Coalescing-fragmentating Wasserstein dynamics: particle approach

Vitalii Konarovskyi

Bielefeld University

DMV Annual Meeting 2022 - Berlin

UNIVERSITÄT BIELEFELD

Table of Contents

(1) Motivation: coalescing particle systems

2 Sticky-reflected particle system

3 Number of particles

Coalescing particle system: Arratia flow

Arratia flow on \mathbb{R} (R . Arratia '79)

- Brownian particles start from every point of an interval;
- they move independently and coalesce after meeting;

Mathematical description of Arratia flow

$X(u, t)$ is the position of particle at time t starting at u
(1) $X(u, 0)=u$;
(2) $X(u, \cdot)$ is a Brownian motion in \mathbb{R};
(3) $X(u, t) \leq X(v, t), u<v$
(1) $\langle X(u, \cdot), X(v, \cdot)\rangle_{t}=\int_{0}^{t} \mathbb{I}_{\{X(u, s)=X(v, s)\}} d s$.

Arratia flow and its generalization

- Arratia flow appears as scaling limit of different models
- true self-repelling motion (B.Tóth and W. Werner (PTRF '98))
- isotropic stochastic flows of homeomorphisms in \mathbb{R} (V. Piterbarg (Ann. Prob. '98))
- Hastings-Levitov planer aggregation models (J. Norris, A. Turner (Comm. Math. Phys. '12)), etc. . .
- Further investigation of the Arratia flow
- Properties of generated σ-algebra (B. Tsirelson (Probab. Surv. '04))
- n-particle motion (R. Tribe, O.V. Zaboronski (EJP '04, Comm. Math. Phys. '06))
- large deviations (A. Dorogovtsev, O. Ostapenko (Stoch. Dyn. '10)), etc. . .
- Generalizations
- Brownian web (C. M. Newman et al. (Ann. Prob. '04), R. Sun, J.M Swart (MAMS, '14))
- Coalescing non-Brownian particles (S. Evans et al. (PTRF, '13))
- Stochastic flows of kernels (Y. Le Jan and O. Raimond (Ann. Prob. '04))

Modified Massive Arratia flow

Modified massive Arratia flow on \mathbb{R} (K. '17)

- Brownian particles start from points with masses;
- they move independently and coalesce after meeting;
- particles sum their masses after meeting and diffusion rate is inversely proportional to the mass.

Mathematical description

$Y(u, t)$ is the position of particle at time t labeled by $u \in(0,1)$
(1) $Y(u, 0)=u$;
(2) $Y(u, \cdot)$ is a continuous martingale;
(3) $Y(u, t) \leq Y(v, t), u<v$;
(1) $\langle Y(u, \cdot), Y(v, \cdot)\rangle_{t}=\int_{0}^{t} \frac{\mathbb{I}_{\{Y(u, s)=Y(v, s)\}}}{m(u, s)} d s$, $m(u, s)=\operatorname{Leb}\{w: \quad Y(w, s)=Y(u, s)\}$.

Short-time asymptotic of a Brownian motion

Short-time asymptotic formula for a heat kernel

$$
p(t, x, y)=\frac{1}{(2 \pi t)^{n / 2}} e^{-\frac{\|x-y\|^{2}}{2 t}} \sim e^{-\frac{\|x-y\|^{2}}{2 t}}, \quad t \rightarrow 0+.
$$

Short-time asymptotic of a Brownian motion

Short-time asymptotic formula for a heat kernel

$$
p(t, x, y)=\frac{1}{(2 \pi t)^{n / 2}} e^{-\frac{\|x-y\|^{2}}{2 t}} \sim e^{-\frac{\|x-y\|^{2}}{2 t}}, \quad t \rightarrow 0+.
$$

Generalizations

- Heat equation with variable coefficients in \mathbb{R}^{n} (Varadhan (CPAM '67))
- Smooth Riemannian manifold with Ricci curvature bound (P. Li and S.-T. Yau (Acta Math. '86))
- Lipschitz Riemannian manifold without any sort of curvature bounds (J. Norris (Acta Math. 97))
- Infinite-dimensional case for heat kernel generated by a Dirichlet form (J. Ramírez (CPAM '01, Ann. Prob '03))

