Conservative SPDEs as Fluctuating Mean Field Limits of Stochastic Gradient Descent

Vitalii Konarovskyi

Bielefeld University

International Conference of Young Mathematicians - Kyiv

joint work with Benjamin Gess and Rishabh Gvalani

< □ > < 同 > < 三 > < Ξ

Supervised Learning

Having a large sets of data {(θ_i, γ_i), i ∈ I}, θ_i ~ ϑ i.i.d., one needs to find a function f : Θ → ℝ such that f(θ_i) = γ_i.

Supervised Learning

- Having a large sets of data {(θ_i, γ_i), i ∈ I}, θ_i ~ ϑ i.i.d., one needs to find a function f : Θ → ℝ such that f(θ_i) = γ_i.
- Usually one approximates f by

$$f_n(\theta; x) = \frac{1}{n} \sum_{k=1}^n \Phi(\theta, x_k),$$

where $x_k \in \mathbb{R}^d$, $k \in \{1, ..., n\}$, are parameters which have to be found. Example: $\Phi(\theta, x_k) = c_k \cdot h(A_k\theta + b_k), \quad x_k = (A_k, b_k, c_k)$

Supervised Learning

- Having a large sets of data {(θ_i, γ_i), i ∈ I}, θ_i ~ ϑ i.i.d., one needs to find a function f : Θ → ℝ such that f(θ_i) = γ_i.
- Usually one approximates f by

$$f_n(\theta; x) = \frac{1}{n} \sum_{k=1}^n \Phi(\theta, x_k),$$

where $x_k \in \mathbb{R}^d$, $k \in \{1, ..., n\}$, are parameters which have to be found. Example: $\Phi(\theta, x_k) = c_k \cdot h(A_k\theta + b_k), \quad x_k = (A_k, b_k, c_k)$

• We measure the distance between f and f_n by the generalization error

$$\mathcal{L}(x) := rac{1}{2} \mathbb{E}_{artheta} |f(heta) - f_n(heta; x)|^2 = rac{1}{2} \int_{\Theta} |f(heta) - f_n(heta; x)|^2 artheta(d heta),$$

where ϑ is the distribution of θ_i .

Let $x_k(0) \sim \mu_0$ – i.i.d.

イロト イ団ト イヨト イヨト

2

Let $x_k(0) \sim \mu_0 - i.i.d.$

The parameters x_k , $k \in \{1, \ldots, n\}$ can be learned by stochastic gradient descent

$$x_k(t_{i+1}) = x_k(t_i) -
abla_{x_k}\left(rac{1}{2}|f(heta_i) - f_n(heta_i;x)|^2
ight)\Delta t$$

where Δt – learning rate, $t_i = i\Delta t$, $\theta_i \sim \vartheta$ – i.i.d.,

Let $x_k(0) \sim \mu_0$ – i.i.d.

The parameters x_k , $k \in \{1, ..., n\}$ can be learned by stochastic gradient descent

$$egin{aligned} & x_k(t_{i+1}) = x_k(t_i) -
abla_{x_k} \left(rac{1}{2} |f(heta_i) - f_n(heta_i;x)|^2
ight) \Delta t \ & = x_k(t_i) + \left(
abla F(x_k(t_i), heta_i) - \langle
abla_x K(x_k(t_i),\cdot, heta_i),
u_{t_i}^n
ight) \Delta t \end{aligned}$$

where Δt – learning rate, $t_i = i\Delta t$, $\theta_i \sim \vartheta$ – i.i.d., $\nu_t^n = \frac{1}{n} \sum_{l=1}^n \delta_{x_l(t)}$, $F(x, \theta) = f(\theta) \Phi(\theta, x)$ and $K(x, y, \theta) = \Phi(\theta, x) \Phi(\theta, y)$.

Let $x_k(0) \sim \mu_0$ – i.i.d.

The parameters x_k , $k \in \{1, ..., n\}$ can be learned by stochastic gradient descent

$$\begin{aligned} x_k(t_{i+1}) &= x_k(t_i) - \nabla_{x_k} \left(\frac{1}{2} |f(\theta_i) - f_n(\theta_i; x)|^2 \right) \Delta t \\ &= x_k(t_i) + \left(\nabla F(x_k(t_i), \theta_i) - \langle \nabla_x K(x_k(t_i), \cdot, \theta_i), \nu_{t_i}^n \rangle \right) \Delta t \\ &= x_k(t_i) + V(x_k(t_i), \nu_{t_i}^n, \theta_i) \Delta t \end{aligned}$$

where Δt - learning rate, $t_i = i\Delta t$, $\theta_i \sim \vartheta - \text{i.i.d.}$, $\nu_t^n = \frac{1}{n} \sum_{l=1}^n \delta_{x_l(t)}$, $F(x, \theta) = f(\theta) \Phi(\theta, x)$ and $K(x, y, \theta) = \Phi(\theta, x) \Phi(\theta, y)$.

