Conservative SPDEs as Fluctuating Mean Field Limits of Stochastic Gradient Descent

Vitalii Konarovskyi

Hamburg University

Mean field interactions with singular kernels and their approximations - Paris 2023
joint work with Benjamin Gess and Rishabh Gvalani

National Academy of Sciences of Ukraine
INSTITUTE OF MATHEMATICS

Table of Contents

(1) Motivation and derivation of the SPDE

(2) Quantified Mean-Field Limit

(3) Well-posedness and superposition principle

Supervised Learning

- Having a large sets of data $\left\{\left(\theta_{i}, \gamma_{i}\right), i \in I\right\}, \theta_{i} \sim P$ i.i.d., one needs to find a function $f: \Theta \rightarrow \mathbb{R}$ such that $f\left(\theta_{i}\right)=\gamma_{i}$.

Supervised Learning

- Having a large sets of data $\left\{\left(\theta_{i}, \gamma_{i}\right), i \in I\right\}, \theta_{i} \sim P$ i.i.d., one needs to find a function $f: \Theta \rightarrow \mathbb{R}$ such that $f\left(\theta_{i}\right)=\gamma_{i}$.
- Usually one approximates f by

$$
f_{n}(\theta ; x)=\frac{1}{n} \sum_{k=1}^{n} \Phi\left(\theta, x_{k}\right),
$$

where $x_{k} \in \mathbb{R}^{d}, k \in\{1, \ldots, n\}$, are parameters which have to be found.
Example: $\Phi\left(\theta, x_{k}\right)=c_{k} \cdot h\left(A_{k} \theta+b_{k}\right), \quad x_{k}=\left(A_{k}, b_{k}, c_{k}\right)$

Supervised Learning

- Having a large sets of data $\left\{\left(\theta_{i}, \gamma_{i}\right), i \in I\right\}, \theta_{i} \sim P$ i.i.d., one needs to find a function $f: \Theta \rightarrow \mathbb{R}$ such that $f\left(\theta_{i}\right)=\gamma_{i}$.
- Usually one approximates f by

$$
f_{n}(\theta ; x)=\frac{1}{n} \sum_{k=1}^{n} \Phi\left(\theta, x_{k}\right),
$$

where $x_{k} \in \mathbb{R}^{d}, k \in\{1, \ldots, n\}$, are parameters which have to be found.
Example: $\Phi\left(\theta, x_{k}\right)=c_{k} \cdot h\left(A_{k} \theta+b_{k}\right), \quad x_{k}=\left(A_{k}, b_{k}, c_{k}\right)$

- We measure the distance between f and f_{n} by the generalization error

$$
\mathcal{L}(x):=\frac{1}{2} \mathbb{E}_{P}\left|f(\theta)-f_{n}(\theta ; x)\right|^{2}=\frac{1}{2} \int_{\theta}\left|f(\theta)-f_{n}(\theta ; x)\right|^{2} P(d \theta)
$$

where P is the distribution of θ_{i}.

Stochastic gradient descent

Let $x_{k}(0) \sim \mu_{0}$ - i.i.d.

Stochastic gradient descent

Let $x_{k}(0) \sim \mu_{0}$ - i.i.d.
The parameters $x_{k}, k \in\{1, \ldots, n\}$ can be learned by stochastic gradient descent

$$
x_{k}\left(t_{i+1}\right)=x_{k}\left(t_{i}\right)-\nabla_{x_{k}}\left(\frac{1}{2}\left|f\left(\theta_{i}\right)-f_{n}\left(\theta_{i} ; x\right)\right|^{2}\right) \Delta t
$$

where Δt - learning rate, $t_{i}=i \Delta t, \theta_{i} \sim P$ - i.i.d.,

Stochastic gradient descent

Let $x_{k}(0) \sim \mu_{0}$ - i.i.d.
The parameters $x_{k}, k \in\{1, \ldots, n\}$ can be learned by stochastic gradient descent

$$
\begin{aligned}
x_{k}\left(t_{i+1}\right) & =x_{k}\left(t_{i}\right)-\nabla_{x_{k}}\left(\frac{1}{2}\left|f\left(\theta_{i}\right)-f_{n}\left(\theta_{i} ; x\right)\right|^{2}\right) \Delta t \\
& =x_{k}\left(t_{i}\right)-\left(f_{n}\left(\theta_{i} ; x\right)-f\left(\theta_{i}\right)\right) \nabla_{x_{k}} \Phi\left(\theta_{i}, x_{k}\left(t_{i}\right)\right) \Delta t
\end{aligned}
$$

where Δt - learning rate, $t_{i}=i \Delta t, \theta_{i} \sim P$ - i.i.d.,

Stochastic gradient descent

Let $x_{k}(0) \sim \mu_{0}-$ i.i.d.
The parameters $x_{k}, k \in\{1, \ldots, n\}$ can be learned by stochastic gradient descent

$$
\begin{aligned}
x_{k}\left(t_{i+1}\right) & =x_{k}\left(t_{i}\right)-\nabla_{x_{k}}\left(\frac{1}{2}\left|f\left(\theta_{i}\right)-f_{n}\left(\theta_{i} ; x\right)\right|^{2}\right) \Delta t \\
& =x_{k}\left(t_{i}\right)-\left(f_{n}\left(\theta_{i} ; x\right)-f\left(\theta_{i}\right)\right) \nabla_{x_{k}} \Phi\left(\theta_{i}, x_{k}\left(t_{i}\right)\right) \Delta t \\
& =x_{k}\left(t_{i}\right)+\left(\nabla F\left(x_{k}\left(t_{i}\right), \theta_{i}\right)-\frac{1}{n} \sum_{l=1}^{n} \nabla_{x_{k}} K\left(x_{k}\left(t_{i}\right), x_{l}\left(t_{i}\right), \theta_{i}\right)\right) \Delta t
\end{aligned}
$$

where Δt - learning rate, $t_{i}=i \Delta t, \theta_{i} \sim P$ - i.i.d., $F(x, \theta)=f(\theta) \Phi(\theta, x)$ and $K(x, y, \theta)=\Phi(\theta, x) \Phi(\theta, y)$.

Stochastic gradient descent

Let $x_{k}(0) \sim \mu_{0}-$ i.i.d.
The parameters $x_{k}, k \in\{1, \ldots, n\}$ can be learned by stochastic gradient descent

$$
\begin{aligned}
x_{k}\left(t_{i+1}\right) & =x_{k}\left(t_{i}\right)-\nabla_{x_{k}}\left(\frac{1}{2}\left|f\left(\theta_{i}\right)-f_{n}\left(\theta_{i} ; x\right)\right|^{2}\right) \Delta t \\
& =x_{k}\left(t_{i}\right)-\left(f_{n}\left(\theta_{i} ; x\right)-f\left(\theta_{i}\right)\right) \nabla_{x_{k}} \Phi\left(\theta_{i}, x_{k}\left(t_{i}\right)\right) \Delta t \\
& =x_{k}\left(t_{i}\right)+\left(\nabla F\left(x_{k}\left(t_{i}\right), \theta_{i}\right)-\left\langle\nabla_{x} K\left(x_{k}\left(t_{i}\right), \cdot, \theta_{i}\right), \nu_{t_{i}}^{n}\right) \Delta t\right.
\end{aligned}
$$

where Δt - learning rate, $t_{i}=i \Delta t, \theta_{i} \sim P$ - i.i.d., $\nu_{t}^{n}=\frac{1}{n} \sum_{l=1}^{n} \delta_{x_{l}(t)}$, $F(x, \theta)=f(\theta) \Phi(\theta, x)$ and $K(x, y, \theta)=\Phi(\theta, x) \Phi(\theta, y)$.