Short-time asymptotic of a Brownian motion

Short-time asymptotic formula for a heat kernel

$$
p(t, x, y)=\frac{1}{(2 \pi t)^{n / 2}} e^{-\frac{\|x-y\|^{2}}{2 t}} \sim e^{-\frac{\|x-y\|^{2}}{2 t}}, \quad t \rightarrow 0+
$$

Generalizations

- Heat equation with variable coefficients in \mathbb{R}^{n} (Varadhan (CPAM '67))
- Smooth Riemannian manifold with Ricci curvature bound (P. Li and S.-T. Yau (Acta Math. '86))
- Lipschitz Riemannian manifold without any sort of curvature bounds (J. Norris (Acta Math. 97))
- Infinite-dimensional case for heat kernel generated by a Dirichlet form (J. Ramírez (CPAM '01, Ann. Prob '03))

Corollary

If $B_{t}, t \geq 0$, is a Brownian motion on a Riemannian manifold, then

$$
\mathbb{P}_{x}\left\{B_{t}=y\right\} \sim e^{-\frac{d^{2}(x, y)}{2 t}}, \quad t \rightarrow 0+,
$$

with d being the Riemannian distance.

Connection with optimal transport

Theorem

The process $\mu_{t}=\left.Y(\cdot, t)\right|_{\#}$ Leb, $t \geq 0$, which describes the evolution of particle masses in the modified massive Arratia flow satisfies Varadhan's formula

$$
\mathbb{P}\left\{\mu_{t}=\nu\right\} \sim e^{-\frac{d_{w}^{2}\left(\mu_{0}, \nu\right)}{2 t}}, \quad t \rightarrow 0+,
$$

with the quadratic Wasserstein distance $d_{\mathcal{W}}$ in \mathbb{R}.

Quadratic Wasserstein distance:

$$
d_{\mathcal{W}}\left(\nu_{1}, \nu_{2}\right)=\inf _{\xi_{1} \sim \nu_{1}, \xi_{2} \sim \nu_{2}}\left(\mathbb{E}\left|\xi_{1}-\xi_{2}\right|^{2}\right)^{\frac{1}{2}}
$$

Connection with optimal transport

Theorem

The process $\mu_{t}=\left.Y(\cdot, t)\right|_{\#}$ Leb, $t \geq 0$, which describes the evolution of particle masses in the modified massive Arratia flow satisfies Varadhan's formula

$$
\mathbb{P}\left\{\mu_{t}=\nu\right\} \sim e^{-\frac{d_{v}^{2}\left(\mu_{0}, \nu\right)}{2 t}}, \quad t \rightarrow 0+,
$$

with the quadratic Wasserstein distance $d_{\mathcal{W}}$ in \mathbb{R}.

Quadratic Wasserstein distance:

$$
d_{\mathcal{W}}\left(\nu_{1}, \nu_{2}\right)=\inf _{\xi_{1} \sim \nu_{1}, \xi_{2} \sim \nu_{2}}\left(\mathbb{E}\left|\xi_{1}-\xi_{2}\right|^{2}\right)^{\frac{1}{2}}
$$

$\left(\mathcal{P}_{2}(\mathbb{R}), d_{\mathcal{W}}\right)$ has an inf.-dim. Riemannian structure (F. Otto (JFA, '01)).

Table of Contents

(1) Motivation: coalescing particle systems

(2) Sticky-reflected particle system

3 Number of particles

Sticky-reflected interaction

Can we replace the coalescing by another type of interaction to have the same Varadhan formula and get a dynamics which is reversible in time?

Sticky-reflected interaction

Can we replace the coalescing by another type of interaction to have the same Varadhan formula and get a dynamics which is reversible in time?

