi , i ∈ N} are i.i.d. with distribution m,

If xk(0) are i.i.d. from µ0, then

d(νnt , µt) = O(n−1/2) + O(∆t1/2) = O(n−1/2), for ∆t =
1

n
,

where µt solves
dµt = −∇ (V (·, µt)µt) dt

with V (x , µ) = EmV (x , µ, θ). [Mei, Montanarib, Nguyen, 2018]
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Derivation of SPDE and application in Machine Learning

Main Goal

Problem. After passing to the limit the equation

dµt = −∇ (V (·, µt)µt) dt

loses the information about the fluctuations of the SGD dynamics

xk(ti+1) = xk(ti ) + V (xk(ti ), ν
n
ti , θi )∆t, νnt =

1

n

n∑
l=1

δxl (t).

Goal: Propose a stochastic PDE which would capture the fluctuations of the
SGD dynamics. Then, probably, its solutions would better approximate the SGD
dynamics as n → ∞ and ∆t → 0.
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Derivation of SPDE and application in Machine Learning

SGD and Martingale Problem (standard approach)

Stochastic gradient descent

xk(ti+1) = xk(ti ) + V (xk(ti ), ν
n
ti , θi )∆t

= xk(ti ) + V (xk(ti ), ν
n
ti )∆t +

√
∆t

(
V (xk(ti ), ν

n
ti , θi )− V (xk(ti ), ν

n
ti )
)√

∆t

is the Euler-Maruyama scheme for the SDE

dxk(t) = V (xk(t), µ
n
t )dt +

√
αdBk(t), k ∈ {1, . . . , n}

d [Bk ,Bl ]t = A(xk(t), xl(t), µ
n
t )dt,

where µn
t = 1

n

∑n
i=1 δxi (t) and A(x , y , µ) = EmG (x , µ, θ)⊗ G (y , µ, θ).

dµn
t =

α

2
∇2 : (A(·, µn

t )µ
n
t )dt −∇ · (V (·, µn

t )µ
n
t )dt +∇ ·

√
αdW cor(·, t),

with [dW cor(x , t), dW cor(y , t)] = A(x , y , µn
t )µ

n
t (x)µ

n
t (y).

[Rotskoff, Vanden-Eijnden, CPAM, 2022]
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Derivation of SPDE and application in Machine Learning

SGD and SPDE (new approach)

Stochastic gradient descent

xk(ti+1) = xk(ti ) + V (xk(ti ), ν
n
ti )∆t +

√
αG (xk(ti ), ν

n
ti , θi )

√
∆t,

where νnt = 1
n

∑n
l=1 δxl (t), α = ∆t, G (x , µ, θ) = V (x , µ, θ)− V (x , µ) and

θi are i.i.d. with distribution m on Θ.

We take a cylindrical Wiener process W on L2(Θ,m) and consider the equation

dX (u, t) = V (X (u, t), µt)dt +
√
α

∫
Θ

G (X (u, t), µt , θ)W (dθ, dt),

X (u, 0) = u, µt = µ0 ◦ X−1(·, t), u ∈ Rd , t ≥ 0.

[Kotelenez ’95, Dorogotsev, Wang ’21]

(See [Gess, Kassing, K. ’23] for further connection with SDG dynamics)
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Derivation of SPDE and application in Machine Learning

Stochastic Mean-Field Equation

Applying Itô ’s formula to ⟨φ, µt⟩, we come to the
Stochastic Mean-Field Equation (SMFE):

dµt =
α

2
∇2 : (A(·, µt)µt)dt −∇ · (V (·, µt)µt)dt

+
√
α∇ ·

∫
Θ

G (·, µt , θ)µt W (dθ, dt)

For comparison:

dµt =
α

2
∇2 : (A(·, µt)µt)dt −∇ · (V (·, µt)µt)dt +∇ ·

√
αdW cor(·, t),

with [dW cor(x , t), dW cor(y , t)] = A(x , y , µt)µt(x)µt(y) and A = EmG⊗G .
[Rotskoff, Vanden-Eijnden, CPAM, 2022]

⇝ Both solutions satisfy the same martingale problem!
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Well-posedness, superposition principle and connection with SGD dynamics

Related Works to SMFE

dµt =
1

2
∇2 : (A(·, µt)µt) dt −∇ · (V (·, µt)µt) dt −∇ ·

∫
Θ
(G(·, µt , θ)µt)W (dθ, dt),

Well-posedness results for similar SPDEs:

Continuity equation in the fluid dynamics and optimal transportation
[Ambrosio, Trevisan, Crippa. . . ]. There A = G = 0.