Continuous Dynamics of Parameters

Recall that $x_k(0) \sim \mu_0 - i.i.d.$, $\Delta t - learning rate$, $t_i = i\Delta t$, $\theta_i \sim \vartheta - i.i.d$.

 $x_k(t_{i+1}) = x_k(t_i) + V(x_k(t_i), \nu_{t_i}^n, \theta_i)\Delta t, \quad k \in \{1, \ldots, n\},$

where $\nu_t^n = \frac{1}{n} \sum_{k=1}^n \delta_{x_k(t)}$.

Image: A math a math

Continuous Dynamics of Parameters

Recall that $x_k(0) \sim \mu_0$ – i.i.d., Δt – learning rate, $t_i = i\Delta t$, $\theta_i \sim \vartheta$ – i.i.d.

 $x_k(t_{i+1}) = x_k(t_i) + V(x_k(t_i), \nu_{t_i}^n, \theta_i) \Delta t, \quad k \in \{1, \ldots, n\},$

where $\nu_t^n = \frac{1}{n} \sum_{k=1}^n \delta_{x_k(t)}$.

Considering the empirical distribution $\nu^n = \frac{1}{n} \sum_{k=1}^n \delta_{x_k}$, one has

$$f_n(\theta; \mathbf{x}) = \frac{1}{n} \sum_{k=1}^n \Phi(\theta, \mathbf{x}_k) = \langle \Phi(\theta, \cdot), \nu^n \rangle.$$

Continuous Dynamics of Parameters

Recall that $x_k(0) \sim \mu_0$ – i.i.d., Δt – learning rate, $t_i = i\Delta t$, $\theta_i \sim \vartheta$ – i.i.d.

 $x_k(t_{i+1}) = x_k(t_i) + V(x_k(t_i), \nu_{t_i}^n, \theta_i)\Delta t, \quad k \in \{1, \ldots, n\},$

where $\nu_t^n = \frac{1}{n} \sum_{k=1}^n \delta_{x_k(t)}$.

Considering the empirical distribution $\nu^n = \frac{1}{n} \sum_{k=1}^n \delta_{x_k}$, one has

$$f_n(\theta; x) = \frac{1}{n} \sum_{k=1}^n \Phi(\theta, x_k) = \langle \Phi(\theta, \cdot), \nu^n \rangle.$$

The expression for $x_k(t)$ looks as an Euler scheme for

$$dX_k(t) = V(X_k(t), \mu_t) dt,$$

$$\mu_t = \frac{1}{n} \sum_{k=1}^n \delta_{X_k(t)}, \quad V(x, \mu) = \mathbb{E}_{\theta} V(x, \mu, \theta)$$

Vitalii Konarovskyi (Bielefeld University)

Convergence to deterministic SPDE

If $x_k(0) \sim \mu_0$ – i.i.d. and $\Delta t = \frac{1}{n}$, then

$$d(\nu_t^n,\mu_t)=O\left(rac{1}{\sqrt{n}}
ight),$$

where μ_t solves

 $d\mu_t = -\nabla \left(V(\cdot, \mu_t) \mu_t \right) dt$

[Mei, Montanari, Nguyen '18]

Convergence to deterministic SPDE

If $x_k(0) \sim \mu_0$ – i.i.d. and $\Delta t = \frac{1}{n}$, then

$$d(\nu_t^n,\mu_t)=O\left(rac{1}{\sqrt{n}}
ight),$$

where μ_t solves

$$d\mu_t = -
abla \left(V(\cdot, \mu_t) \mu_t
ight) dt$$

[Mei, Montanari, Nguyen '18]

 \implies The mean behavior of the SGD dynamics can then be analysed by considering μ_t .

