Stochastic block model in a new critical regime

Vitalii Konarovskyi

Bielefeld University \& Leipzig University

Summer School: Mathematics of Large Networks
joint work with Vlada Limic

UNIVERSITAT LEIPZIG

Table of Contents

(1) Formulation of the main result

Stochastic Block Model

Stochastic Block Model $G(n, p, q)$ is a random graph such that:

- consists of $n m$ vertices divided into m subsets $(m=2)$;
- edges are drown independently;
- intra class edges appear with probability $p=p_{n}$;
- inter class edges appear with probability $q=q_{n}$.

Stochastic Block Model

Stochastic Block Model $G(n, p, q)$ is a random graph such that:

- consists of $n m$ vertices divided into m subsets $(m=2)$;
- edges are drown independently;
- intra class edges appear with probability $p=p_{n}$;
- inter class edges appear with probability $q=q_{n}$.

We are interested in the scaling limit as $n \rightarrow \infty$ and $p_{n}, q_{n_{4}} \rightarrow 0$.

Largest connected component of SBM

$C_{1}(n)$ is the size of the largest connected component of the SBM

Largest connected component of SBM

$C_{1}(n)$ is the size of the largest connected component of the SBM

It is well-known:

- If $p_{n}=q_{n}=\frac{a}{m n}$, then SBM is an Erdős-Rényi graph for which:
- for $a>1, C_{1}(n) \sim \Theta(n)$;
- for $a<1, C_{1}(n) \sim \Theta(\ln n)$;
(Erdős, Rényi '60, '61)
- for $a=1, C_{1}(n) \sim \Theta\left(n^{2 / 3}\right)$.

Largest connected component of SBM

$C_{1}(n)$ is the size of the largest connected component of the SBM

It is well-known:

- If $p_{n}=q_{n}=\frac{a}{m n}$, then SBM is an Erdős-Rényi graph for which:
- for $a>1, C_{1}(n) \sim \Theta(n)$;
- for $a<1, C_{1}(n) \sim \Theta(\ln n)$;
(Erdős, Rényi '60, '61)
- for $a=1, C_{1}(n) \sim \Theta\left(n^{2 / 3}\right)$.
- If $p_{n}=\frac{a}{m n}, q_{n}=\frac{b}{m n}$, then
- $a+(m-1) b>m, C_{1}(n) \sim \Theta(n)$;
- $a+(m-1) b \leq m, C_{1}(n) \sim o(n)$.
(Bollobás, Janson, Riordan '07)

Largest connected component of SBM

$C_{1}(n)$ is the size of the largest connected component of the SBM

It is well-known:

- If $p_{n}=q_{n}=\frac{a}{m n}$, then SBM is an Erdős-Rényi graph for which:
- for $a>1, C_{1}(n) \sim \Theta(n)$;
- for $a<1, C_{1}(n) \sim \Theta(\ln n)$;
(Erdős, Rényi '60, '61)
- for $a=1, C_{1}(n) \sim \Theta\left(n^{2 / 3}\right)$.
- If $p_{n}=\frac{a}{m n}, q_{n}=\frac{b}{m n}$, then
- $a+(m-1) b>m, C_{1}(n) \sim \Theta(n)$;
- $a+(m-1) b \leq m, C_{1}(n) \sim o(n)$.

We are interested in the new critical regime: $q_{n} \ll p_{n} \sim \frac{1}{n}$.

Scaling limit of Erdős-Rényi Graphs

$G(n, p)$ - a Erdős-Rényi random graph with n vertices and edges appearing with prob.

$$
p=p_{n}(t)=\frac{1}{n}+\frac{t}{n^{4 / 3}}, \quad t \in \mathbb{R}
$$

Scaling limit of Erdős-Rényi Graphs

$G(n, p)$ - a Erdős-Rényi random graph with n vertices and edges appearing with prob.

$$
p=p_{n}(t)=\frac{1}{n}+\frac{t}{n^{4 / 3}}, \quad t \in \mathbb{R}
$$

Define

$$
X^{(n)}(t):=\frac{1}{n^{2 / 3}}\left(C_{1}, C_{2}, \ldots, C_{k}, 0,0, \ldots \ldots\right)
$$

where $C_{k}=C_{k}(n, t)$ is the size of the k-th largest connected component.

Scaling limit of Erdős-Rényi Graphs

Theorem. (Aldous '97, Anmerdariz '01, Limic '98,'19)

For every $t \in \mathbb{R}$ the sequence $X^{(n)}(t)$ converges in I^{2} to $X^{*}(t)$ in distribution, where $X^{*}(t)=\left(X_{i}^{*}(t)\right)_{i \geq 1}$ are the ordered excursion lengths of the Brownian motion with parabolic drift

$$
W^{t}(s):=W(s)-\frac{1}{2} s^{2}+t s, \quad s \geq 0
$$

above past minima.