Stochastic gradient descent

Let $x_{k}(0) \sim \mu_{0}-$ i.i.d.
The parameters $x_{k}, k \in\{1, \ldots, n\}$ can be learned by stochastic gradient descent

$$
\begin{aligned}
x_{k}\left(t_{i+1}\right) & =x_{k}\left(t_{i}\right)-\nabla_{x_{k}}\left(\frac{1}{2}\left|f\left(\theta_{i}\right)-f_{n}\left(\theta_{i} ; x\right)\right|^{2}\right) \Delta t \\
& =x_{k}\left(t_{i}\right)-\left(f_{n}\left(\theta_{i} ; x\right)-f\left(\theta_{i}\right)\right) \nabla_{x_{k}} \Phi\left(\theta_{i}, x_{k}\left(t_{i}\right)\right) \Delta t \\
& =x_{k}\left(t_{i}\right)+\left(\nabla F\left(x_{k}\left(t_{i}\right), \theta_{i}\right)-\left\langle\nabla_{x} K\left(x_{k}\left(t_{i}\right), \cdot, \theta_{i}\right), \nu_{t_{i}}^{n}\right\rangle\right) \Delta t \\
& =x_{k}\left(t_{i}\right)+V\left(x_{k}\left(t_{i}\right), \nu_{t_{i}}^{n}, \theta_{i}\right) \Delta t
\end{aligned}
$$

where Δt - learning rate, $t_{i}=i \Delta t, \theta_{i} \sim P$ - i.i.d., $\nu_{t}^{n}=\frac{1}{n} \sum_{l=1}^{n} \delta_{x_{l}(t)}$, $F(x, \theta)=f(\theta) \Phi(\theta, x)$ and $K(x, y, \theta)=\Phi(\theta, x) \Phi(\theta, y)$.

Continuous Dynamics of Parameters

Recall that $x_{k}(0) \sim \mu_{0}$ - i.i.d., Δt - learning rate, $t_{i}=i \Delta t, \theta_{i} \sim P$ - i.i.d.

$$
x_{k}\left(t_{i+1}\right)=x_{k}\left(t_{i}\right)+V\left(x_{k}\left(t_{i}\right), \nu_{t_{i}}^{n}, \theta_{i}\right) \Delta t, \quad k \in\{1, \ldots, n\},
$$

where $\nu_{t}^{n}=\frac{1}{n} \sum_{k=1}^{n} \delta_{x_{k}(t)}$.

Continuous Dynamics of Parameters

Recall that $x_{k}(0) \sim \mu_{0}$ - i.i.d., Δt - learning rate, $t_{i}=i \Delta t, \theta_{i} \sim P$ i.i.d.

$$
x_{k}\left(t_{i+1}\right)=x_{k}\left(t_{i}\right)+V\left(x_{k}\left(t_{i}\right), \nu_{t_{i}}^{n}, \theta_{i}\right) \Delta t, \quad k \in\{1, \ldots, n\},
$$

where $\nu_{t}^{n}=\frac{1}{n} \sum_{k=1}^{n} \delta_{x_{k}(t)}$.

Considering the empirical distribution $\nu^{n}=\frac{1}{n} \sum_{k=1}^{n} \delta_{x_{k}}$, one has

$$
f_{n}(\theta ; x)=\frac{1}{n} \sum_{k=1}^{n} \Phi\left(\theta, x_{k}\right)=\left\langle\Phi(\theta, \cdot), \nu^{n}\right\rangle .
$$

Continuous Dynamics of Parameters

Recall that $x_{k}(0) \sim \mu_{0}$ - i.i.d., Δt - learning rate, $t_{i}=i \Delta t, \theta_{i} \sim P$ i.i.d.

$$
x_{k}\left(t_{i+1}\right)=x_{k}\left(t_{i}\right)+V\left(x_{k}\left(t_{i}\right), \nu_{t_{i}}^{n}, \theta_{i}\right) \Delta t, \quad k \in\{1, \ldots, n\},
$$

where $\nu_{t}^{n}=\frac{1}{n} \sum_{k=1}^{n} \delta_{x_{k}(t)}$.

Considering the empirical distribution $\nu^{n}=\frac{1}{n} \sum_{k=1}^{n} \delta_{x_{k}}$, one has

$$
f_{n}(\theta ; x)=\frac{1}{n} \sum_{k=1}^{n} \Phi\left(\theta, x_{k}\right)=\left\langle\Phi(\theta, \cdot), \nu^{n}\right\rangle .
$$

The expression for $x_{k}(t)$ looks as an Euler scheme for

$$
\begin{aligned}
d X_{k}(t) & =V\left(X_{k}(t), \mu_{t}\right) d t \\
\mu_{t} & =\frac{1}{n} \sum_{k=1}^{n} \delta_{X_{k}(t)}, \quad V(x, \mu)=\mathbb{E}_{\theta} V(x, \mu, \theta) .
\end{aligned}
$$

Convergence to deterministic SPDE

If $x_{k}(0) \sim \mu_{0}-$ i.i.d. and $\Delta t=\frac{1}{n}$, then

$$
d\left(\nu_{t}^{n}, \mu_{t}\right)=O\left(\frac{1}{\sqrt{n}}\right),
$$

where μ_{t} solves

$$
d \mu_{t}=-\nabla\left(V\left(\cdot, \mu_{t}\right) \mu_{t}\right) d t
$$

with

$$
V(x, \mu)=\mathbb{E}_{\theta} V(x, \mu, \theta)=\nabla F(x)-\left\langle\nabla_{x} K(x, \cdot), \mu\right\rangle
$$

and

$$
F(x)=\mathbb{E}_{\theta} f(\theta) \Phi(\theta, x), \quad K(x, y)=\mathbb{E}_{\theta}[\Phi(\theta, x) \Phi(\theta, y)]
$$

[Mei, Montanari, Nguyen '18]

Convergence to deterministic SPDE

If $x_{k}(0) \sim \mu_{0}-$ i.i.d. and $\Delta t=\frac{1}{n}$, then

$$
d\left(\nu_{t}^{n}, \mu_{t}\right)=O\left(\frac{1}{\sqrt{n}}\right),
$$

where μ_{t} solves

$$
d \mu_{t}=-\nabla\left(V\left(\cdot, \mu_{t}\right) \mu_{t}\right) d t
$$

with

$$
V(x, \mu)=\mathbb{E}_{\theta} V(x, \mu, \theta)=\nabla F(x)-\left\langle\nabla_{x} K(x, \cdot), \mu\right\rangle
$$

and

$$
F(x)=\mathbb{E}_{\theta} f(\theta) \Phi(\theta, x), \quad K(x, y)=\mathbb{E}_{\theta}[\Phi(\theta, x) \Phi(\theta, y)] .
$$

[Mei, Montanari, Nguyen '18]
\Longrightarrow The mean behavior of the SGD dynamics can then be analysed by considering μ_{t}.

Main Goal

Problem. After passing to the deterministic gradient flow μ, all of the information about the inherent fluctuations of the stochastic gradient descent dynamics is lost.

Main Goal

Problem. After passing to the deterministic gradient flow μ, all of the information about the inherent fluctuations of the stochastic gradient descent dynamics is lost.

Goal: Propose an SPDE which would capture the fluctuations of the SGD dynamics and also would give its better approximation.

