Stochastic block model in a new critical regime

Vitalii Konarovskyi

Bielefeld University & Leipzig University

Summer School: Mathematics of Large Networks

joint work with Vlada Limic

Table of Contents

Formulation of the main result

< ロ > < 回 > < 回 > < 回 > < 回 >

æ

Stochastic Block Model

Stochastic Block Model G(n, p, q) is a random graph such that:

- consists of nm vertices divided into m subsets (m = 2);
- edges are drown independently;
- intra class edges appear with probability $p = p_n$;
- inter class edges appear with probability $q = q_n$.

Stochastic Block Model

Stochastic Block Model G(n, p, q) is a random graph such that:

- consists of nm vertices divided into m subsets (m = 2);
- edges are drown independently;
- intra class edges appear with probability $p = p_n$;
- inter class edges appear with probability $q = q_n$.

We are interested in the scaling limit as $n \to \infty$ and $p_n, q_n \to 0$.

 $C_1(n)$ is the size of the largest connected component of the SBM

A I > A I > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

 $C_1(n)$ is the size of the largest connected component of the SBM

イロト イポト イヨト イヨト

 $C_1(n)$ is the size of the largest connected component of the SBM

It is well-known:

• If $p_n = q_n = \frac{a}{mn}$, then SBM is an Erdős-Rényi graph for which:

• for
$$a > 1$$
, $C_1(n) \sim \Theta(n)$;

• for
$$a < 1$$
, $C_1(n) \sim \Theta(\ln n)$;
• for $a = 1$, $C_1(n) \sim \Theta(n^{2/3})$.

(Erdős, Rényi '60, '61)

• If
$$p_n = \frac{a}{mn}$$
, $q_n = \frac{b}{mn}$, then
• $a + (m-1)b > m$, $C_1(n) \sim \Theta(n)$;
• $a + (m-1)b \le m$, $C_1(n) \sim o(n)$. (Bollobás, Janson, Riordan '07)

イロト イポト イヨト イヨト

 $C_1(n)$ is the size of the largest connected component of the SBM

It is well-known: • If $p_n = q_n = \frac{a}{mn}$, then SBM is an Erdős-Rényi graph for which: • for a > 1, $C_1(n) \sim \Theta(n)$; • for a < 1, $C_1(n) \sim \Theta(\ln n)$; (Erdős, Rényi '60, '61) • for a = 1, $C_1(n) \sim \Theta(n^{2/3})$. • If $p_n = \frac{a}{mn}$, $q_n = \frac{b}{mn}$, then • a + (m - 1)b > m, $C_1(n) \sim \Theta(n)$; • $a + (m - 1)b \le m$, $C_1(n) \sim o(n)$. (Bollobás, Janson, Riordan '07)

We are interested in the new critical regime: $q_n \ll p_n \sim \frac{1}{n}$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Scaling limit of Erdős-Rényi Graphs

G(n, p) – a Erdős-Rényi random graph with *n* vertices and edges appearing with prob.

$$p = p_n(t) = rac{1}{n} + rac{t}{n^{4/3}}, \quad t \in \mathbb{R}$$

Scaling limit of Erdős-Rényi Graphs

G(n, p) – a Erdős-Rényi random graph with *n* vertices and edges appearing with prob.

$$p=p_n(t)=rac{1}{n}+rac{t}{n^{4/3}},\quad t\in\mathbb{R}$$

Define

$$X^{(n)}(t) := rac{1}{n^{2/3}}(C_1, C_2, \ldots, C_k, 0, 0, \ldots, \ldots),$$

where $C_k = C_k(n, t)$ is the size of the k-th largest connected component.

Scaling limit of Erdős-Rényi Graphs

Theorem. (Aldous '97, Anmerdariz '01, Limic '98,'19)

For every $t \in \mathbb{R}$ the sequence $X^{(n)}(t)$ converges in l^2 to $X^*(t)$ in distribution,

 $X^*(t)$, $t \in \mathbb{R}$, is called the **standard Multiplicative coalescent**, and is a Markov process in l^2 .

