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.
Coalescing particle system: Arratia flow

Arratia flow on R (R. Arratia '79)
@ Brownian particles start from every point of an interval;

@ they move independently and coalesce after meeting;
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Mathematical description of Arratia flow
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X(u t) is the position of particle at time t starting at u

0) =

X(u,
X(u,-)is a Brownlan motion in R;
X(u,t) < X(v,t), u<v

o <X(U,')7X(Vw ¢ = o Lix(u,s)=X(v.5)} 5.
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Arratia flow and its generalization

o Arratia flow appears as scaling limit of different models

o true self-repelling motion (B.T6th and W. Werner (PTRF '98))
e isotropic stochastic flows of homeomorphisms in R (V. Piterbarg (Ann.
Prob. '98))

o Hastings-Levitov planer aggregation models (J. Norris, A. Turner (Comm.
Math. Phys. '12)), etc. ..
o Further investigation of the Arratia flow

o Properties of generated o-algebra (B. Tsirelson (Probab. Surv. '04))

e n-particle motion (R. Tribe, O.V. Zaboronski (EJP '04, Comm. Math.
Phys. '06))

o large deviations (A. Dorogovtsev, O. Ostapenko (Stoch. Dyn. '10)), etc...

o Generalizations

o Brownian web (C. M. Newman et al. (Ann. Prob. '04), R. Sun, J.M Swart
(MAMS, '14))

o Coalescing non-Brownian particles (S. Evans et al. (PTRF, '13))

o Stochastic flows of kernels (Y. Le Jan and O. Raimond (Ann. Prob. '04))
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Modified Massive Arratia flow

Modified massive Arratia flow on R (K. '17)
@ Brownian particles start from points with masses;
@ they move independently and coalesce after meeting;

@ particles sum their masses after meeting and diffusion rate is inversely
proportional to the mass.
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Mathematical description

Y (u, t) is the position of particle at time t labeled by v € (0,1)
Y(u,0) =

Y(u,-) is a continuous martingale;
Y(u,t) < Y(v,t), u<v;

V() Y (v, ))e = Jy G ds,

< m(u,s)
m(u,s) = Leb{w : Y(w,s) = Y(u,s)}.

o
(2]
o
(%]
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.
Short-time asymptotic of a Brownian motion

Short-time asymptotic formula for a heat kernel

1 _ lx=yii? _lx=y1?
2t ~ e 2t

p(t,X,y):( t—0+.

27rt)"/2e
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.
Short-time asymptotic of a Brownian motion

Short-time asymptotic formula for a heat kernel

1 _ lx=yii? _lx=y1?
2t ~ e 2t

P(f7X,Y):( t—0+.

27t)n/2 ¢
Generalizations
@ Heat equation with variable coefficients in R” (Varadhan (CPAM '67))
@ Smooth Riemannian manifold with Ricci curvature bound
(P. Li and S.-T. Yau (Acta Math. '86))
@ Lipschitz Riemannian manifold without any sort of curvature bounds
(J. Norris (Acta Math. 97))

@ Infinite-dimensional case for heat kernel generated by a Dirichlet form
(J. Ramirez (CPAM '01, Ann. Prob '03))
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.
Short-time asymptotic of a Brownian motion

Short-time asymptotic formula for a heat kernel

1 _ lx=yii? _lx=y1?
2t ~ e 2t

p(t,x,y) = (

Generalizations

@ Heat equation with variable coefficients in R” (Varadhan (CPAM '67))
@ Smooth Riemannian manifold with Ricci curvature bound
(P. Li and S.-T. Yau (Acta Math. '86))

@ Lipschitz Riemannian manifold without any sort of curvature bounds
(J. Norris (Acta Math. 97))

@ Infinite-dimensional case for heat kernel generated by a Dirichlet form
(J. Ramirez (CPAM '01, Ann. Prob '03))

Corollary
If B;, t >0, is a Brownian motion on a Riemannian manifold, then
d?(x,y)
Px{Bt:y}Ne 2t , t_>0+7

with d being the Riemannian distance.
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Connection with optimal transport

The process u; = Y(, t)|# Leb, t > 0, which describes the evolution of

particle masses in the modified massive Arratia flow satisfies Varadhan's
formula

2, (ko,v)

P{ue=v}~e 2z , t— 0+,

with the quadratic Wasserstein distance dyy in R.

\.

Quadratic Wasserstein distance:

dwinm)=__inf (Bl &)’

1~V1,82~12
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Connection with optimal transport

The process u; = Y(, t)|# Leb, t > 0, which describes the evolution of

particle masses in the modified massive Arratia flow satisfies Varadhan's

formula

2, (ko,v)

P{ue=v}~e 2z , t— 0+,

with the quadratic Wasserstein distance dyy in R.

\. J

Quadratic Wasserstein distance:

dwinm)=__inf (Bl &)’

1~V1,82~12

(P2(R), dy) has an inf.-dim. Riemannian structure (F. Otto (JFA, '01)).
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Sticky-reflected interaction

Can we replace the coalescing by another type of interaction to have the
same Varadhan formula and get a dynamics which is reversible in time?
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Sticky-reflected interaction

Can we replace the coalescing by another type of interaction to have the
same Varadhan formula and get a dynamics which is reversible in time?