Classical SDE for SGD Dynamics

Stochastic gradient descent

$$
x_{k}\left(t_{i+1}\right)=x_{k}\left(t_{i}\right)+V\left(x_{k}\left(t_{i}\right), \nu_{t_{i}}^{n}, \theta_{i}\right) \Delta t
$$

Classical SDE for SGD Dynamics

Stochastic gradient descent

$$
\begin{aligned}
x_{k}\left(t_{i+1}\right) & =x_{k}\left(t_{i}\right)+V\left(x_{k}\left(t_{i}\right), \nu_{t_{i}}^{n}, \theta_{i}\right) \Delta t \\
& =x_{k}\left(t_{i}\right)+\mathbb{E}_{\theta} V(\ldots) \Delta t+\sqrt{\Delta t}\left(V(\ldots)-\mathbb{E}_{\theta} V(\ldots)\right) \sqrt{\Delta t}
\end{aligned}
$$

Classical SDE for SGD Dynamics

Stochastic gradient descent

$$
\begin{aligned}
x_{k}\left(t_{i+1}\right) & =x_{k}\left(t_{i}\right)+V\left(x_{k}\left(t_{i}\right), \nu_{t_{i}}^{n}, \theta_{i}\right) \Delta t \\
& =x_{k}\left(t_{i}\right)+\underbrace{\mathbb{E}_{\theta} V(\ldots)}_{=V\left(x_{k}\left(t_{i}\right), \nu_{t_{i}}^{n}\right)} \Delta t+\underbrace{\sqrt{\Delta t}}_{=\sqrt{\alpha}} \underbrace{\left(V(\ldots)-\mathbb{E}_{\theta} V(\ldots)\right)}_{=G\left(x_{k}\left(t_{i}\right), \nu_{t_{i}}^{n}, \theta_{i}\right)} \sqrt{\Delta t}
\end{aligned}
$$

Classical SDE for SGD Dynamics

Stochastic gradient descent

$$
\begin{aligned}
x_{k}\left(t_{i+1}\right) & =x_{k}\left(t_{i}\right)+V\left(x_{k}\left(t_{i}\right), \nu_{t_{i}}^{n}, \theta_{i}\right) \Delta t \\
& =x_{k}\left(t_{i}\right)+\underbrace{\mathbb{E}_{\theta} V(\ldots)}_{=V\left(x_{k}\left(t_{i}\right), \nu_{t_{i}}^{n}\right)} \Delta t+\underbrace{\sqrt{\Delta t}}_{=\sqrt{\alpha}} \underbrace{\left(V(\ldots)-\mathbb{E}_{\theta} V(\ldots)\right)}_{=G\left(x_{k}\left(t_{i}\right), \nu_{t_{i}}^{n}, \theta_{i}\right)} \sqrt{\Delta t}
\end{aligned}
$$

is the Euler-Maruyama scheme for the SDE

$$
d X_{k}(t)=V\left(X_{k}(t), \mu_{t}^{n}\right) d t+\sqrt{\alpha}\left(\Sigma^{\frac{1}{2}}\right)_{k}(X(t)) d B(t), \quad k \in\{1, \ldots, n\}
$$

where $\mu_{t}^{n}=\frac{1}{n} \sum_{i=1}^{n} \delta_{x_{i}(t)}, \Sigma_{k, l}(x)=\mathbb{E}_{\theta} G\left(x_{k}, \mu, \theta\right) \otimes G\left(x_{l}, \mu, \theta\right)$ and B-n-dim Brownian motion.

Classical SDE for SGD Dynamics

Stochastic gradient descent

$$
\begin{aligned}
x_{k}\left(t_{i+1}\right) & =x_{k}\left(t_{i}\right)+V\left(x_{k}\left(t_{i}\right), \nu_{t_{i}}^{n}, \theta_{i}\right) \Delta t \\
& =x_{k}\left(t_{i}\right)+\underbrace{\mathbb{E}_{\theta} V(\ldots)}_{=V\left(x_{k}\left(t_{i}\right), \nu_{t_{i}}^{n}\right)} \Delta t+\underbrace{\sqrt{\Delta t}}_{=\sqrt{\alpha}} \underbrace{\left(V(\ldots)-\mathbb{E}_{\theta} V(\ldots)\right)}_{=G\left(x_{k}\left(t_{i}\right), \nu_{t_{i}}^{n}, \theta_{i}\right)} \sqrt{\Delta t}
\end{aligned}
$$

is the Euler-Maruyama scheme for the SDE

$$
d X_{k}(t)=V\left(X_{k}(t), \mu_{t}^{n}\right) d t+\sqrt{\alpha}\left(\Sigma^{\frac{1}{2}}\right)_{k}(X(t)) d B(t), \quad k \in\{1, \ldots, n\}
$$

where $\mu_{t}^{n}=\frac{1}{n} \sum_{i=1}^{n} \delta_{X_{i}(t)}, \Sigma_{k, l}(x)=\mathbb{E}_{\theta} G\left(x_{k}, \mu, \theta\right) \otimes G\left(x_{l}, \mu, \theta\right)$ and B-n-dim Brownian motion.
$\rightsquigarrow \quad \sum^{\frac{1}{2}}$ is $d n \times d n$ matrix!

Martingale Problem for Empirical distribution

$$
\begin{array}{r}
d X_{k}(t)=V\left(X_{k}(t), \mu_{t}^{n}\right) d t+\sqrt{\alpha}\left(\Sigma^{\frac{1}{2}}\right)_{k}(X(t)) d B(t), \quad k \in\{1, \ldots, n\} \\
\text { where } \mu_{t}^{n}=\frac{1}{n} \sum_{i=1}^{n} \delta_{X_{i}(t)}, \Sigma_{k, l}(x)=\tilde{A}\left(x_{k}, x_{l}, \mu\right):=\mathbb{E}_{\theta} G\left(x_{k}, \mu, \theta\right) \otimes G\left(x_{l}, \mu, \theta\right)
\end{array}
$$

Martingale Problem for Empirical distribution

$$
d X_{k}(t)=V\left(X_{k}(t), \mu_{t}^{n}\right) d t+\sqrt{\alpha}\left(\Sigma^{\frac{1}{2}}\right)_{k}(X(t)) d B(t), \quad k \in\{1, \ldots, n\}
$$

where $\mu_{t}^{n}=\frac{1}{n} \sum_{i=1}^{n} \delta_{X_{i}(t)}, \Sigma_{k, l}(x)=\tilde{A}\left(x_{k}, x_{l}, \mu\right):=\mathbb{E}_{\theta} G\left(x_{k}, \mu, \theta\right) \otimes G\left(x_{l}, \mu, \theta\right)$
Taking $\varphi \in \mathcal{C}_{c}^{2}\left(\mathbb{R}^{d}\right)$, we get for the empirical measure μ_{t}^{n}

$$
\begin{aligned}
\left\langle\varphi, \mu_{t}^{n}\right\rangle & =\left\langle\varphi, \mu_{0}^{n}\right\rangle+\frac{\alpha}{2} \int_{0}^{t}\left\langle\nabla^{2} \varphi: A\left(\cdot, \mu_{s}^{n}\right), \mu_{s}^{n}\right\rangle d s+\int_{0}^{t}\left\langle\nabla \varphi \cdot V\left(\cdot, \mu_{s}^{n}\right), \mu_{s}^{n}\right\rangle d s \\
& + \text { Mart. }
\end{aligned}
$$

where $A(x, \mu)=\tilde{A}(x, x, \mu)$

Martingale Problem for Empirical distribution

$$
d X_{k}(t)=V\left(X_{k}(t), \mu_{t}^{n}\right) d t+\sqrt{\alpha}\left(\Sigma^{\frac{1}{2}}\right)_{k}(X(t)) d B(t), \quad k \in\{1, \ldots, n\}
$$

where $\mu_{t}^{n}=\frac{1}{n} \sum_{i=1}^{n} \delta_{X_{i}(t)}, \Sigma_{k, l}(x)=\tilde{A}\left(x_{k}, x_{l}, \mu\right):=\mathbb{E}_{\theta} G\left(x_{k}, \mu, \theta\right) \otimes G\left(x_{l}, \mu, \theta\right)$
Taking $\varphi \in \mathcal{C}_{c}^{2}\left(\mathbb{R}^{d}\right)$, we get for the empirical measure μ_{t}^{n}

$$
\begin{aligned}
\left\langle\varphi, \mu_{t}^{n}\right\rangle & =\left\langle\varphi, \mu_{0}^{n}\right\rangle+\frac{\alpha}{2} \int_{0}^{t}\left\langle\nabla^{2} \varphi: A\left(\cdot, \mu_{s}^{n}\right), \mu_{s}^{n}\right\rangle d s+\int_{0}^{t}\left\langle\nabla \varphi \cdot V\left(\cdot, \mu_{s}^{n}\right), \mu_{s}^{n}\right\rangle d s \\
& + \text { Mart. }
\end{aligned}
$$

where $A(x, \mu)=\tilde{A}(x, x, \mu)$ and

$$
[\text { Mart. }]_{t}=\alpha \int_{0}^{t} \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}}(\nabla \varphi(x) \otimes \nabla \varphi(y)): \tilde{A}\left(x, y, \mu_{s}^{n}\right) \mu_{s}^{n}(d x) \mu_{s}^{n}(d y) d s
$$