Main Goal

Problem. After passing to the limit the equation

 $d\mu_t = -\nabla \left(V(\cdot, \mu_t) \mu_t \right) dt$

loses the information about the fluctuations of the SGD dynamics

$$x_k(t_{i+1}) = x_k(t_i) + V(x_k(t_i), \nu_{t_i}^n, \theta_i) \Delta t, \quad \nu_t^n = \frac{1}{n} \sum_{l=1}^n \delta_{x_l(t)}.$$

(ロ) (日) (日) (日) (日)

æ

Main Goal

Problem. After passing to the limit the equation

 $d\mu_t = -\nabla \left(V(\cdot, \mu_t) \mu_t \right) dt$

loses the information about the fluctuations of the SGD dynamics

$$x_k(t_{i+1}) = x_k(t_i) + V(x_k(t_i), \nu_{t_i}^n, \theta_i)\Delta t, \quad \nu_t^n = \frac{1}{n} \sum_{l=1}^n \delta_{x_l(t)}.$$

Goal: Propose a **stochastic** PDE which would capture the fluctuations of the SGD dynamics. Then, probably, its solutions would better approximate the SGD dynamics as $n \to \infty$ and $\Delta t \to 0$.

Stochastic gradient descent

 $x_k(t_{i+1}) = x_k(t_i) + V(x_k(t_i), \nu_{t_i}^n, \theta_i) \Delta t$

イロト イポト イヨト イヨト

æ

Stochastic gradient descent

$$egin{aligned} & x_k(t_{i+1}) = x_k(t_i) + V(x_k(t_i),
u_{t_i}^n, heta_i) \Delta t \ & = x_k(t_i) + \mathbb{E}_ heta \, V(\dots) \Delta t + \sqrt{\Delta t} \, (V(\dots) - \mathbb{E}_ heta \, V(\dots)) \sqrt{\Delta t} \end{aligned}$$

イロト イポト イヨト イヨト

æ

Stochastic gradient descent

$$\begin{aligned} x_k(t_{i+1}) &= x_k(t_i) + V(x_k(t_i), \nu_{t_i}^n, \theta_i) \Delta t \\ &= x_k(t_i) + \underbrace{\mathbb{E}_{\theta} V(\ldots)}_{=V(x_k(t_i), \nu_{t_i}^n)} \Delta t + \underbrace{\sqrt{\Delta t}}_{=\sqrt{\alpha}} \underbrace{(V(\ldots) - \mathbb{E}_{\theta} V(\ldots))}_{=G(x_k(t_i), \nu_{t_i}^n, \theta_i)} \sqrt{\Delta t} \end{aligned}$$

イロト イヨト イヨト イヨト

2

Stochastic gradient descent

$$\begin{aligned} x_k(t_{i+1}) &= x_k(t_i) + V(x_k(t_i), \nu_{t_i}^n, \theta_i) \Delta t \\ &= x_k(t_i) + \underbrace{\mathbb{E}_{\theta} V(\ldots)}_{=V(x_k(t_i), \nu_{t_i}^n)} \Delta t + \underbrace{\sqrt{\Delta t}}_{=\sqrt{\alpha}} \underbrace{(V(\ldots) - \mathbb{E}_{\theta} V(\ldots))}_{=G(x_k(t_i), \nu_{t_i}^n, \theta_i)} \sqrt{\Delta t} \end{aligned}$$

is the Euler-Maruyama scheme for the SDE

$$dX_k(t) = V(X_k(t), \mu_t^n) dt + \sqrt{\alpha} (\Sigma^{\frac{1}{2}})_k(X(t)) dB(t), \quad k \in \{1, \ldots, n\}$$

where $\mu_t^n = \frac{1}{n} \sum_{i=1}^n \delta_{X_i(t)}$, $\Sigma_{k,l}(x) = \mathbb{E}_{\theta} G(x_k, \mu, \theta) \otimes G(x_l, \mu, \theta)$ and B – a Brownian motion.

A I > A I > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Stochastic gradient descent

$$\begin{aligned} x_k(t_{i+1}) &= x_k(t_i) + V(x_k(t_i), \nu_{t_i}^n, \theta_i) \Delta t \\ &= x_k(t_i) + \underbrace{\mathbb{E}_{\theta} V(\dots)}_{=V(x_k(t_i), \nu_{t_i}^n)} \Delta t + \underbrace{\sqrt{\Delta t}}_{=\sqrt{\alpha}} \underbrace{(V(\dots) - \mathbb{E}_{\theta} V(\dots))}_{=G(x_k(t_i), \nu_{t_i}^n, \theta_i)} \sqrt{\Delta t} \end{aligned}$$

is the Euler-Maruyama scheme for the SDE

$$dX_k(t) = V(X_k(t), \mu_t^n) dt + \sqrt{\alpha} (\Sigma^{\frac{1}{2}})_k(X(t)) dB(t), \quad k \in \{1, \ldots, n\}$$

where $\mu_t^n = \frac{1}{n} \sum_{i=1}^n \delta_{X_i(t)}$, $\Sigma_{k,l}(x) = \mathbb{E}_{\theta} G(x_k, \mu, \theta) \otimes G(x_l, \mu, \theta)$ and B – a Brownian motion.

