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Supervised Learning

Having a large sets of data {(θi , γi ), i ∈ I}, θi ∼ ϑ i.i.d.,
one needs to find a function f : Θ → R such that f (θi ) = γi .

Usually one approximates f by

fn(θ; x) =
1

n

n∑
k=1

Φ(θ, xk),

where xk ∈ Rd , k ∈ {1, . . . , n}, are parameters which have to be found.

Example: Φ(θ, xk) = ck · h(Akθ + bk), xk = (Ak , bk , ck)

We measure the distance between f and fn by the generalization error

L(x) := 1

2
Eϑ|f (θ)− fn(θ; x)|2 =

1

2

∫
Θ

|f (θ)− fn(θ; x)|2ϑ(dθ),

where ϑ is the distribution of θi .
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Stochastic gradient descent

Let xk(0) ∼ µ0 – i.i.d.

The parameters xk , k ∈ {1, . . . , n} can be learned by stochastic gradient descent

xk(ti+1) = xk(ti )−∇xk

(
1

2
|f (θi )− fn(θi ; x)|2

)
∆t

where ∆t – learning rate, ti = i∆t, θi ∼ ϑ – i.i.d.,
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Continuous Dynamics of Parameters

Recall that xk(0) ∼ µ0 – i.i.d., ∆t – learning rate, ti = i∆t, θi ∼ ϑ – i.i.d.

xk(ti+1) = xk(ti ) + V (xk(ti ), ν
n
ti , θi )∆t, k ∈ {1, . . . , n},

where νn
t = 1

n

∑n
k=1 δxk (t).

Considering the empirical distribution νn = 1
n

∑n
k=1 δxk , one has

fn(θ; x) =
1

n

n∑
k=1

Φ(θ, xk) = ⟨Φ(θ, ·), νn⟩.

The expression for xk(t) looks as an Euler scheme for

dXk(t) = V (Xk(t), µt)dt,

µt =
1

n

n∑
k=1

δXk (t), V (x , µ) = EθV (x , µ, θ).
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Convergence to deterministic SPDE

If xk(0) ∼ µ0 – i.i.d. and ∆t = 1
n
, then

d(νn
t , µt) = O

(
1√
n

)
,

where µt solves
dµt = −∇ (V (·, µt)µt) dt

[Mei, Montanari, Nguyen ’18]

=⇒ The mean behavior of the SGD dynamics can then be analysed by considering µt .
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Main Goal

Problem. After passing to the limit the equation

dµt = −∇ (V (·, µt)µt) dt

loses the information about the fluctuations of the SGD dynamics

xk(ti+1) = xk(ti ) + V (xk(ti ), ν
n
ti , θi )∆t, νn

t =
1

n

n∑
l=1

δxl (t).

Goal: Propose a stochastic PDE which would capture the fluctuations of the SGD
dynamics. Then, probably, its solutions would better approximate the SGD dynamics as
n → ∞ and ∆t → 0.
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Classical SDE for SGD Dynamics

Stochastic gradient descent

xk(ti+1) = xk(ti ) + V (xk(ti ), ν
n
ti , θi )∆t

is the Euler-Maruyama scheme for the SDE

dXk(t) = V (Xk(t), µ
n
t )dt +

√
α(Σ

1
2 )k(X (t))dB(t), k ∈ {1, . . . , n}

where µn
t = 1

n

∑n
i=1 δXi (t), Σk,l(x) = EθG(xk , µ, θ)⊗ G(xl , µ, θ) and

B – a Brownian motion.

⇝ Σ
1
2 is dn × dn matrix!
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SDE Driven by Inf-Dim Noise for SGD Dynamics

Stochastic gradient descent

xk(ti+1) = xk(ti ) + V (xk(ti ), ν
n
ti , θi )∆t

= xk(ti ) + EθV (. . . )︸ ︷︷ ︸
=V (xk (ti ),ν

n
ti
)

∆t +
√
∆t︸ ︷︷ ︸

=
√
α

(V (. . . )− EθV (. . . ))︸ ︷︷ ︸
=G(xk (ti ),ν

n
ti
,θi )

√
∆t

is the Euler-Maruyama scheme for the SDE

dXk(t) = V (Xk(t), µ
n
t )dt +

√
α

∫
Θ

G(Xk(t), µ
n
t , θ)W (dθ, dt), k ∈ {1, . . . , n}

where µn
t = 1

n

∑n
i=1 δXi (t), W – white noise on L2(Θ, ϑ).