6/14

• • • • • • • • • • • • •

Back to the stochastic block model

Image: A matrix and a matrix

Back to the stochastic block model

$$p = p_n(t) = rac{1}{n} + rac{t}{n^{4/3}}$$
 $q = q_n(s) = rac{s}{n^{4/3}}, t \in \mathbb{R}, s \ge 0.$

Define

$$Z^{(n)}(t,s):=rac{1}{n^{2/3}}(\mathit{C}_1,\mathit{C}_2,\ldots,\mathit{C}_k,0,0), \quad t\in\mathbb{R}, \;\; s\geq 0,$$

where $C_k = C_k(n, t, s)$ is the size of the k-th largest connected component of the SBM $G(n, p_n, q_n)$

Restricted multiplicative merging

Let $I_{\downarrow}^2 = \{x = (x_i)_{i \ge 1} \in I^2 : x_1 \ge x_2 \ge \cdots \ge 0\}.$

For $s \ge 0$ and a fixed family of indep. r.v. $\xi_{i,j} \sim \text{Exp}(rate 1)$, $i, j \ge 1$, define a random map $\text{RMM}_s : l_{\downarrow}^2 \times l_{\downarrow}^2 \to l_{\downarrow}^2$:

- consider coord. of $x, y \in I_{\downarrow}^2$ as a masses of corresponding vertices of a graph;
- for every $i, j \ge 1$ draw an edge between x_i and y_j iff $\xi_{i,j} \le sx_iy_j$;
- define $\text{RMM}_s(x, y)$ as the vector of the ordered masses of connected components.

The main result

Remind

$$egin{aligned} p &= p_n(t) = rac{1}{n} + rac{t}{n^{4/3}} \quad q = q_n(s) = rac{s}{n^{4/3}}, \quad t \in \mathbb{R}, \;\; s \geq 0 \ Z^{(n)}(t,s) &:= rac{1}{n^{2/3}}(C_1,C_2,\ldots,C_k,0,0), \quad t \in \mathbb{R}, \;\; s \geq 0, \end{aligned}$$

where $C_k = C_k(n, t, s)$ is the size of the k-th largest connected component of the SBM $G(n, p_n, q_n)$

æ

イロト イ団ト イヨト イヨト

The main result

Remind

$$egin{aligned} p &= p_n(t) = rac{1}{n} + rac{t}{n^{4/3}} \quad q = q_n(s) = rac{s}{n^{4/3}}, \quad t \in \mathbb{R}, \;\; s \geq 0 \ Z^{(n)}(t,s) &:= rac{1}{n^{2/3}}(C_1,C_2,\ldots,C_k,0,0), \quad t \in \mathbb{R}, \;\; s \geq 0, \end{aligned}$$

where $C_k = C_k(n, t, s)$ is the size of the k-th largest connected component of the SBM $G(n, p_n, q_n)$

Theorem. (K., Limic '21)

For every $t \in \mathbb{R}$ and $s \ge 0$ the process $Z^{(n)}(t, s)$ converges in l^2 in distribution to $\text{RMM}_s(X^*(t), Y^*(t))$, where X^*, Y^* are independent standard multiplicative coalescents that are independent of ξ

イロト イポト イヨト イヨト

Table of Contents

Formulation of the main result

< ロ > < 回 > < 回 > < 回 > < 回 >

æ

$$p=rac{1}{n}+rac{t}{n^{4/3}}, \quad q=rac{s}{n^{4/3}}$$
 $Z^{(n)}(t,s):=rac{1}{n^{2/3}}(C_1,C_2,\ldots,C_k,0,0),$

イロト イヨト イヨト イヨト

æ

x,

Different construction of the SBM

$$p = \frac{1}{n} + \frac{t}{n^{4/3}}, \quad q = \frac{s}{n^{4/3}}$$

$$Z^{(n)}(t,s) := \frac{1}{n^{2/3}}(C_1, C_2, \dots, C_k, 0, 0),$$

• Prescribe the mass $x_i = y_i = n^{-\frac{2}{3}}$ to every vertex;

æ

11/14

イロト イポト イヨト イヨト

4.