$X^{*}(t), t \in \mathbb{R}$, is called the standard Multiplicative coalescent, and is a Markov process in I^{2}.

Back to the stochastic block model

Back to the stochastic block model

Define

$$
Z^{(n)}(t, s):=\frac{1}{n^{2 / 3}}\left(C_{1}, C_{2}, \ldots, C_{k}, 0,0\right), \quad t \in \mathbb{R}, \quad s \geq 0,
$$

where $C_{k}=C_{k}(n, t, s)$ is the size of the k-th largest connected component of the SBM $G\left(n, p_{n}, q_{n}\right)$

Restricted multiplicative merging

Let $l_{\downarrow}^{2}=\left\{x=\left(x_{i}\right)_{i \geq 1} \in I^{2}: x_{1} \geq x_{2} \geq \cdots \geq 0\right\}$.
For $s \geq 0$ and a fixed family of indep. r.v. $\xi_{i, j} \sim \operatorname{Exp}($ rate 1$), i, j \geq 1$, define a random map $\mathrm{RMM}_{s}: I_{\downarrow}^{2} \times I_{\downarrow}^{2} \rightarrow I_{\downarrow}^{2}$:

- consider coord. of $x, y \in I_{\downarrow}^{2}$ as a masses of corresponding vertices of a graph;
- for every $i, j \geq 1$ draw an edge between x_{i} and y_{j} iff $\xi_{i, j} \leq s x_{i} y_{j}$;
- define $\mathrm{RMM}_{s}(x, y)$ as the vector of the ordered masses of connected components.

The main result

Remind

$$
\begin{gathered}
p=p_{n}(t)=\frac{1}{n}+\frac{t}{n^{4 / 3}} \quad q=q_{n}(s)=\frac{s}{n^{4 / 3}}, \quad t \in \mathbb{R}, \quad s \geq 0 \\
Z^{(n)}(t, s):=\frac{1}{n^{2 / 3}}\left(C_{1}, C_{2}, \ldots, C_{k}, 0,0\right), \quad t \in \mathbb{R}, \quad s \geq 0
\end{gathered}
$$

where $C_{k}=C_{k}(n, t, s)$ is the size of the k-th largest connected component of the SBM $G\left(n, p_{n}, q_{n}\right)$

The main result

Remind

$$
\begin{gathered}
p=p_{n}(t)=\frac{1}{n}+\frac{t}{n^{4 / 3}} \quad q=q_{n}(s)=\frac{s}{n^{4 / 3}}, \quad t \in \mathbb{R}, \quad s \geq 0 . \\
Z^{(n)}(t, s):=\frac{1}{n^{2 / 3}}\left(C_{1}, C_{2}, \ldots, C_{k}, 0,0\right), \quad t \in \mathbb{R}, \quad s \geq 0,
\end{gathered}
$$

where $C_{k}=C_{k}(n, t, s)$ is the size of the k-th largest connected component of the SBM $G\left(n, p_{n}, q_{n}\right)$

Theorem. (K., Limic '21)

For every $t \in \mathbb{R}$ and $s \geq 0$ the process $Z^{(n)}(t, s)$ converges in I^{2} in distribution to $\mathrm{RMM}_{s}\left(X^{*}(t), Y^{*}(t)\right)$, where X^{*}, Y^{*} are independent standard multiplicative coalescents that are independent of ξ

Table of Contents

(1) Formulation of the main result

(2) Idea of proof

Different construction of the SBM

$$
p=\frac{1}{n}+\frac{t}{n^{4 / 3}}, \quad q=\frac{s}{n^{4 / 3}}
$$

$Z^{(n)}(t, s):=\frac{1}{n^{2 / 3}}\left(C_{1}, C_{2}, \ldots, C_{k}, 0,0\right)$,

Different construction of the SBM

$$
\begin{gathered}
p=\frac{1}{n}+\frac{t}{n^{4 / 3}}, \quad q=\frac{s}{n^{4 / 3}} \\
Z^{(n)}(t, s):=\frac{1}{n^{2 / 3}}\left(C_{1}, C_{2}, \ldots, C_{k}, 0,0\right)
\end{gathered}
$$

(1) Prescribe the mass $x_{i}=y_{i}=n^{-\frac{2}{3}}$ to every vertex;

Different construction of the SBM

$$
p=\frac{1}{n}+\frac{t}{n^{4 / 3}}, \quad q=\frac{s}{n^{4 / 3}}
$$

$Z^{(n)}(t, s):=\frac{1}{n^{2 / 3}}\left(C_{1}, C_{2}, \ldots, C_{k}, 0,0\right)$,