[Rotskoff, Vanden-Eijnden, CPAM, 2022]

SDE Driven by Inf-Dim Noise for SGD Dynamics

Stochastic gradient descent

$$
\begin{aligned}
x_{k}\left(t_{i+1}\right) & =x_{k}\left(t_{i}\right)+V\left(x_{k}\left(t_{i}\right), \nu_{t_{i}}^{n}, \theta_{i}\right) \Delta t \\
& =x_{k}\left(t_{i}\right)+\underbrace{\mathbb{E}_{\theta} V(\ldots)}_{=V\left(x_{k}\left(t_{i}\right), \nu_{t_{i}}^{n}\right)} \Delta t+\underbrace{\sqrt{\Delta t}}_{=\sqrt{\alpha}} \underbrace{\left(V(\ldots)-\mathbb{E}_{\theta} V(\ldots)\right)}_{=G\left(x_{k}\left(t_{i}\right), \nu_{t_{i}}^{n}, \theta_{i}\right)} \sqrt{\Delta t}
\end{aligned}
$$

is the Euler-Maruyama scheme for the SDE

$$
d X_{k}(t)=V\left(X_{k}(t), \mu_{t}^{n}\right) d t+\sqrt{\alpha}\left(\Sigma^{\frac{1}{2}}\right)_{k}(X(t)) d B(t), \quad k \in\{1, \ldots, n\}
$$

where $\mu_{t}^{n}=\frac{1}{n} \sum_{i=1}^{n} \delta_{X_{i}(t)}, \Sigma_{k, l}(x)=\mathbb{E}_{\theta} G\left(x_{k}, \mu, \theta\right) \otimes G\left(x_{l}, \mu, \theta\right)$ and B - n-dim Brownian motion.

SDE Driven by Inf-Dim Noise for SGD Dynamics

Stochastic gradient descent

$$
\begin{aligned}
x_{k}\left(t_{i+1}\right)= & x_{k}\left(t_{i}\right)+V\left(x_{k}\left(t_{i}\right), \nu_{t_{i}}^{n}, \theta_{i}\right) \Delta t \\
= & x_{k}\left(t_{i}\right)+\underbrace{\mathbb{E}_{\theta} V(\ldots)}_{=V\left(x_{k}\left(t_{i}\right), \nu_{t_{i}}^{n}\right)} \Delta t+\underbrace{\sqrt{\Delta t}}_{=\sqrt{\alpha}} \underbrace{\left.V(\ldots)-\mathbb{E}_{\theta} V(\ldots)\right)}_{=G\left(x_{k}\left(t_{i}\right), \nu_{t_{i}}, \theta_{i}\right)} \sqrt{\Delta t}
\end{aligned}
$$

is the Euler-Maruyama scheme for the SDE

$$
d X_{k}(t)=V\left(X_{k}(t), \mu_{t}^{n}\right) d t+\sqrt{\alpha} \int_{\Theta} G\left(X_{k}(t), \mu_{t}^{n}, \theta\right) W(d \theta, d t), \quad k \in\{1, \ldots, n\}
$$

where $\mu_{t}^{n}=\frac{1}{n} \sum_{i=1}^{n} \delta_{X_{i}(t)}, W$ - white noise on $L_{2}(\Theta, P)(P$ is the distribution of $\theta)$.
[Gess, Kassing, K. '23]

Stochastic Mean-Field Equation

$$
d X_{k}(t)=V\left(X_{k}(t), \mu_{t}^{n}\right) d t+\sqrt{\alpha} \int_{\Theta} G\left(X_{k}(t), \mu_{t}^{n}, \theta\right) W(d \theta, d t), \quad k \in\{1, \ldots, n\}
$$ where $\mu_{t}^{n}=\frac{1}{n} \sum_{i=1}^{n} \delta_{X_{i}(t)}, W-$ white noise on $L_{2}(\Theta, P)$.

Stochastic Mean-Field Equation

$$
d X_{k}(t)=V\left(X_{k}(t), \mu_{t}^{n}\right) d t+\sqrt{\alpha} \int_{\Theta} G\left(X_{k}(t), \mu_{t}^{n}, \theta\right) W(d \theta, d t), \quad k \in\{1, \ldots, n\}
$$

where $\mu_{t}^{n}=\frac{1}{n} \sum_{i=1}^{n} \delta_{X_{i}(t)}, W-$ white noise on $L_{2}(\Theta, P)$.

Using Itô 's formula, we come to the Stochastic Mean-Field Equation:

$$
d \mu_{t}=-\nabla \cdot\left(V\left(\cdot, \mu_{t}\right) \mu_{t}\right) d t
$$

Stochastic Mean-Field Equation

$$
d X_{k}(t)=V\left(X_{k}(t), \mu_{t}^{n}\right) d t+\sqrt{\alpha} \int_{\Theta} G\left(X_{k}(t), \mu_{t}^{n}, \theta\right) W(d \theta, d t), \quad k \in\{1, \ldots, n\}
$$

where $\mu_{t}^{n}=\frac{1}{n} \sum_{i=1}^{n} \delta_{X_{i}(t)}, W-$ white noise on $L_{2}(\Theta, P)$.

Using Itô 's formula, we come to the Stochastic Mean-Field Equation:

$$
d \mu_{t}=-\nabla \cdot\left(V\left(\cdot, \mu_{t}\right) \mu_{t}\right) d t+\frac{\alpha}{2} \nabla^{2}:\left(A\left(\cdot, \mu_{t}\right) \mu_{t}\right) d t+\sqrt{\alpha} \nabla \cdot \int_{\Theta} G\left(\cdot, \mu_{t}, \theta\right) \mu_{t} W(d \theta, d t)
$$

where $A\left(x_{k}, \mu\right)=\mathbb{E}_{\theta} G\left(x_{k}, \mu\right) \otimes G\left(x_{k}, \mu\right)$.

Stochastic Mean-Field Equation

$$
d X_{k}(t)=V\left(X_{k}(t), \mu_{t}^{n}\right) d t+\sqrt{\alpha} \int_{\Theta} G\left(X_{k}(t), \mu_{t}^{n}, \theta\right) W(d \theta, d t), \quad k \in\{1, \ldots, n\}
$$

where $\mu_{t}^{n}=\frac{1}{n} \sum_{i=1}^{n} \delta_{X_{i}(t)}, W-$ white noise on $L_{2}(\Theta, P)$.

Using Itô 's formula, we come to the Stochastic Mean-Field Equation:

$$
d \mu_{t}=-\nabla \cdot\left(V\left(\cdot, \mu_{t}\right) \mu_{t}\right) d t+\frac{\alpha}{2} \nabla^{2}:\left(A\left(\cdot, \mu_{t}\right) \mu_{t}\right) d t+\sqrt{\alpha} \nabla \cdot \int_{\Theta} G\left(\cdot, \mu_{t}, \theta\right) \mu_{t} W(d \theta, d t)
$$

where $A\left(x_{k}, \mu\right)=\mathbb{E}_{\theta} G\left(x_{k}, \mu\right) \otimes G\left(x_{k}, \mu\right)$.
$\rightsquigarrow \quad$ The martingale problem for this equation is the same as in [Rotskoff, Vanden-Eijnden, CPAM, '22]

Related Works

$$
d \mu_{t}=-\nabla \cdot\left(V\left(\cdot, \mu_{t}\right) \mu_{t}\right) d t+\frac{\alpha}{2} \nabla^{2}:\left(A\left(\cdot, \mu_{t}\right) \mu_{t}\right) d t-\sqrt{\alpha} \nabla \cdot \int_{\Theta} G\left(\cdot, \mu_{t}, \theta\right) \mu_{t} W(d \theta, d t)
$$

Well-posedness results for similar SPDEs:

- Continuity equation in the fluid dynamics and optimal transportation [Ambrosio, Trevisan, Crippa...]. There $A=G=0$.

