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Motivation: coalescing particle systems

Coalescing particle system: Arratia flow

Arratia flow on R (R. Arratia ’79)

Brownian particles start from every point of an interval;

they move independently and coalesce after meeting;
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Motivation: coalescing particle systems

Mathematical description of Arratia flow

X (u, t) is the position of particle at time t starting at u

1 X (u, 0) = u;

2 X (u, ·) is a Brownian motion in R;
3 X (u, t) ≤ X (v , t), u < v

4 ⟨X (u, ·),X (v , ·)⟩t =
∫ t

0
I{X (u,s)=X (v ,s)}ds.

Vitalii Konarovskyi (Bielefeld University) CFWD: particle approach September 16, 2022 4 / 20



Motivation: coalescing particle systems

Arratia flow and its generalization

Arratia flow appears as scaling limit of different models

true self-repelling motion (B.Tóth and W. Werner (PTRF ’98))
isotropic stochastic flows of homeomorphisms in R (V. Piterbarg (Ann.
Prob. ’98))
Hastings-Levitov planer aggregation models (J. Norris, A. Turner (Comm.
Math. Phys. ’12)), etc. . .

Further investigation of the Arratia flow

Properties of generated σ-algebra (B. Tsirelson (Probab. Surv. ’04))
n-particle motion (R. Tribe, O.V. Zaboronski (EJP ’04, Comm. Math.
Phys. ’06))
large deviations (A. Dorogovtsev, O. Ostapenko (Stoch. Dyn. ’10)), etc. . .

Generalizations

Brownian web (C. M. Newman et al. (Ann. Prob. ’04), R. Sun, J.M Swart
(MAMS, ’14))
Coalescing non-Brownian particles (S. Evans et al. (PTRF, ’13))
Stochastic flows of kernels (Y. Le Jan and O. Raimond (Ann. Prob. ’04))
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Motivation: coalescing particle systems

Modified Massive Arratia flow

Modified massive Arratia flow on R (K. ’17)

Brownian particles start from points with masses;

they move independently and coalesce after meeting;

particles sum their masses after meeting and diffusion rate is inversely
proportional to the mass.
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Motivation: coalescing particle systems

Mathematical description

Y (u, t) is the position of particle at time t labeled by u ∈ (0, 1)

1 Y (u, 0) = u;

2 Y (u, ·) is a continuous martingale;

3 Y (u, t) ≤ Y (v , t), u < v ;

4 ⟨Y (u, ·),Y (v , ·)⟩t =
∫ t

0

I{Y (u,s)=Y (v,s)}
m(u,s) ds,

m(u, s) = Leb{w : Y (w , s) = Y (u, s)}.
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Motivation: coalescing particle systems

Short-time asymptotic of a Brownian motion

Short-time asymptotic formula for a heat kernel

p(t, x , y) =
1

(2πt)n/2
e−

∥x−y∥2
2t ∼ e−

∥x−y∥2
2t , t → 0 + .

Generalizations

Heat equation with variable coefficients in Rn (Varadhan (CPAM ’67))

Smooth Riemannian manifold with Ricci curvature bound
(P. Li and S.-T. Yau (Acta Math. ’86))

Lipschitz Riemannian manifold without any sort of curvature bounds
(J. Norris (Acta Math. 97))

Infinite-dimensional case for heat kernel generated by a Dirichlet form
(J. Raḿırez (CPAM ’01, Ann. Prob ’03))

Corollary
If Bt , t ≥ 0, is a Brownian motion on a Riemannian manifold, then

Px {Bt = y} ∼ e−
d2(x,y)

2t , t → 0+,

with d being the Riemannian distance.
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Motivation: coalescing particle systems

Connection with optimal transport

Theorem (K./ Renesse, ’19)

The process µt = Y (·, t)
∣∣
#
Leb, t ≥ 0, which describes the evolution of

particle masses in the modified massive Arratia flow satisfies Varadhan’s
formula

P{µt = ν} ∼ e−
d2W (µ0,ν)

2t , t → 0+,

with the quadratic Wasserstein distance dW in R.

Quadratic Wasserstein distance:

dW(ν1, ν2) = inf
ξ1∼ν1,ξ2∼ν2

(
E|ξ1 − ξ2|2

) 1
2

(P2(R), dW) has an inf.-dim. Riemannian structure (F. Otto (JFA, ’01)).
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Sticky-reflected particle system

Sticky-reflected interaction

Can we replace the coalescing by another type of interaction to have the
same Varadhan formula and get a dynamics which is reversible in time?

Remind that the coalescing particle system X satisfies the following properties:

1 X (u, 0) = , u ∈ [0, 1]

, where g ↑;

2 X (u, ·) is a continuous martingale

, where π(u, t) = {v : X (u, t) = X (v , t)}
and ξ ↑ is the interaction potential;

3 X (u, t) ≤ X (v , t), u < v ;

4 ⟨X (u, ·),X (v , ·)⟩t =
∫ t

0

I{X (u,s)=X (v,s)}
m(u,s) ds,

m(u, s) = Leb{w : X (w , t) = X (u, t)}.