 $\rightsquigarrow \Sigma^{\frac{1}{2}}$ is $dn \times dn$ matrix!

SDE Driven by Inf-Dim Noise for SGD Dynamics

Stochastic gradient descent

$$\begin{aligned} x_k(t_{i+1}) &= x_k(t_i) + V(x_k(t_i), \nu_{t_i}^n, \theta_i) \Delta t \\ &= x_k(t_i) + \underbrace{\mathbb{E}_{\theta} V(\ldots)}_{=V(x_k(t_i), \nu_{t_i}^n)} \Delta t + \underbrace{\sqrt{\Delta t}}_{=\sqrt{\alpha}} \underbrace{(V(\ldots) - \mathbb{E}_{\theta} V(\ldots))}_{=G(x_k(t_i), \nu_{t_i}^n, \theta_i)} \sqrt{\Delta t} \end{aligned}$$

is the Euler-Maruyama scheme for the SDE

$$dX_k(t) = V(X_k(t), \mu_t^n) dt + \sqrt{\alpha} \int_{\Theta} G(X_k(t), \mu_t^n, \theta) W(d\theta, dt), \quad k \in \{1, \dots, n\}$$

where $\mu_t^n = \frac{1}{n} \sum_{i=1}^n \delta_{X_i(t)}$, W – white noise on $L_2(\Theta, \vartheta)$.

[Gess, Kassing, K. '23]

Vitalii Konarovskyi (Bielefeld University)

$$dX_k(t) = V(X_k(t), \mu_t^n) dt + \sqrt{\alpha} \int_{\Theta} G(X_k(t), \mu_t^n, \theta) W(d\theta, dt), \quad k \in \{1, \dots, n\}$$

where $\mu_t^n = \frac{1}{n} \sum_{i=1}^n \delta_{X_i(t)}, W$ - white noise on $L_2(\Theta, \vartheta)$.

 ${}^{1}B: C = \sum_{i,j=1}^{d} B_{i,j}C_{i,j}$

Vitalii Konarovskyi (Bielefeld University)

・ロト ・聞ト ・ ヨト ・ ヨト

æ

$$dX_{k}(t) = V(X_{k}(t), \mu_{t}^{n})dt + \sqrt{\alpha} \int_{\Theta} G(X_{k}(t), \mu_{t}^{n}, \theta)W(d\theta, dt), \quad k \in \{1, \dots, n\}$$

where $\mu_{t}^{n} = \frac{1}{n} \sum_{i=1}^{n} \delta_{X_{i}(t)}, W$ - white noise on $L_{2}(\Theta, \vartheta)$.

Using Itô 's formula, we come to the Stochastic Mean-Field Equation:

 $d\mu_t = -\nabla \cdot (V(\cdot, \mu_t)\mu_t)dt$

 ${}^{1}B: C = \sum_{i,i=1}^{d} B_{i,j} C_{i,j}$ Vitalii Konarovskyi (Bielefeld University)

Conservative SPDEs and SGD

 $dX_k(t) = V(X_k(t), \mu_t^n) dt + \sqrt{\alpha} \int_{\Theta} G(X_k(t), \mu_t^n, \theta) W(d\theta, dt), \quad k \in \{1, \dots, n\}$ where $\mu_t^n = \frac{1}{n} \sum_{i=1}^n \delta_{X_i(t)}, W$ - white noise on $L_2(\Theta, \vartheta)$.

Using Itô 's formula, we come to the Stochastic Mean-Field Equation:

 $d\mu_t = -\nabla \cdot (V(\cdot, \mu_t)\mu_t)dt + \frac{\alpha}{2}\nabla^2 : (A(\cdot, \mu_t)\mu_t)dt + \sqrt{\alpha}\nabla \cdot \int_{\Theta} G(\cdot, \mu_t, \theta)\mu_t W(d\theta, dt)$

where $A(x_k, \mu) = \mathbb{E}_{\theta} G(x_k, \mu) \otimes G(x_k, \mu)$.