Remind that the coalescing particle system X satisfies the following properties:
(1) $X(u, 0)=u, u \in[0,1]$
(2) $X(u, \cdot)$ is a continuous martingale
(3) $X(u, t) \leq X(v, t), u<v$;
(0) $\langle X(u, \cdot), X(v, \cdot)\rangle_{t}=\int_{0}^{t} \frac{\mathbb{I}_{\{X(u, s)=X(v, s)\}}^{m(u, s)}}{m} d s$,
$m(u, s)=\operatorname{Leb}\{w: X(w, t)=X(u, t)\}$.
$X(u, t)$ is the position of particle at time t started from u

Sticky-reflected interaction

Can we replace the coalescing by another type of interaction to have the same Varadhan formula and get a dynamics which is reversible in time?

Remind that the coalescing particle system X satisfies the following properties:
(1) $X(u, 0)=g(u), u \in[0,1]$, where $g \uparrow$;
(2) $X(u, \cdot)$ is a continuous martingale
(3) $X(u, t) \leq X(v, t), u<v$;
(1) $\langle X(u, \cdot), X(v, \cdot)\rangle_{t}=\int_{0}^{t} \frac{\mathbb{I}_{\{X(u, s)=X(v, s)\}}}{m(u, s)} d s$, $m(u, s)=\operatorname{Leb}\{w: X(w, t)=X(u, t)\}$.
$X(u, t)$ is the position of particle at time t started from $g(u)$ (initial particle distribution $=\mathrm{Leb} \circ \mathrm{g}^{-1}$).

Sticky-reflected interaction

Can we replace the coalescing by another type of interaction to have the same Varadhan formula and get a dynamics which is reversible in time?

Remind that the coalescing particle system X satisfies the following properties:
(1) $X(u, 0)=g(u), u \in[0,1]$, where $g \uparrow$;
(2) $X(u, \cdot)-\int_{0}^{t}\left(\xi(u)-\frac{1}{m(u, s)} \int_{\pi(u, s)} \xi(r) d r\right) d s$ is a continuous martingale, where $\pi(u, t)=\{v: X(u, t)=X(v, t)\}$ and $\xi \uparrow$ is the interaction potential;
(3) $X(u, t) \leq X(v, t), u<v$;

- $\langle X(u, \cdot), X(v, \cdot)\rangle_{t}=\int_{0}^{t} \frac{\mathbb{I}_{\{X(u, s)=X(v, s)\}}^{m(u, s)}}{m} d s$, $m(u, s)=\operatorname{Leb}\{w: X(w, t)=X(u, t)\}$.
$X(u, t)$ is the position of particle at time t started from $g(u)$ (initial particle distribution $=\mathrm{Leb} \circ \mathrm{g}^{-1}$).

Role of function ξ

Remind that $X(u, \cdot)-\int_{0}^{t}\left(\xi(u)-\frac{1}{m(u, s)} \int_{\pi(u, s)} \xi(r) d r\right) d s$ is a continuous martingale, where $\pi(u, t)=\{v: X(u, t)=X(v, t)\}$ and $\xi \uparrow$.

Role of function ξ

Remind that $X(u, \cdot)-\int_{0}^{t}\left(\xi(u)-\frac{1}{m(u, s)} \int_{\pi(u, s)} \xi(r) d r\right) d s$ is a continuous martingale, where $\pi(u, t)=\{v: X(u, t)=X(v, t)\}$ and $\xi \uparrow$.

- If $\xi=0$, then particles coalesce.

Role of function ξ

Remind that $X(u, \cdot)-\int_{0}^{t}\left(\xi(u)-\frac{1}{m(u, s)} \int_{\pi(u, s)} \xi(r) d r\right) d s$ is a continuous martingale, where $\pi(u, t)=\{v: X(u, t)=X(v, t)\}$ and $\xi \uparrow$.

- If $\xi=0$, then particles coalesce.
- If ξ is constant on $\pi(u, t)$, then the particle u has no drift.

Role of function ξ

Remind that $X(u, \cdot)-\int_{0}^{t}\left(\xi(u)-\frac{1}{m(u, s)} \int_{\pi(u, s)} \xi(r) d r\right) d s$ is a continuous martingale, where $\pi(u, t)=\{v: X(u, t)=X(v, t)\}$ and $\xi \uparrow$.