(1) Prescribe the mass $x_{i}=y_{i}=n^{-\frac{2}{3}}$ to every vertex;
(2) Independently add only intra class edges between x_{i}, x_{j} and between y_{i}, y_{j} with probability p

Different construction of the SBM

$$
p=\frac{1}{n}+\frac{t}{n^{4 / 3}}, \quad q=\frac{s}{n^{4 / 3}}
$$

$Z^{(n)}(t, s):=\frac{1}{n^{2 / 3}}\left(C_{1}, C_{2}, \ldots, C_{k}, 0,0\right)$,

(1) Prescribe the mass $x_{i}=y_{i}=n^{-\frac{2}{3}}$ to every vertex;
(2) Independently add only intra class edges between x_{i}, x_{j} and between y_{i}, y_{j} with probability p
(3) Let $X^{(n)}$ and $Y^{(n)}$ be the ordered connected component masses of green and blue graphs, resp.
Remark: $X^{(n)} \rightarrow X^{*}(t)$ and $Y^{(n)} \rightarrow Y^{*}(t)$, where X^{*}, Y^{*} are independent standard multiplicative coalescents.

Different construction of the SBM

$$
p=\frac{1}{n}+\frac{t}{n^{4 / 3}}, \quad q=\frac{s}{n^{4 / 3}}
$$

$Z^{(n)}(t, s):=\frac{1}{n^{2 / 3}}\left(C_{1}, C_{2}, \ldots, C_{k}, 0,0\right)$,

(1) Prescribe the mass $x_{i}=y_{i}=n^{-\frac{2}{3}}$ to every vertex;
(2) Independently add only intra class edges between x_{i}, x_{j} and between y_{i}, y_{j} with probability p
(3) Let $X^{(n)}$ and $Y^{(n)}$ be the ordered connected component masses of green and blue graphs, resp.
Remark: $X^{(n)} \rightarrow X^{*}(t)$ and $Y^{(n)} \rightarrow Y^{*}(t)$, where X^{*}, Y^{*} are independent standard multiplicative coalescents.
(9) Add inter class edges between $X_{i}^{(n)}, Y_{j}^{(n)}$ if $\left\{\xi_{i, j} \leq X_{i}^{(n)} Y_{j}^{(n)} s_{n}\right\}$, where $q=\mathbb{P}\left\{\xi_{i, j} \leq x_{i} y_{j} s_{n}\right\}\left(s_{n} \rightarrow s, n \rightarrow \infty\right)$

Different construction of the SBM

(1) By the construction, the ordered connected component masses are $\mathrm{RMM}_{s_{n}}\left(X^{(n)}, Y^{(n)}\right)$

Different construction of the SBM

(1) By the construction, the ordered connected component masses are $\mathrm{RMM}_{s_{n}}\left(X^{(n)}, Y^{(n)}\right)$
(2) Using the properties of exponential distributed random variables

$$
\operatorname{RMM}_{s_{n}}\left(X^{(n)}, Y^{(n)}\right) \stackrel{d}{=} Z^{(n)}(t, s) .
$$

Different construction of the SBM

(1) By the construction, the ordered connected component masses are $\mathrm{RMM}_{s_{n}}\left(X^{(n)}, Y^{(n)}\right)$
(2) Using the properties of exponential distributed random variables

$$
\operatorname{RMM}_{s_{n}}\left(X^{(n)}, Y^{(n)}\right) \stackrel{d}{=} Z^{(n)}(t, s) .
$$

(3) Then having the continuity of RMM, we get

$$
\operatorname{RMM}_{s_{n}}\left(X^{(n)}, Y^{(n)}\right) \rightarrow \operatorname{RMM}_{s}\left(X^{*}(t), Y^{*}(t)\right),
$$

because $X^{(n)} \rightarrow X^{*}(t), Y^{(n)} \rightarrow Y^{*}(t)$ and $s_{n} \rightarrow s$.

Continuity of RMM

$\mathrm{RMM}_{s}(x, y)$ is the vector of the ordered masses of connected components.

Proposition (K., Limic '21)

Let $x^{n} \rightarrow x, y^{n} \rightarrow y$ in $!_{\downarrow}^{2}$ and $s_{n} \rightarrow s$ in $[0, \infty)$. Then

$$
\mathrm{RMM}_{s_{n}}\left(x_{n}, y_{n}\right) \rightarrow \mathrm{RMM}_{s}(x, y) \quad \text { in } I_{\downarrow}^{2} \text { in probability }
$$

as $n \rightarrow \infty$.

References

\square V. Konarovskyi, V. Limic

Stochastic Block Model in a new critical regime and the Interacting Multiplicative Coalescent.
Electronic Journal of Probability. Vol. 26 (2021), 23 pp.

Thank you!