${}^{1}B$:	C =	$\sum_{i,j=1}^{d}$	$B_{i,j}C_{i,j}$

Vitalii Konarovskyi (Bielefeld University)

 $dX_k(t) = V(X_k(t), \mu_t^n) dt + \sqrt{\alpha} \int_{\Theta} G(X_k(t), \mu_t^n, \theta) W(d\theta, dt), \quad k \in \{1, \dots, n\}$ where $\mu_t^n = \frac{1}{n} \sum_{i=1}^n \delta_{X_i(t)}, W$ - white noise on $L_2(\Theta, \vartheta)$.

Using Itô 's formula, we come to the Stochastic Mean-Field Equation:

 $d\mu_t = -\nabla \cdot (V(\cdot, \mu_t)\mu_t)dt + \frac{\alpha}{2}\nabla^2 : (A(\cdot, \mu_t)\mu_t)dt + \sqrt{\alpha}\nabla \cdot \int_{\Theta} G(\cdot, \mu_t, \theta)\mu_t W(d\theta, dt)$

where $A(x_k, \mu) = \mathbb{E}_{\theta} G(x_k, \mu) \otimes G(x_k, \mu)$.

The martingale problem for this equation was considered in [Rotskoff, Vanden-Eijnden, CPAM, '22]

 ${}^{1}B: C = \sum_{i=1}^{d} B_{i} C_{i}$

Vitalii Konarovskyi (Bielefeld University)

Higher Order Approximation of SGD

Stochastic Mean-Field Equation:

 $d\mu_t = -\nabla \cdot (V(\cdot, \mu_t)\mu_t)dt + \frac{\alpha}{2}\nabla^2 : (A(\cdot, \mu_t)\mu_t)dt + \sqrt{\alpha}\nabla \cdot \int_{\Theta} G(\cdot, \mu_t, \theta)\mu_t W(d\theta, dt)$ where $A(x_k, \mu) = \mathbb{E}_{\theta} G(x_k, \mu) \otimes G(x_k, \mu).$

A D > A B > A

Higher Order Approximation of SGD

Stochastic Mean-Field Equation:

 $d\mu_t = -\nabla \cdot (V(\cdot, \mu_t)\mu_t)dt + \frac{\alpha}{2}\nabla^2 : (A(\cdot, \mu_t)\mu_t)dt + \sqrt{\alpha}\nabla \cdot \int_{\Theta} G(\cdot, \mu_t, \theta)\mu_t W(d\theta, dt)$ where $A(x_k, \mu) = \mathbb{E}_{\theta} G(x_k, \mu) \otimes G(x_k, \mu).$

Theorem 1 (Gess, Gvalani, K. 2022)

- V, G Lipschitz cont. and diff. w.r.t. the special variable with bdd deriv.;
- ν_t^n the empirical process associated to the SGD dynamics with $\alpha = \frac{1}{n}$;
- μ_t^n a (unique) solution to the SMFE started from

$$\mu_0^n = \nu_0^n = \frac{1}{n} \sum_{k=1}^n \delta_{x_k(0)}$$

with $x_k(0) \sim \mu_0$ i.i.d.

Then all $p \in [1, 2)$

$$\mathcal{W}_p(\operatorname{Law} \mu^n, \operatorname{Law} \nu^n) = o(n^{-1/2}).$$

Vitalii Konarovskyi (Bielefeld University)

Quantified Central Limit Theorem for SMFE

Theorem 2 (Gess, Gvalani, K. 2022)

Under the assumptions of the previous theorem, $\eta_t^n := \sqrt{n} \left(\mu_t^n - \mu_t^0 \right) \rightarrow \eta_t$ where η_t is a Gaussian process solving

$$d\eta_t = -\nabla \cdot \left(V(\cdot, \mu_t^0) \eta_t + \langle \nabla K(x, \cdot), \eta_t \rangle \mu_t^0(dx) \right) dt - \nabla \cdot \int_{\Theta} G(\cdot, \mu_t^0, \theta) \mu_t^0 W(d\theta, dt).$$

Moreover, $\mathbb{E} \sup_{t \in [0,T]} \|\eta_t^n - \eta_t\|_{-J}^2 \leq \frac{C}{n}$.

Quantified Central Limit Theorem for SMFE

Theorem 2 (Gess, Gvalani, K. 2022)

Under the assumptions of the previous theorem, $\eta_t^n := \sqrt{n} \left(\mu_t^n - \mu_t^0 \right) \rightarrow \eta_t$ where η_t is a Gaussian process solving

$$d\eta_t = -
abla \cdot \left(V(\cdot,\mu^0_t) \eta_t + \langle
abla \mathcal{K}(\mathsf{x},\cdot),\eta_t
angle \mu^0_t (d\mathsf{x})
ight) dt -
abla \cdot \int_{\Theta} \mathcal{G}(\cdot,\mu^0_t, heta) \mu^0_t \mathcal{W}(d heta,dt).$$

Moreover,
$$\mathbb{E} \sup_{t \in [0,T]} \|\eta_t^n - \eta_t\|_{-J}^2 \leq \frac{c}{n}$$
.