- If $\xi=0$, then particles coalesce.
- If ξ is constant on $\pi(u, t)$, then the particle u has no drift.
- If $\xi(u)=\xi(v)$, then particles u and v coalesce after the meeting: because the drifts of $X(u, \cdot)$ and $X(v, \cdot)$ at time s are equal after the meeting

$$
\xi(u)-\frac{1}{m(u, s)} \int_{\pi(u, s)} \xi(u) d u=\xi(v)-\frac{1}{m(v, s)} \int_{\pi(v, s)} \xi(r) d r
$$

since $\pi(u, s)=\pi(v, s)$ for $X(u, s)=X(v, s)$.

Role of function ξ

Remind that $X(u, \cdot)-\int_{0}^{t}\left(\xi(u)-\frac{1}{m(u, s)} \int_{\pi(u, s)} \xi(r) d r\right) d s$ is a continuous martingale, where $\pi(u, t)=\{v: X(u, t)=X(v, t)\}$ and $\xi \uparrow$.

- If $\xi=0$, then particles coalesce.
- If ξ is constant on $\pi(u, t)$, then the particle u has no drift.
- If $\xi(u)=\xi(v)$, then particles u and v coalesce after the meeting: because the drifts of $X(u, \cdot)$ and $X(v, \cdot)$ at time s are equal after the meeting

$$
\xi(u)-\frac{1}{m(u, s)} \int_{\pi(u, s)} \xi(u) d u=\xi(v)-\frac{1}{m(v, s)} \int_{\pi(v, s)} \xi(r) d r
$$

since $\pi(u, s)=\pi(v, s)$ for $X(u, s)=X(v, s)$.
\rightsquigarrow If $g(u)=g(v), \xi(u)=\xi(v)$, then $X(u, \cdot)=X(v, \cdot)$.

Role of function ξ

Remind that $X(u, \cdot)-\int_{0}^{t}\left(\xi(u)-\frac{1}{m(u, s)} \int_{\pi(u, s)} \xi(r) d r\right) d s$ is a continuous martingale, where $\pi(u, t)=\{v: X(u, t)=X(v, t)\}$ and $\xi \uparrow$.

- If $\xi=0$, then particles coalesce.
- If ξ is constant on $\pi(u, t)$, then the particle u has no drift.
- If $\xi(u)=\xi(v)$, then particles u and v coalesce after the meeting: because the drifts of $X(u, \cdot)$ and $X(v, \cdot)$ at time s are equal after the meeting

$$
\xi(u)-\frac{1}{m(u, s)} \int_{\pi(u, s)} \xi(u) d u=\xi(v)-\frac{1}{m(v, s)} \int_{\pi(v, s)} \xi(r) d r
$$

since $\pi(u, s)=\pi(v, s)$ for $X(u, s)=X(v, s)$.
\rightsquigarrow If $g(u)=g(v), \xi(u)=\xi(v)$, then $X(u, \cdot)=X(v, \cdot)$.
\rightsquigarrow If $g=\sum_{i=1}^{n} x_{i} \mathbb{I}_{\pi_{i}}, \xi=\sum_{i=1}^{n} \xi_{i} \mathbb{I}_{\pi_{i}}$, then

$$
X(u, t)=\sum_{i=1}^{n} x_{i}(t) \mathbb{I}_{\pi_{i}}(u)
$$

The model is similar to the Howitt-Warren flow. The main difference is that in our case particles change the diffusion rate.
(Howitt, Warren '09; Schertzer, Sun, Swart '14)

Existence of the particle system

Theorem

Let $g, \xi:[0,1] \rightarrow \mathbb{R}$ be non-decreasing $\frac{1}{2}+$-Hölder continuous functions. Then there exists a random càdlàg map $[0,1] \ni u \mapsto X(u, \cdot) \in C[0, \infty)$ such that
(1) $X(u, 0)=g(u)$
(2) $X(u, \cdot)-\int_{0}^{t}\left(\xi(u)-\frac{1}{m(u, s)} \int_{\pi(u, s)} \xi(r) d r\right) d s$ is a continuous martingale, where $\pi(u, t)=\{v: X(u, t)=X(v, t)\}$, $m(u, s)=\operatorname{Leb}\{w: X(w, t)=X(u, t)\} ;$
(0) $X(u, t) \leq X(v, t), u<v$;

- $\langle X(u, \cdot), X(v, \cdot)\rangle_{t}=\int_{0}^{t} \frac{\mathbb{I}_{\{X(u, s)=X(v, s)\}}}{m(u, s)} d s$.