Related Works

$$
d \mu_{t}=-\nabla \cdot\left(V\left(\cdot, \mu_{t}\right) \mu_{t}\right) d t+\frac{\alpha}{2} \nabla^{2}:\left(A\left(\cdot, \mu_{t}\right) \mu_{t}\right) d t-\sqrt{\alpha} \nabla \cdot \int_{\Theta} G\left(\cdot, \mu_{t}, \theta\right) \mu_{t} W(d \theta, d t)
$$

Well-posedness results for similar SPDEs:

- Continuity equation in the fluid dynamics and optimal transportation [Ambrosio, Trevisan, Crippa...]. There $A=G=0$.
- Stochastic nonlinear Fokker-Planck equation [Coghi, Gess '19]. The covariance A has more general structure (i.e. $A-\mathbb{E} G \otimes G \geq 0$) but the noise is finite-dimensional.

Related Works

$$
d \mu_{t}=-\nabla \cdot\left(V\left(\cdot, \mu_{t}\right) \mu_{t}\right) d t+\frac{\alpha}{2} \nabla^{2}:\left(A\left(\cdot, \mu_{t}\right) \mu_{t}\right) d t-\sqrt{\alpha} \nabla \cdot \int_{\Theta} G\left(\cdot, \mu_{t}, \theta\right) \mu_{t} W(d \theta, d t)
$$

Well-posedness results for similar SPDEs:

- Continuity equation in the fluid dynamics and optimal transportation [Ambrosio, Trevisan, Crippa...]. There $A=G=0$.
- Stochastic nonlinear Fokker-Planck equation [Coghi, Gess '19]. The covariance A has more general structure (i.e. $A-\mathbb{E} G \otimes G \geq 0$) but the noise is finite-dimensional.

Related Works

$$
d \mu_{t}=-\nabla \cdot\left(V\left(\cdot, \mu_{t}\right) \mu_{t}\right) d t+\frac{\alpha}{2} \nabla^{2}:\left(A\left(\cdot, \mu_{t}\right) \mu_{t}\right) d t-\sqrt{\alpha} \nabla \cdot \int_{\Theta} G\left(\cdot, \mu_{t}, \theta\right) \mu_{t} W(d \theta, d t)
$$

Well-posedness results for similar SPDEs:

- Continuity equation in the fluid dynamics and optimal transportation [Ambrosio, Trevisan, Crippa...]. There $A=G=0$.
- Stochastic nonlinear Fokker-Planck equation [Coghi, Gess '19]. The covariance A has more general structure (i.e. $A-\mathbb{E} G \otimes G \geq 0$) but the noise is finite-dimensional.
- Particle representations for a class of nonlinear SPDEs [Kurtz, Xiong '99]. The equation has more general form but the initial condition μ_{0} must have an L_{2}-density w.r.t. the Lebesgue measure.

Related Works

$$
d \mu_{t}=-\nabla \cdot\left(V\left(\cdot, \mu_{t}\right) \mu_{t}\right) d t+\frac{\alpha}{2} \nabla^{2}:\left(A\left(\cdot, \mu_{t}\right) \mu_{t}\right) d t-\sqrt{\alpha} \nabla \cdot \int_{\Theta} G\left(\cdot, \mu_{t}, \theta\right) \mu_{t} W(d \theta, d t)
$$

Well-posedness results for similar SPDEs:

- Continuity equation in the fluid dynamics and optimal transportation [Ambrosio, Trevisan, Crippa...]. There $A=G=0$.
- Stochastic nonlinear Fokker-Planck equation [Coghi, Gess '19]. The covariance A has more general structure (i.e. $A-\mathbb{E} G \otimes G \geq 0$) but the noise is finite-dimensional.
- Particle representations for a class of nonlinear SPDEs [Kurtz, Xiong '99]. The equation has more general form but the initial condition μ_{0} must have an L_{2}-density w.r.t. the Lebesgue measure.

The results from [Kurtz, Xiong] can be applied to our equation if μ_{0} has L_{2}-density!

Table of Contents

(1) Motivation and derivation of the SPDE

(2) Quantified Mean-Field Limit

(3) Well-posedness and superposition principle

Wasserstein Distance

Let (E, d) be a Polish space, and for $p \geq 1 \mathcal{P}_{p}(E)$ be a space of all probability measures ρ on E with

$$
\int_{E} d^{p}(x, o) \rho(d x)<\infty
$$

Wasserstein Distance

Let (E, d) be a Polish space, and for $p \geq 1 \mathcal{P}_{p}(E)$ be a space of all probability measures ρ on E with

$$
\int_{E} d^{p}(x, o) \rho(d x)<\infty
$$

For $\rho_{1}, \rho_{2} \in \mathcal{P}_{p}(E)$ we define the Wasserstein distance by

$$
\mathcal{W}_{p}^{p}\left(\rho_{1}, \rho_{2}\right)=\inf \left\{\mathbb{E} d^{p}\left(\xi_{1}, \xi_{2}\right): \quad \xi_{i} \sim \rho_{i}\right\}
$$

Higher Order Approximation of SGD

Stochastic Mean-Field Equation:

$$
d \mu_{t}=-\nabla \cdot\left(V\left(\cdot, \mu_{t}\right) \mu_{t}\right) d t+\frac{\alpha}{2} \nabla^{2}:\left(A\left(\cdot, \mu_{t}\right) \mu_{t}\right) d t+\sqrt{\alpha} \nabla \cdot \int_{\Theta} G\left(\cdot, \mu_{t}, \theta\right) \mu_{t} W(d \theta, d t)
$$

where $A\left(x_{k}, \mu\right)=\mathbb{E}_{\theta} G\left(x_{k}, \mu\right) \otimes G\left(x_{k}, \mu\right)$.

Higher Order Approximation of SGD

Stochastic Mean-Field Equation:

$$
d \mu_{t}=-\nabla \cdot\left(V\left(\cdot, \mu_{t}\right) \mu_{t}\right) d t+\frac{\alpha}{2} \nabla^{2}:\left(A\left(\cdot, \mu_{t}\right) \mu_{t}\right) d t+\sqrt{\alpha} \nabla \cdot \int_{\Theta} G\left(\cdot, \mu_{t}, \theta\right) \mu_{t} W(d \theta, d t)
$$

where $A\left(x_{k}, \mu\right)=\mathbb{E}_{\theta} G\left(x_{k}, \mu\right) \otimes G\left(x_{k}, \mu\right)$.