- **1** Prescribe the mass $x_i = y_i = n^{-\frac{2}{3}}$ to every vertex;
- Independently add only intra class edges between x_i, x_j and between y_i, y_j with probability p

$$p = \frac{1}{n} + \frac{t}{n^{4/3}}, \quad q = \frac{s}{n^{4/3}}$$

$$Z^{(n)}(t,s) := \frac{1}{n^{2/3}}(C_1, C_2, \dots, C_k, 0, 0),$$

Xm

- **(**) Prescribe the mass $x_i = y_i = n^{-\frac{2}{3}}$ to every vertex;
- **(2)** Independently add **only intra** class edges between x_i , x_j and between y_i , y_j with probability p
- Q Let X⁽ⁿ⁾ and Y⁽ⁿ⁾ be the ordered connected component masses of green and blue graphs, resp.
 Remark: X⁽ⁿ⁾ → X^{*}(t) and Y⁽ⁿ⁾ → Y^{*}(t), where X^{*}, Y^{*} are independent standard multiplicative coalescents.

イロト イポト イヨト イヨト

V (m)

$$p = \frac{1}{n} + \frac{t}{n^{4/3}}, \quad q = \frac{s}{n^{4/3}}$$

$$Z^{(n)}(t,s) := \frac{1}{n^{2/3}}(C_1, C_2, \dots, C_k, 0, 0),$$

- **(**) Prescribe the mass $x_i = y_i = n^{-\frac{2}{3}}$ to every vertex;
- **(2)** Independently add **only intra** class edges between x_i , x_j and between y_i , y_j with probability p
- Q Let X⁽ⁿ⁾ and Y⁽ⁿ⁾ be the ordered connected component masses of green and blue graphs, resp.
 Remark: X⁽ⁿ⁾ → X^{*}(t) and Y⁽ⁿ⁾ → Y^{*}(t), where X^{*}, Y^{*} are independent standard multiplicative coalescents.
- **4** Add inter class edges between $X_i^{(n)}, Y_j^{(n)}$ if $\{\xi_{i,j} \leq X_i^{(n)} Y_j^{(n)} s_n\}$, where $q = \mathbb{P}\{\xi_{i,j} \leq x_i y_j s_n\} (s_n \to s, n \to \infty)$

Idea of proo

Different construction of the SBM

9 By the construction, the ordered connected component masses are $\text{RMM}_{s_n}(X^{(n)}, Y^{(n)})$

A I > A I > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Idea of proo

Different construction of the SBM

9 By the construction, the ordered connected component masses are $\text{RMM}_{s_n}(X^{(n)}, Y^{(n)})$

Osing the properties of exponential distributed random variables

 $\operatorname{RMM}_{s_n}(X^{(n)},Y^{(n)}) \stackrel{d}{=} Z^{(n)}(t,s).$

Idea of proo

Different construction of the SBM

() By the construction, the ordered connected component masses are $\text{RMM}_{s_n}(X^{(n)}, Y^{(n)})$

2 Using the properties of exponential distributed random variables

 $\operatorname{RMM}_{s_n}(X^{(n)},Y^{(n)}) \stackrel{d}{=} Z^{(n)}(t,s).$

• Then having the continuity of RMM, we get $\operatorname{RMM}_{s_n}(X^{(n)}, Y^{(n)}) \to \operatorname{RMM}_s(X^*(t), Y^*(t)),$ because $X^{(n)} \to X^*(t), Y^{(n)} \to Y^*(t)$ and $s_n \to s$.

Continuity of RMM

 $RMM_s(x, y)$ is the vector of the ordered masses of connected components.

References

V. Konarovskyi, V. Limic

Stochastic Block Model in a new critical regime and the Interacting Multiplicative Coalescent.

Electronic Journal of Probability. Vol. 26 (2021), 23 pp.

Thank you!

(日) (日) (日) (日) (日)