Stochastic nonlinear Fokker-Planck equation [Coghi, Gess ’19]. The
covariance A has more general structure but the noise is finite-dimensional.

Particle representations for a class of nonlinear SPDEs [Kurtz, Xiong
’99]. The equation has more general form but the initial condition µ0 must
have an L2-density w.r.t. the Lebesgue measure.
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Well-posedness, superposition principle and connection with SGD dynamics

Well-posedness of SMFE

Theorem (Gess, Gvalani, K. 2022)

Let the coefficients V ,G be Lipschitz continuous and smooth enough w.r.t.
spetial variable. Then the SMFE

dµt =
α

2
∇2 : (A(·, µt)µt) dt −∇ · (V (·, µt)µt) dt

−
√
α∇ ·

∫
Θ

G (·, µt , θ)µtW (dθ, dt)

has a unique solution. Moreover, µt is a superposition solution, i.e.,

µt = µ0 ◦ X−1(·, t), t ≥ 0,

where X solves

dX (u, t) = V (X (u, t), µt)dt +
√
α

∫
Θ

G(X (u, t), µt , θ)W (dθ, dt), X (u, 0) = u.
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Well-posedness, superposition principle and connection with SGD dynamics

Convergence to deterministic PDE

Theorem (Gess, Gvalani, K. 2022)

Let µn, 1n be superposition solutions to the SMFE (α = 1
n )

dµt =
1

2n
∇2 : (A(·, µt)µt) dt −∇ · (V (·, µt)µt) dt

− 1√
n
∇ ·

∫
Θ

G(·, µt , θ)µtW (dθ, dt),

started from µ
n, 1n
0 = 1

n

∑n
i=1 δxi with xi ∼ µ0 i.i.d. Then

E sup
t∈[0,T ]

W2
2 (µ

n, 1n
t , µ0

t ) ≤ Cn−1,

and dµ0
t = −∇

(
V (·, µ0

t )µ
0
t

)
dt.
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Well-posedness, superposition principle and connection with SGD dynamics

Quantified CLT for SMFE

Since µ
n, 1n
t = µ0

t + O(n−1/2), we consider

ηnt =
√
n
(
µn, 1n − µ0

)
.

Theorem (Gess, Gvalani, K. 2022)

There exists the Gaussian fluctuation field η, which is a solution to the linear
SPDE

dηt = −∇ ·
(
V (·, µ0

t )ηt + ⟨Ṽ (x , ·), ηt⟩µ0
t (dx)

)
dt

−∇ ·
∫
Θ

G (·, µ0
t , θ)µ

0
tW (dθ, dt).

Moreover,
E sup

t∈[0,T ]

∥ηnt − ηt∥2H−J ≤ Cn−1.
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Higher order approximation of the SGD dynamics

The quantified CLT gives us that

µ
n, 1n
t = µ0

t + n−1/2ηt + O(n−1).

The empirical distribution of SGD with n parameters and learning rate α = 1
n

satisfies

ν
n, 1n
t =

1

n

n∑
i=1

δxi (⌊nt⌋) = µ0
t + n−1/2ηt + o(n−1/2)

[Sirignano, Spiliopoulos, SPA, 2020]

Therefore, νn,
1
n − µn, 1n = o(n−1/2).
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Well-posedness, superposition principle and connection with SGD dynamics

Higher order approximation of the SGD dynamics

Theorem (Gess, Gvalani, K. 2022)

Let µn, 1n be a superposition solution to the SMFE with learning rate α = 1
n

started from 1
n

∑n
i=1 δxi . Let also νn,

1
n be the empirical process associated

to the SGD dynamics with α = 1
n . Then

Wp

(
Law(µn, 1n ), Law(νn,

1
n )
)
= o(n−1/2)

for all p ∈ [1, 2).

Remark. The SMFE

dµt =
1

2
∇2 : (A(·, µt)µt) dt −∇ · (V (·, µt)µt) dt −∇ ·

∫
Θ

G(·, µt , θ)µtW (dθ, dt)

captures the fluctuations of the SGD dynamics. Therefore, it gives a better
approximation of the SGD dynamics than

dµt = −∇ (V (·, µt)µt) dt
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Thank you!
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