Theorem 1 (Gess, Gvalani, K. 2022)

- $V, G-$ Lipschitz cont. and diff. w.r.t. the special variable with bdd deriv.;
- ν_{t}^{n} - the empirical process associated to the SGD dynamics with $\alpha=\frac{1}{n}$;
- μ_{t}^{n} - a (unique) solution to the SMFE started from

$$
\mu_{0}^{n}=\nu_{0}^{n}=\frac{1}{n} \sum_{k=1}^{n} \delta_{x_{k}(0)}
$$

with $x_{k}(0) \sim \mu_{0}$ i.i.d.
Then all $p \in[1,2)$

$$
\mathcal{W}_{p}\left(\operatorname{Law} \mu^{n}, \operatorname{Law} \nu^{n}\right)=o\left(n^{-1 / 2}\right)
$$

Quantified Central Limit Theorem for SMFE

Theorem 2 (Gess, Gvalani, K. 2022)

Under the assumptions of the previous theorem, $\eta_{t}^{n}:=\sqrt{n}\left(\mu_{t}^{n}-\mu_{t}^{0}\right) \rightarrow \eta_{t}$ where η_{t} is a Gaussian process solving
$d \eta_{t}=-\nabla \cdot\left(V\left(\cdot, \mu_{t}^{0}\right) \eta_{t}+\left\langle\nabla K(x, \cdot), \eta_{t}\right\rangle \mu_{t}^{0}(d x)\right) d t-\nabla \cdot \int_{\Theta} G\left(\cdot, \mu_{t}^{0}, \theta\right) \mu_{t}^{0} W(d \theta, d t)$.
Moreover, $\mathbb{E} \sup _{t \in[0, T]}\left\|\eta_{t}^{n}-\eta_{t}\right\|_{-J}^{2} \leq \frac{c}{n}$.

Quantified Central Limit Theorem for SMFE

Theorem 2 (Gess, Gvalani, K. 2022)

Under the assumptions of the previous theorem, $\eta_{t}^{n}:=\sqrt{n}\left(\mu_{t}^{n}-\mu_{t}^{0}\right) \rightarrow \eta_{t}$ where η_{t} is a Gaussian process solving
$d \eta_{t}=-\nabla \cdot\left(V\left(\cdot, \mu_{t}^{0}\right) \eta_{t}+\left\langle\nabla K(x, \cdot), \eta_{t}\right\rangle \mu_{t}^{0}(d x)\right) d t-\nabla \cdot \int_{\Theta} G\left(\cdot, \mu_{t}^{0}, \theta\right) \mu_{t}^{0} W(d \theta, d t)$.
Moreover, $\mathbb{E} \sup _{t \in[0, T]}\left\|\eta_{t}^{n}-\eta_{t}\right\|_{-J}^{2} \leq \frac{c}{n}$.

Remark. [Sirignano, Spiliopoulos, '20]

For $\tilde{\eta}_{t}^{n}:=\sqrt{n}\left(\nu_{t}^{n}-\mu_{t}^{0}\right)$

$$
\mathbb{E} \sup _{t \in[0, T]}\left\|\tilde{\eta}_{t}^{n}\right\|_{-J}^{2} \leq C \quad \text { and } \quad \tilde{\eta}^{n} \rightarrow \eta .
$$

CLT for SMFE + CLT for SGD \Longrightarrow Higher Order Approx.

Note that

$$
\mu_{t}^{n}=\mu_{t}^{0}+n^{-1 / 2} \eta+O\left(n^{-1}\right)
$$

CLT for SMFE + CLT for SGD \Longrightarrow Higher Order Approx.

Note that

$$
\begin{aligned}
\mu_{t}^{n} & =\mu_{t}^{0}+n^{-1 / 2} \eta+O\left(n^{-1}\right) \\
\nu_{t}^{n} & =\mu_{t}^{0}+n^{-1 / 2} \eta+o\left(n^{-1 / 2}\right)
\end{aligned}
$$

CLT for SMFE + CLT for SGD \Longrightarrow Higher Order Approx.

Note that

$$
\begin{aligned}
\mu_{t}^{n} & =\mu_{t}^{0}+n^{-1 / 2} \eta+O\left(n^{-1}\right) \\
\nu_{t}^{n} & =\mu_{t}^{0}+n^{-1 / 2} \eta+o\left(n^{-1 / 2}\right)
\end{aligned}
$$

Therefore, $\mu^{n}-\nu^{n}=o\left(n^{-1 / 2}\right)$.

CLT for SMFE + CLT for SGD \Longrightarrow Higher Order Approx.

Note that

$$
\begin{aligned}
\mu_{t}^{n} & =\mu_{t}^{0}+n^{-1 / 2} \eta+O\left(n^{-1}\right) \\
\nu_{t}^{n} & =\mu_{t}^{0}+n^{-1 / 2} \eta+o\left(n^{-1 / 2}\right)
\end{aligned}
$$

Therefore, $\mu^{n}-\nu^{n}=o\left(n^{-1 / 2}\right)$.

$$
\begin{aligned}
\sqrt{n^{p}} \mathcal{W}_{p}^{p} & \left(\operatorname{Law}\left(\mu^{n}\right), \operatorname{Law}\left(\nu^{n}\right)\right)=\sqrt{n^{p}} \inf \mathbb{E}\left[\sup _{t \in[0, T]}\left\|\mu_{t}^{n}-\nu_{t}^{n}\right\|_{-J}^{p}\right] \\
& =\inf \mathbb{E}\left[\sup _{t \in[0, T]}\left\|\sqrt{n}\left(\mu_{t}^{n}-\mu_{t}^{0}\right)-\sqrt{n}\left(\nu_{t}^{n}-\mu_{t}^{0}\right)\right\|_{-J}^{p}\right] \\
& =\mathcal{W}_{p}^{p}\left(\operatorname{Law}\left(\eta^{n}\right), \operatorname{Law}\left(\tilde{\eta}^{n}\right)\right) \rightarrow 0 .
\end{aligned}
$$

Table of Contents

(1) Motivation and derivation of the SPDE

(2) Quantified Mean-Field Limit
(3) Well-posedness and superposition principle

Continuity Equation

$$
d \mu_{t}=-\nabla \cdot\left(V \mu_{t}\right) d t
$$

Continuity Equation

$$
\begin{aligned}
& d \mu_{t}=-\nabla \cdot\left(V \mu_{t}\right) d t \\
& \Longrightarrow \mu_{t}=\mu_{0} \circ X(\cdot, t)
\end{aligned}
$$

where

$$
d X(u, t)=V(X(u, t)) d t, \quad X(u, 0)=u
$$

[Ambrosio, Trevisan, Lions,...]

Continuity Equation

$$
\begin{aligned}
& d \mu_{t}=-\nabla \cdot\left(V \mu_{t}\right) d t \\
& \Longrightarrow \mu_{t}=\mu_{0} \circ X(\cdot, t)
\end{aligned}
$$

where

$$
d X(u, t)=V(X(u, t)) d t, \quad X(u, 0)=u
$$

[Ambrosio, Trevisan, Lions,...]
The Stochastic Mean-Field Equation was derived from:

$$
\begin{aligned}
d X_{k}(t) & =V\left(X_{k}(t), \mu_{t}^{n}\right) d t+\sqrt{\alpha} \int_{\Theta} G\left(X_{k}(t), \mu_{t}^{n}, \theta\right) W(d \theta, d t) \\
X_{k}(0) & =X_{k}(0), \quad \mu_{t}^{n}=\frac{1}{n} \sum_{i=1}^{n} \delta X_{i}(t)
\end{aligned}
$$

Well-Posedness of SMFE

Theorem 3 (Gess, Gvalani, K. 2022)

Let the coefficients V, G be Lipschitz continuous and smooth enough w.r.t. special variable. Then the SMFE

$$
\begin{aligned}
d \mu_{t}=-\nabla \cdot\left(V\left(\cdot, \mu_{t}\right) \mu_{t}\right) d t & +\frac{\alpha}{2} \nabla^{2}:\left(A\left(\cdot, \mu_{t}\right) \mu_{t}\right) d t \\
& -\sqrt{\alpha} \nabla \cdot \int_{\Theta} G\left(\cdot, \mu_{t}, \theta\right) \mu_{t} W(d \theta, d t)
\end{aligned}
$$

has a unique solution. Moreover, μ_{t} is a superposition solution, i.e.,

$$
\mu_{t}=\mu_{0} \circ X^{-1}(\cdot, t), \quad t \geq 0
$$

where X solves

$$
\begin{aligned}
d X(u, t) & =V\left(X(u, t), \mu_{t}\right) d t+\sqrt{\alpha} \int_{\Theta} G\left(X(u, t), \mu_{t}, \theta\right) W(d \theta, d t) \\
X(u, 0) & =u, \quad u \in \mathbb{R}^{d}
\end{aligned}
$$