X (u, t) is the position of particle at time t started from
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Sticky-reflected particle system

Role of function ξ

Remind that X (u, ·)−
∫ t

0

(
ξ(u)− 1

m(u,s)

∫
π(u,s)

ξ(r)dr
)
ds is a continuous

martingale, where π(u, t) = {v : X (u, t) = X (v , t)} and ξ ↑.

If ξ = 0, then particles coalesce.

If ξ is constant on π(u, t), then the particle u has no drift.

If ξ(u) = ξ(v), then particles u and v coalesce after the meeting:
because the drifts of X (u, ·) and X (v , ·) at time s are equal after the meeting

ξ(u)−
1

m(u, s)

∫
π(u,s)

ξ(u)du = ξ(v)−
1

m(v , s)

∫
π(v,s)

ξ(r)dr ,

since π(u, s) = π(v , s) for X (u, s) = X (v , s).

⇝ If g(u) = g(v), ξ(u) = ξ(v), then X (u, ·) = X (v , ·).
⇝ If g =

∑n
i=1 xi Iπi , ξ =

∑n
i=1 ξi Iπi , then

X (u, t) =
n∑

i=1

xi (t)Iπi (u).
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g(u) = 0, ξ(u) = u, u ∈ (0, 1)

The model is similar to the Howitt-Warren flow. The main difference
is that in our case particles change the diffusion rate.
(Howitt, Warren ’09; Schertzer, Sun, Swart ’14)



Sticky-reflected particle system

Existence of the particle system

Theorem

Let g , ξ : [0, 1] → R be non-decreasing 1
2+-Hölder continuous functions.

Then there exists a random càdlàg map [0, 1] ∋ u 7→ X (u, ·) ∈ C [0,∞)
such that

1 X (u, 0) = g(u)

2 X (u, ·)−
∫ t

0

(
ξ(u)− 1

m(u,s)

∫
π(u,s)

ξ(r)dr
)
ds is a continuous

martingale, where π(u, t) = {v : X (u, t) = X (v , t)},
m(u, s) = Leb{w : X (w , t) = X (u, t)};

3 X (u, t) ≤ X (v , t), u < v ;

4 ⟨X (u, ·),X (v , ·)⟩t =
∫ t

0

I{X (u,s)=X (v,s)}
m(u,s) ds.

Uniqueness is an open problem

Vitalii Konarovskyi (Bielefeld University) CFWD: particle approach September 16, 2022 13 / 20



Sticky-reflected particle system

Existence of the particle system

Theorem

Let g , ξ : [0, 1] → R be non-decreasing 1
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Sticky-reflected particle system

Idea of construction

For gn =
∑n

i=1 x
0
i Iπi , ξ

n =
∑n

i=1 ξi Iπi , for an ordered partition {πi} of [0, 1]

Xn(u, t) =
n∑

i=1

xi (t)Iπi (u).

⇝ existence of {xi} is obtained by solving of a corresponding SDE in Rn.

A priori estimate∫ t

0

P {m(u, s) < r} ds ≤ Ctr
[
(g(u ± r)− g(u))2 + (ξ(u ± r)− ξ(u))2

]
.

⇝ Control of
∫ t

0
E ds

mβ(u,s)
=
∫ t

0

∫∞
1

P
{
m(u, s) < 1/r1/β

}
drds.

Tightness of finite particle system if gn → g , ξn → ξ.
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Sticky-reflected particle system

SDE in L↑2 for the particle system

There exists a space time white noise such that

dX (u, t) =
1

m(u, t)

∫
π(u,t)

W (dr , dt) +

(
ξ(u)− 1

m(u, t)

∫
π(u,t)

ξ(r)dr

)
dt.

Let prg be the projection in L2[0, 1] onto

L2(g) = {f : f is σ(g)-measurable}

Then Xt := X (·, t) ∈ L↑2 solves

dXt = prXt
dWt + (ξ − prXt

ξ)dt.
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Number of particles

Number of particles

How many distinct particles does the system contain at every time t?

g(u) = 0, ξ(u) = u, u ∈ (0, 1)
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Number of particles

Finite number of particles

dXt = prXt
dWt + (ξ − prXt

ξ)dt.

Hence, for the martingale part M of X we have

E∥Mt∥2t =
∫ t

0

E∥ prXs
∥2HSds =

∫ t

0

EN(s)ds < ∞,

where N(t) is the number of distinct particles at time t.
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Number of particles

Infinite number of particles

Theorem

Let ξ takes infinite number of distinct values. Then a.s. there exists a dense
(random) set R ⊂ [0,∞) such that N(t) = +∞, ∀t ∈ R.

Let the statement is not true, then ∃a < b such that

N(t) = ∥ prXt
∥2HS < ∞, ∀t ∈ [a, b], w.p.p.

[a, b] =
⋃∞

n=1{t ∈ [a, b] : ∥ prXt
∥2HS ≤ n} w.p.p.

Since t 7→ ∥ prXt
∥HS is lower semi-continuous, {t : ∥ prXt

∥2HS ≤ n} is closed.

By the Baire category theorem, (a1, b1) ⊂ [a, b], ∃n ≥ 1 such that

N(t) = ∥ prXt
∥2HS ≤ n, ∀t ∈ (a1, b1), w.p.p.
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