Existence of the particle system

Theorem

Let $g, \xi:[0,1] \rightarrow \mathbb{R}$ be non-decreasing $\frac{1}{2}+$-Hölder continuous functions. Then there exists a random càdlàg map $[0,1] \ni u \mapsto X(u, \cdot) \in C[0, \infty)$ such that
(1) $X(u, 0)=g(u)$
(2) $X(u, \cdot)-\int_{0}^{t}\left(\xi(u)-\frac{1}{m(u, s)} \int_{\pi(u, s)} \xi(r) d r\right) d s$ is a continuous martingale, where $\pi(u, t)=\{v: X(u, t)=X(v, t)\}$, $m(u, s)=\operatorname{Leb}\{w: X(w, t)=X(u, t)\} ;$
(0) $X(u, t) \leq X(v, t), u<v$;

- $\langle X(u, \cdot), X(v, \cdot)\rangle_{t}=\int_{0}^{t} \frac{\mathbb{I}_{\{X(u, s)=X(v, s)\}}}{m(u, s)} d s$.

Uniqueness is an open problem

Idea of construction

- For $g^{n}=\sum_{i=1}^{n} x_{i}^{0} \mathbb{I}_{\pi_{i}}, \xi^{n}=\sum_{i=1}^{n} \xi_{i} \mathbb{I}_{\pi_{i}}$, for an ordered partition $\left\{\pi_{i}\right\}$ of $[0,1]$

$$
X_{n}(u, t)=\sum_{i=1}^{n} x_{i}(t) \mathbb{I}_{\pi_{i}}(u) .
$$

\rightsquigarrow existence of $\left\{x_{i}\right\}$ is obtained by solving of a corresponding SDE in \mathbb{R}^{n}.

Idea of construction

- For $g^{n}=\sum_{i=1}^{n} x_{i}^{0} \mathbb{I}_{\pi_{i}}, \xi^{n}=\sum_{i=1}^{n} \xi_{i} \mathbb{I}_{\pi_{i}}$, for an ordered partition $\left\{\pi_{i}\right\}$ of $[0,1]$

$$
X_{n}(u, t)=\sum_{i=1}^{n} x_{i}(t) \mathbb{I}_{\pi_{i}}(u)
$$

\rightsquigarrow existence of $\left\{x_{i}\right\}$ is obtained by solving of a corresponding SDE in \mathbb{R}^{n}.

- A priori estimate

$$
\int_{0}^{t} \mathbb{P}\{m(u, s)<r\} d s \leq C_{t} r\left[(g(u \pm r)-g(u))^{2}+(\xi(u \pm r)-\xi(u))^{2}\right] .
$$

Idea of construction

- For $g^{n}=\sum_{i=1}^{n} x_{i}^{0} \mathbb{I}_{\pi_{i}}, \xi^{n}=\sum_{i=1}^{n} \xi_{i} \mathbb{I}_{\pi_{i}}$, for an ordered partition $\left\{\pi_{i}\right\}$ of $[0,1]$

$$
X_{n}(u, t)=\sum_{i=1}^{n} x_{i}(t) \mathbb{I}_{\pi_{i}}(u)
$$

\rightsquigarrow existence of $\left\{x_{i}\right\}$ is obtained by solving of a corresponding SDE in \mathbb{R}^{n}.

- A priori estimate

$$
\int_{0}^{t} \mathbb{P}\{m(u, s)<r\} d s \leq C_{t} r\left[(g(u \pm r)-g(u))^{2}+(\xi(u \pm r)-\xi(u))^{2}\right] .
$$

\rightsquigarrow Control of $\int_{0}^{t} \mathbb{E} \frac{d s}{m^{\beta}(u, s)}=\int_{0}^{t} \int_{1}^{\infty} \mathbb{P}\left\{m(u, s)<1 / r^{1 / \beta}\right\} d r d s$.