SDE with Interaction

SDE with interaction:

$$
\begin{aligned}
d X(u, t) & =V\left(X(u, t), \mu_{t}\right) d t+\sqrt{\alpha} \int_{\Theta} G\left(X(u, t), \mu_{t}, \theta\right) W(d \theta, d t) \\
X(u, 0) & =u, \quad \mu_{t}=\mu_{0} \circ X^{-1}(\cdot, t), \quad u \in \mathbb{R}^{d}
\end{aligned}
$$

SDE with Interaction

SDE with interaction:

$$
\begin{aligned}
d X(u, t) & =V\left(X(u, t), \mu_{t}\right) d t+\sqrt{\alpha} \int_{\Theta} G\left(X(u, t), \mu_{t}, \theta\right) W(d \theta, d t) \\
X(u, 0) & =u, \quad \mu_{t}=\mu_{0} \circ X^{-1}(\cdot, t), \quad u \in \mathbb{R}^{d}
\end{aligned}
$$

$X_{t}=X(\cdot, t)$ is a solution to the conditional McKean-Vlasov SDE

$$
d X_{t}=V\left(X_{t}, \mathcal{L}_{X_{t} \mid W}\right)+\sqrt{\alpha} \int_{\Theta} G\left(X_{t}, \mathcal{L}_{X_{t} \mid W}, \theta\right) W(d \theta, d t), \quad \mathcal{L}_{X_{0}}=\mu_{0}
$$

SDE with Interaction

SDE with interaction:

$$
\begin{aligned}
d X(u, t) & =V\left(X(u, t), \mu_{t}\right) d t+\sqrt{\alpha} \int_{\Theta} G\left(X(u, t), \mu_{t}, \theta\right) W(d \theta, d t) \\
X(u, 0) & =u, \quad \mu_{t}=\mu_{0} \circ X^{-1}(\cdot, t), \quad u \in \mathbb{R}^{d}
\end{aligned}
$$

$X_{t}=X(\cdot, t)$ is a solution to the conditional McKean-Vlasov SDE

$$
d X_{t}=V\left(X_{t}, \mathcal{L}_{X_{t} \mid W}\right)+\sqrt{\alpha} \int_{\Theta} G\left(X_{t}, \mathcal{L}_{X_{t} \mid W}, \theta\right) W(d \theta, d t), \quad \mathcal{L}_{X_{0}}=\mu_{0}
$$

Theorem (Kotelenez '95, Dorogovtsev' 07, Wang '21)

Let V, G be Lipschitz continuous, i.e. $\exists L>0$ such that a.s.

$$
|V(x, \mu)-V(y, \nu)|+\||G(x, \mu, \cdot)-G(y, \nu, \cdot)|\|_{P} \leq L\left(|x-y|+\mathcal{W}_{2}(\mu, \nu)\right) .
$$

Then for every $\mu_{0} \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$ the SDE with interaction has a unique solution started from μ_{0}.

SMFE and SDE with Interaction

Lemma

Let X be a solution to the SDE with interaction with $\mu_{0} \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$. Then $\mu_{t}=\mu_{0} \circ X^{-1}(\cdot, t), t \geq 0$, is a solution to the SMFE.

SMFE and SDE with Interaction

Lemma

Let X be a solution to the SDE with interaction with $\mu_{0} \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$. Then $\mu_{t}=\mu_{0} \circ X^{-1}(\cdot, t), t \geq 0$, is a solution to the SMFE.

Remark: We say that $\mu_{t}, t \geq 0$, is a superposition solution to the Stochastic Mean-Field equation.

SMFE and SDE with Interaction

Lemma

Let X be a solution to the SDE with interaction with $\mu_{0} \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$. Then $\mu_{t}=\mu_{0} \circ X^{-1}(\cdot, t), t \geq 0$, is a solution to the SMFE.

Remark: We say that $\mu_{t}, t \geq 0$, is a superposition solution to the Stochastic Mean-Field equation.

Corollary

Let V, G be Lipschitz continuous. Then the SMFE

$$
\begin{aligned}
d \mu_{t}=-\nabla \cdot\left(V\left(\cdot, \mu_{t}\right) \mu_{t}\right) d t & +\frac{\alpha}{2} \nabla^{2}:\left(A\left(\cdot, \mu_{t}\right) \mu_{t}\right) d t \\
& -\sqrt{\alpha} \nabla \cdot \int_{\Theta} G\left(\cdot, \mu_{t}, \theta\right) \mu_{t} W(d \theta, d t)
\end{aligned}
$$

has a unique solution iff it has only superposition solutions.

Uniqueness of Solutions to SMFE

- To prove the uniqueness, we show that every solution to the (nonlinear) SMFE is a superposition solution.

Uniqueness of Solutions to SMFE

- To prove the uniqueness, we show that every solution to the (nonlinear) SMFE is a superposition solution.
- We first freeze the solution μ_{t} in the coefficients, considering the linear SPDE:

$$
\begin{aligned}
d \nu_{t}=-\nabla \cdot\left(v(t, \cdot) \nu_{t}\right) d t & +\frac{\alpha}{2} \nabla^{2}:\left(a(t, \cdot) \nu_{t}\right) d t \\
& -\sqrt{\alpha} \nabla \cdot \int_{\Theta} g(t, \cdot, \theta) \nu_{t} W(d \theta, d t)
\end{aligned}
$$

where $a(t, x)=A\left(x, \mu_{t}\right), v(t, x)=V\left(x, \mu_{t}\right)$ and $g(t, x, \theta)=G\left(x, \mu_{t}, \theta\right)$.

Uniqueness of Solutions to SMFE

- To prove the uniqueness, we show that every solution to the (nonlinear) SMFE is a superposition solution.
- We first freeze the solution μ_{t} in the coefficients, considering the linear SPDE:

$$
\begin{aligned}
d \nu_{t}=-\nabla \cdot\left(v(t, \cdot) \nu_{t}\right) d t & +\frac{\alpha}{2} \nabla^{2}:\left(a(t, \cdot) \nu_{t}\right) d t \\
& -\sqrt{\alpha} \nabla \cdot \int_{\Theta} g(t, \cdot, \theta) \nu_{t} W(d \theta, d t),
\end{aligned}
$$

where $a(t, x)=A\left(x, \mu_{t}\right), v(t, x)=V\left(x, \mu_{t}\right)$ and $g(t, x, \theta)=G\left(x, \mu_{t}, \theta\right)$.

- We remove the second order term and the noise term from the linear SPDE by a (random) transformation of the space.

Random Transformation of State Space

We introduce the field of martingales

$$
M(x, t)=\sqrt{\alpha} \int_{0}^{t} g(s, x, \theta) W(d \theta, d s), \quad x \in \mathbb{R}^{d}, \quad t \geq 0
$$

and consider a solution $\psi_{t}(x)=\left(\psi_{t}^{1}(x), \ldots, \psi_{t}^{d}(x)\right)$ to the stochastic transport equation

$$
\psi_{t}^{k}(x)=x^{k}-\int_{0}^{t} \nabla \psi_{s}^{k}(x) \cdot M(x, \circ d s)
$$

Random Transformation of State Space

We introduce the field of martingales

$$
M(x, t)=\sqrt{\alpha} \int_{0}^{t} g(s, x, \theta) W(d \theta, d s), \quad x \in \mathbb{R}^{d}, \quad t \geq 0
$$

and consider a solution $\psi_{t}(x)=\left(\psi_{t}^{1}(x), \ldots, \psi_{t}^{d}(x)\right)$ to the stochastic transport equation

$$
\psi_{t}^{k}(x)=x^{k}-\int_{0}^{t} \nabla \psi_{s}^{k}(x) \cdot M(x, \circ d s)
$$

Lemma (see Kunita Stochastic flows and SDEs)

Under some smooth assumption on the coefficient g, the exists a field of diffeomorphisms $\psi(t, \cdot): \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}, t \geq 0$, which solves the stochastic transport equation.