Remark. [Sirignano, Spiliopoulos, '20]

For $\tilde{\eta}_t^n := \sqrt{n} (\nu_t^n - \mu_t^0)$

$$\tilde{\eta}^n \to \eta.$$

(ロ) (四) (三) (三)

CLT for SMFE + CLT for SGD \implies Higher Order Approx.

Note that

$$\mu_t^n = \mu_t^0 + n^{-1/2} \eta + O(n^{-1}).$$

CLT for SMFE + CLT for SGD \implies Higher Order Approx.

Note that

$$\mu_t^n = \mu_t^0 + n^{-1/2}\eta + O(n^{-1}).$$

$$\nu_t^n = \mu_t^0 + n^{-1/2}\eta + o(n^{-1/2}).$$

CLT for SMFE + CLT for SGD \implies Higher Order Approx.

Note that

$$\mu_t^n = \mu_t^0 + n^{-1/2} \eta + O(n^{-1}).$$

$$\nu_t^n = \mu_t^0 + n^{-1/2} \eta + o(n^{-1/2}).$$

Therefore, $\mu^{n} - \nu^{n} = o(n^{-1/2}).$

12/15

Continuity Equation

 $d\mu_t = -\nabla \cdot (V\mu_t) dt$

Vitalii Konarovskyi	(Bielefeld University)
---------------------	------------------------

イロト イヨト イヨト イヨト

13/15

2

Continuity Equation

$$d\mu_t = -\nabla \cdot (V\mu_t) dt$$

$$\implies \mu_t = \mu_0 \circ X(\cdot, t),$$

where

$$dX(u,t) = V(X(u,t))dt, \quad X(u,0) = u.$$

[Ambrosio, Trevisan, Lions,...]

2

Continuity Equation

$$d\mu_t = -\nabla \cdot (V\mu_t) dt$$

$$\implies \mu_t = \mu_0 \circ X(\cdot, t),$$

where

$$dX(u,t) = V(X(u,t))dt, \quad X(u,0) = u.$$

[Ambrosio, Trevisan, Lions,...]

The Stochastic Mean-Field Equation was derived from:

$$egin{aligned} dX_k(t) &= V(X_k(t),\mu_t^n) dt + \sqrt{lpha} \int_{\Theta} G(X_k(t),\mu_t^n, heta) W(d heta,dt), \ X_k(0) &= x_k(0), \quad \mu_t^n = rac{1}{n} \sum_{i=1}^n \delta_{X_i(t)}. \end{aligned}$$

æ

13/15

Well-Posedness of SMFE

Theorem 3 (Gess, Gvalani, K. 2022)

Let the coefficients V, G be Lipschitz continuous and smooth enough w.r.t. special variable. Then the SMFE

$$egin{aligned} d\mu_t &= -
abla \cdot (V(\cdot,\mu_t)\mu_t)\,dt + rac{lpha}{2}
abla^2 : (\mathcal{A}(\cdot,\mu_t)\mu_t)\,dt \ &- \sqrt{lpha}
abla \cdot \int_{\Theta} \mathcal{G}(\cdot,\mu_t, heta)\mu_t \mathcal{W}(d heta,dt) \end{aligned}$$

has a unique solution. Moreover, μ_t is a superposition solution, i.e.,

 $\mu_t = \mu_0 \circ X^{-1}(\cdot, t), \quad t \ge 0,$

where X solves

$$egin{aligned} dX(u,t) &= V(X(u,t),\mu_t)dt + \sqrt{lpha} \int_{\Theta} G(X(u,t),\mu_t, heta) W(d heta,dt) \ X(u,0) &= u, \quad u \in \mathbb{R}^d. \end{aligned}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Reference

Gess, Gvalani, Konarovskyi,

Conservative SPDEs as fluctuating mean field limits of stochastic gradient descent (arXiv:2207.05705)

Gess, Kassing, Konarovskyi,

Stochastic Modified Flows, Mean-Field Limits and Dynamics of Stochastic Gradient Descent

(arXiv:2302.07125)

Thank you!

(日) (日) (日) (日) (日)