Idea of construction

- For $g^{n}=\sum_{i=1}^{n} x_{i}^{0} \mathbb{I}_{\pi_{i}}, \xi^{n}=\sum_{i=1}^{n} \xi_{i} \mathbb{I}_{\pi_{i}}$, for an ordered partition $\left\{\pi_{i}\right\}$ of $[0,1]$

$$
X_{n}(u, t)=\sum_{i=1}^{n} x_{i}(t) \mathbb{I}_{\pi_{i}}(u)
$$

\rightsquigarrow existence of $\left\{x_{i}\right\}$ is obtained by solving of a corresponding SDE in \mathbb{R}^{n}.

- A priori estimate

$$
\int_{0}^{t} \mathbb{P}\{m(u, s)<r\} d s \leq C_{t} r\left[(g(u \pm r)-g(u))^{2}+(\xi(u \pm r)-\xi(u))^{2}\right]
$$

\rightsquigarrow Control of $\int_{0}^{t} \mathbb{E} \frac{d s}{m^{\beta}(u, s)}=\int_{0}^{t} \int_{1}^{\infty} \mathbb{P}\left\{m(u, s)<1 / r^{1 / \beta}\right\} d r d s$.

- Tightness of finite particle system if $g^{n} \rightarrow g, \xi^{n} \rightarrow \xi$.

SDE in L_{2}^{\uparrow} for the particle system

There exists a space time white noise such that

$$
d X(u, t)=\frac{1}{m(u, t)} \int_{\pi(u, t)} W(d r, d t)+\left(\xi(u)-\frac{1}{m(u, t)} \int_{\pi(u, t)} \xi(r) d r\right) d t .
$$

SDE in L_{2}^{\uparrow} for the particle system

There exists a space time white noise such that

$$
d X(u, t)=\frac{1}{m(u, t)} \int_{\pi(u, t)} W(d r, d t)+\left(\xi(u)-\frac{1}{m(u, t)} \int_{\pi(u, t)} \xi(r) d r\right) d t
$$

Let pr_{g} be the projection in $L_{2}[0,1]$ onto

$$
L_{2}(g)=\{f: f \text { is } \sigma(g) \text {-measurable }\}
$$

SDE in L_{2}^{\uparrow} for the particle system

There exists a space time white noise such that

$$
d X(u, t)=\frac{1}{m(u, t)} \int_{\pi(u, t)} W(d r, d t)+\left(\xi(u)-\frac{1}{m(u, t)} \int_{\pi(u, t)} \xi(r) d r\right) d t
$$

Let pr_{g} be the projection in $L_{2}[0,1]$ onto

$$
L_{2}(g)=\{f: f \text { is } \sigma(g) \text {-measurable }\}
$$

Then $X_{t}:=X(\cdot, t) \in L_{2}^{\uparrow}$ solves

$$
d X_{t}=\operatorname{pr}_{X_{t}} d W_{t}+\left(\xi-\operatorname{pr}_{X_{t}} \xi\right) d t
$$

Table of Contents

(1) Motivation: coalescing particle systems

2 Sticky-reflected particle system
(3) Number of particles

Number of particles

How many distinct particles does the system contain at every time t ?

Finite number of particles

$$
d X_{t}=\operatorname{pr}_{X_{t}} d W_{t}+\left(\xi-\operatorname{pr}_{X_{t}} \xi\right) d t
$$

Hence, for the martingale part M of X we have

$$
\mathbb{E}\left\|M_{t}\right\|_{t}^{2}=\int_{0}^{t} \mathbb{E}\left\|\mathrm{pr}_{X_{s}}\right\|_{H S}^{2} d s=\int_{0}^{t} \mathbb{E} N(s) d s<\infty
$$

where $N(t)$ is the number of distinct particles at time t.

Infinite number of particles

Theorem

Let ξ takes infinite number of distinct values. Then a.s. there exists a dense (random) set $R \subset[0, \infty)$ such that $N(t)=+\infty, \forall t \in R$.