Transformed SPDE

For the solution $\nu_{t}, t \geq 0$, to the linear SPDE

$$
d \nu_{t}=-\nabla \cdot\left(v(t, \cdot) \nu_{t}\right) d t+\frac{\alpha}{2} \nabla^{2}:\left(a(t, \cdot) \nu_{t}\right) d t-\sqrt{\alpha} \nabla \cdot \int_{\Theta} g(t, \cdot, \theta) \nu_{t} W(d \theta, d t)
$$

we define

$$
\rho_{t}=\nu_{t} \circ \psi_{t}^{-1}
$$

Transformed SPDE

For the solution $\nu_{t}, t \geq 0$, to the linear SPDE

$$
d \nu_{t}=-\nabla \cdot\left(v(t, \cdot) \nu_{t}\right) d t+\frac{\alpha}{2} \nabla^{2}:\left(a(t, \cdot) \nu_{t}\right) d t-\sqrt{\alpha} \nabla \cdot \int_{\Theta} g(t, \cdot, \theta) \nu_{t} W(d \theta, d t)
$$

we define

$$
\rho_{t}=\nu_{t} \circ \psi_{t}^{-1}
$$

Proposition

Let the coefficient g be smooth enough. Then $\rho_{t}, t \geq 0$, is a solution to the continuity equation ${ }^{a}$

$$
d \rho_{t}=-\nabla\left(b(t, \cdot) \rho_{t}\right) d t, \quad \rho_{0}=\nu_{0}=\mu_{0}
$$

for some b depending on v and derivatives of a and ψ.

[^0]
Purely Atomic Initial Distribution

$$
\begin{aligned}
d \mu_{t}=-\nabla \cdot\left(V\left(\cdot, \mu_{t}\right) \mu_{t}\right) d t & +\frac{\alpha}{2} \nabla^{2}:\left(A\left(\cdot, \mu_{t}\right) \mu_{t}\right) d t \\
& -\sqrt{\alpha} \nabla \cdot \int_{\Theta} G\left(\cdot, \mu_{t}, \theta\right) \mu_{t} W(d \theta, d t)
\end{aligned}
$$

Assume that $\mu_{0}=\sum_{k=1}^{n} a_{k} \delta_{x_{k}}$,

Purely Atomic Initial Distribution

$$
\begin{aligned}
d \mu_{t}=-\nabla \cdot\left(V\left(\cdot, \mu_{t}\right) \mu_{t}\right) d t & +\frac{\alpha}{2} \nabla^{2}:\left(A\left(\cdot, \mu_{t}\right) \mu_{t}\right) d t \\
& -\sqrt{\alpha} \nabla \cdot \int_{\Theta} G\left(\cdot, \mu_{t}, \theta\right) \mu_{t} W(d \theta, d t)
\end{aligned}
$$

Assume that $\mu_{0}=\sum_{k=1}^{n} a_{k} \delta_{x_{k}}$,
Take

$$
F_{n}(\mu):=\int_{\mathbb{R}^{n+1}} \prod_{i<j}\left|z_{i}-z_{j}\right|^{2} \mu\left(d z_{1}\right) \ldots \mu\left(d z_{n+1}\right)
$$

and note that $F_{n}\left(\mu_{0}\right)=0$

Purely Atomic Initial Distribution

$$
\begin{aligned}
d \mu_{t}=-\nabla \cdot\left(V\left(\cdot, \mu_{t}\right) \mu_{t}\right) d t & +\frac{\alpha}{2} \nabla^{2}:\left(A\left(\cdot, \mu_{t}\right) \mu_{t}\right) d t \\
& -\sqrt{\alpha} \nabla \cdot \int_{\Theta} G\left(\cdot, \mu_{t}, \theta\right) \mu_{t} W(d \theta, d t)
\end{aligned}
$$

Assume that $\mu_{0}=\sum_{k=1}^{n} a_{k} \delta_{x_{k}}$,
Take

$$
F_{n}(\mu):=\int_{\mathbb{R}^{n+1}} \prod_{i<j}\left|z_{i}-z_{j}\right|^{2} \mu\left(d z_{1}\right) \ldots \mu\left(d z_{n+1}\right)
$$

and note that $F_{n}\left(\mu_{0}\right)=0$
Using Itô's formula, one can show that

$$
\mathbb{E} F_{n}\left(\mu_{t}\right) \leq F_{n}\left(\mu_{0}\right)+C \int_{0}^{t} \mathbb{E} F_{n}\left(\mu_{s}\right) d s
$$

Purely Atomic Initial Distribution

$$
\begin{aligned}
d \mu_{t}=-\nabla \cdot\left(V\left(\cdot, \mu_{t}\right) \mu_{t}\right) d t & +\frac{\alpha}{2} \nabla^{2}:\left(A\left(\cdot, \mu_{t}\right) \mu_{t}\right) d t \\
& -\sqrt{\alpha} \nabla \cdot \int_{\Theta} G\left(\cdot, \mu_{t}, \theta\right) \mu_{t} W(d \theta, d t)
\end{aligned}
$$

Assume that $\mu_{0}=\sum_{k=1}^{n} a_{k} \delta_{x_{k}}$,
Take

$$
F_{n}(\mu):=\int_{\mathbb{R}^{n+1}} \prod_{i<j}\left|z_{i}-z_{j}\right|^{2} \mu\left(d z_{1}\right) \ldots \mu\left(d z_{n+1}\right)
$$

and note that $F_{n}\left(\mu_{0}\right)=0$
Using Itô's formula, one can show that

$$
\mathbb{E} F_{n}\left(\mu_{t}\right) \leq F_{n}\left(\mu_{0}\right)+C \int_{0}^{t} \mathbb{E} F_{n}\left(\mu_{s}\right) d s
$$

$\rightsquigarrow \mathbb{E} F_{n}\left(\mu_{t}\right)=0$

Purely Atomic Initial Distribution

$$
\begin{aligned}
d \mu_{t}=-\nabla \cdot\left(V\left(\cdot, \mu_{t}\right) \mu_{t}\right) d t & +\frac{\alpha}{2} \nabla^{2}:\left(A\left(\cdot, \mu_{t}\right) \mu_{t}\right) d t \\
& -\sqrt{\alpha} \nabla \cdot \int_{\Theta} G\left(\cdot, \mu_{t}, \theta\right) \mu_{t} W(d \theta, d t)
\end{aligned}
$$

Assume that $\mu_{0}=\sum_{k=1}^{n} a_{k} \delta_{x_{k}}$,
Take

$$
F_{n}(\mu):=\int_{\mathbb{R}^{n+1}} \prod_{i<j}\left|z_{i}-z_{j}\right|^{2} \mu\left(d z_{1}\right) \ldots \mu\left(d z_{n+1}\right)
$$

and note that $F_{n}\left(\mu_{0}\right)=0$
Using Itô's formula, one can show that

$$
\mathbb{E} F_{n}\left(\mu_{t}\right) \leq F_{n}\left(\mu_{0}\right)+C \int_{0}^{t} \mathbb{E} F_{n}\left(\mu_{s}\right) d s
$$

$\rightsquigarrow \mathbb{E} F_{n}\left(\mu_{t}\right)=0$
$\rightsquigarrow \mu_{t}$ is purely atomic...

Reference

Gess, Gvalani, Konarovskyi, Conservative SPDEs as fluctuating mean field limits of stochastic gradient descent (arXiv:2207.05705)

Gess, Kassing, Konarovskyi, Stochastic Modified Flows, Mean-Field Limits and Dynamics of Stochastic Gradient Descent
(arXiv:2302.07125)

Thank you!

[^0]: ${ }^{a}$ Ambrosio, Lions, Trevisan,...