[Gess, Kassing, K. ’23]
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Stochastic Mean-Field Equation

dXk(t) = V (Xk(t), µ
n
t )dt +

√
α

∫
Θ

G(Xk(t), µ
n
t , θ)W (dθ, dt), k ∈ {1, . . . , n}

where µn
t = 1

n

∑n
i=1 δXi (t), W – white noise on L2(Θ, ϑ).

Using Itô ’s formula, we come to the Stochastic Mean-Field Equation:

dµt = −∇ · (V (·, µt)µt)dt

The martingale problem for this equation was considered in
[Rotskoff, Vanden-Eijnden, CPAM, ’22]

1B : C =
∑d

i,j=1 Bi,jCi,j
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Higher Order Approximation of SGD

Stochastic Mean-Field Equation:

dµt = −∇ · (V (·, µt)µt)dt +
α

2
∇2 : (A(·, µt)µt)dt +

√
α∇ ·

∫
Θ

G(·, µt , θ)µt W (dθ, dt)

where A(xk , µ) = EθG(xk , µ)⊗ G(xk , µ).

Theorem 1 (Gess, Gvalani, K. 2022)

V ,G – Lipschitz cont. and diff. w.r.t. the special variable with bdd deriv.;

νn
t – the empirical process associated to the SGD dynamics with α = 1

n
;

µn
t – a (unique) solution to the SMFE started from

µn
0 = νn

0 =
1

n

n∑
k=1

δxk (0)

with xk(0) ∼ µ0 i.i.d.

Then all p ∈ [1, 2)

Wp(Law µn, Law νn) = o(n−1/2).
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Quantified Central Limit Theorem for SMFE

Theorem 2 (Gess, Gvalani, K. 2022)

Under the assumptions of the previous theorem, ηn
t :=

√
n
(
µn
t − µ0

t

)
→ ηt

where ηt is a Gaussian process solving

dηt = −∇ ·
(
V (·, µ0

t )ηt + ⟨∇K(x , ·), ηt⟩µ0
t (dx)

)
dt −∇ ·

∫
Θ

G(·, µ0
t , θ)µ

0
tW (dθ, dt).

Moreover, E sup
t∈[0,T ]

∥ηn
t − ηt∥2−J ≤ C

n
.

Remark. [Sirignano, Spiliopoulos, ’20]

For η̃n
t :=

√
n(νn

t − µ0
t )

η̃n → η.
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CLT for SMFE + CLT for SGD =⇒ Higher Order Approx.

Note that

µn
t = µ0

t + n−1/2η + O(n−1).

Therefore, µn − νn = o(n−1/2).
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Continuity Equation

dµt = −∇ · (Vµt)dt

=⇒ µt = µ0 ◦ X (·, t),
where

dX (u, t) = V (X (u, t))dt, X (u, 0) = u.

[Ambrosio, Trevisan, Lions,. . . ]

The Stochastic Mean-Field Equation was derived from:

dXk(t) = V (Xk(t), µ
n
t )dt +

√
α

∫
Θ

G(Xk(t), µ
n
t , θ)W (dθ, dt),

Xk(0) = xk(0), µn
t =

1

n

n∑
i=1

δXi (t).
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Well-Posedness of SMFE

Theorem 3 (Gess, Gvalani, K. 2022)

Let the coefficients V ,G be Lipschitz continuous and smooth enough w.r.t. special
variable. Then the SMFE

dµt = −∇ · (V (·, µt)µt) dt +
α

2
∇2 : (A(·, µt)µt) dt

−
√
α∇ ·

∫
Θ

G(·, µt , θ)µtW (dθ, dt)

has a unique solution. Moreover, µt is a superposition solution, i.e.,

µt = µ0 ◦ X−1(·, t), t ≥ 0,

where X solves

dX (u, t) = V (X (u, t), µt)dt +
√
α

∫
Θ

G(X (u, t), µt , θ)W (dθ, dt)

X (u, 0) = u, u ∈ Rd .
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Thank you!
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