Infinite number of particles

Theorem

Let ξ takes infinite number of distinct values. Then a.s. there exists a dense (random) set $R \subset[0, \infty)$ such that $N(t)=+\infty, \forall t \in R$.

Idea of the proof.

- Let the statement is not true, then $\exists a<b$ such that

$$
N(t)=\left\|\operatorname{pr}_{X_{t}}\right\|_{H S}^{2}<\infty, \quad \forall t \in[a, b], \quad \text { w.p.p. }
$$

Infinite number of particles

Theorem

Let ξ takes infinite number of distinct values. Then a.s. there exists a dense (random) set $R \subset[0, \infty)$ such that $N(t)=+\infty, \forall t \in R$.

Idea of the proof.

- Let the statement is not true, then $\exists a<b$ such that

$$
N(t)=\left\|\operatorname{pr}_{X_{t}}\right\|_{H S}^{2}<\infty, \quad \forall t \in[a, b], \quad \text { w.p.p. }
$$

- $[a, b]=\bigcup_{n=1}^{\infty}\left\{t \in[a, b]:\left\|\operatorname{pr}_{X_{t}}\right\|_{H S}^{2} \leq n\right\}$ w.p.p.

Infinite number of particles

Theorem

Let ξ takes infinite number of distinct values. Then a.s. there exists a dense (random) set $R \subset[0, \infty)$ such that $N(t)=+\infty, \forall t \in R$.

Idea of the proof.

- Let the statement is not true, then $\exists a<b$ such that

$$
N(t)=\left\|\operatorname{pr}_{X_{t}}\right\|_{H S}^{2}<\infty, \quad \forall t \in[a, b], \quad \text { w.p.p. }
$$

- $[a, b]=\bigcup_{n=1}^{\infty}\left\{t \in[a, b]:\left\|\mathrm{pr}_{X_{t}}\right\|_{H S}^{2} \leq n\right\}$ w.p.p.
- Since $t \mapsto\left\|\mathrm{pr}_{X_{t}}\right\|_{H S}$ is lower semi-continuous, $\left\{t:\left\|\mathrm{pr}_{X_{t}}\right\|_{H S}^{2} \leq n\right\}$ is closed.

Infinite number of particles

Theorem

Let ξ takes infinite number of distinct values. Then a.s. there exists a dense (random) set $R \subset[0, \infty)$ such that $N(t)=+\infty, \forall t \in R$.

Idea of the proof.

- Let the statement is not true, then $\exists a<b$ such that

$$
N(t)=\left\|\operatorname{pr}_{X_{t}}\right\|_{H S}^{2}<\infty, \quad \forall t \in[a, b], \quad \text { w.p.p. }
$$

- $[a, b]=\bigcup_{n=1}^{\infty}\left\{t \in[a, b]:\left\|\mathrm{pr}_{X_{t}}\right\|_{H S}^{2} \leq n\right\}$ w.p.p.
- Since $t \mapsto\left\|\mathrm{pr}_{X_{t}}\right\|_{H S}$ is lower semi-continuous, $\left\{t:\left\|\mathrm{pr}_{X_{t}}\right\|_{H S}^{2} \leq n\right\}$ is closed.
- By the Baire category theorem, $\left(a_{1}, b_{1}\right) \subset[a, b], \exists n \geq 1$ such that

$$
N(t)=\left\|\operatorname{pr}_{X_{t}}\right\|_{H S}^{2} \leq n, \quad \forall t \in\left(a_{1}, b_{1}\right), \quad \text { w.p.p. }
$$

Reference

圊 Konarovskyi
A system of coalescing diffusion particles on \mathbb{R}
Ann．Prob．， 2019
囯 Konarovskyi，Renesse
Modified Massive Arratia flow and Wasserstein diffusion
Comm．Pure Appl．Math．， 2019
围 Konarovskyi
Coalescing－Fragmentating Wasserstein Dynamics：particle approach Ann．Inst．H．Poincaré，2022＋
围 Konarovskyi
On Number of Particles in Coalescing－Fragmentating Wasserstein Dynamics Theory Stoch．Process．， 2020

Thank you！