Remind that the coalescing particle system X satisfies the following properties:
Q@ X(u,0)=u, uel0,1]
@ X(u,-) is a continuous martingale

Q X(u,t) < X(v,t), u<v;
O (X(u), X(v, )} = Jg "o s,

m(u,s) = Leb{w : X(w, t) = X(u, t)}.

X(u, t) is the position of particle at time t started from u
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Sticky-reflected interaction

Can we replace the coalescing by another type of interaction to have the
same Varadhan formula and get a dynamics which is reversible in time?

Remind that the coalescing particle system X satisfies the following properties:
Q@ X(u,0) =g(u), uelo,1], where g 7;
@ X(u,-) is a continuous martingale

Q X(u,t) < X(v,t), u<v;
o <X(U7 ')7X(Va )>f = 01L e dS,

m(u,s)

m(u,s) = Leb{w : X(w, t) = X(u, t)}.

X(u, t) is the position of particle at time t started from g(u)
(initial particle distribution= Lebog™!) .
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Sticky-reflected interaction

Can we replace the coalescing by another type of interaction to have the
same Varadhan formula and get a dynamics which is reversible in time?

Remind that the coalescing particle system X satisfies the following properties:
@ X(,0) = g(u), u € [0,1], where g 1;

Q X(u,-)— ]ot <§(u) — ﬁ '[’ﬁ(u_s) &(r)dr) ds is a continuous martingale,
where 7(u,t) = {v: X(u,t) = X(v,t)} and £ T is the interaction
potential;

Q@ X(u,t) < X(v,t), u<v;

O (X(u,) X(v,))e = Jy st ds,

t = Jo m(u,s)

m(u,s) = Leb{w : X(w, t) = X(u, t)}.

X(u, t) is the position of particle at time ¢ started from g(u)
(initial particle distribution= Lebog™1 ) .

CFWD: particle approach September 16, 2022



Role of function &

Remind that X(u,-)— fot ({(u) — # | (s & )dr) ds is a continuous

martingale, where 7(u,t) = {v: X( ) X(v,t)} and & 1.
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Role of function &

Remind that X(u,-)— fot ({(u) — # | (s & )dr) ds is a continuous

martingale, where 7(u,t) = {v: X( ) X(v,t)} and & 1.

e If £ =0, then particles coalesce.
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Role of function &

Remind that X(u,-)— fot ({(u) — # | 0.s) {(r)dr) ds is a continuous

u,s

) I
martingale, where w(u,t) = {v: X(u,t) = X(v,t)} and £ 1.

e If £ =0, then particles coalesce.

o If £ is constant on 7(u, t), then the particle u has no drift.
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Role of function &

Remind that X(u,-)— fot <{(u) — # | 0.s) {(r)dr) ds is a continuous

martingale, where w(u,t) = {v: X(u,t) = X(v,t)} and £ 1.

e If £ =0, then particles coalesce.
o If £ is constant on 7(u, t), then the particle u has no drift.

o If £(u) = &(v), then particles u and v coalesce after the meeting:
because the drifts of X(u,-) and X(v,-) at time s are equal after the meeting

! ‘ 3 =&(v) — ! ‘ (r)dr
€W iy L fwan=cr— s |

since 7(u,s) = w(v,s) for X(u,s) = X(v,s).
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Role of function &

t

Remind that X(u,-)— |, <{(u) — # | (s & )dr) ds is a continuous
martingale, where 7(u,t) = {v: X( ) X(v,t)} and & 1.

e If £ =0, then particles coalesce.
o If £ is constant on 7(u, t), then the particle u has no drift.

o If £(u) = &(v), then particles u and v coalesce after the meeting:
because the drifts of X(u,-) and X(v,-) at time s are equal after the meeting

‘ 3 =&(v) — ! ‘ (r)dr,
m(u,s) ./7([,_5) S(u)du = &(v) m(v,s) ,/W(V.s) )
since 7(u,s) = m(v,s) for X(u,s) = X(v,s).
~ If g(u) = g(v), §(u) = &(v), then X(u,-) = X(v, ).
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Role of function &

t

Remind that X(u,-)— |, <{(u) — # | (s & )dr) ds is a continuous
martingale, where 7(u,t) = {v: X( ) X(v,t)} and & 1.

e If £ =0, then particles coalesce.
o If £ is constant on 7(u, t), then the particle u has no drift.

o If £(u) = &(v), then particles u and v coalesce after the meeting:
because the drifts of X(u,-) and X(v,-) at time s are equal after the meeting

‘ 3 =£&(v) — ! ‘ (r)dr,
mos) Lo =) = s e
since 7(u,s) = m(v,s) for X(u,s) = X(v,s).
~ If g(u) = g(v), §(u) = §(v), then X(u,-) = X(v, ).
~ lfg = 27:1 Xl'Hﬂ'fv 5 = Z:{’:l giHﬂ'f’ then

n

X(u,t) =Y xi(t)x,(u).

i=1
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6o 02 04 06 08 To

g(u) =0, &(u) =u, ue(0,1)

The model is similar to the Howitt-Warren flow. The main difference
is that in our case particles change the diffusion rate.
(Howitt, Warren '09; Schertzer, Sun, Swart '14)
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.
Existence of the particle system

Theorem

Let g,¢ : [0,1] — R be non-decreasing 3-+-Holder continuous functions.
Then there exists a random cadlag map [0,1] > v — X(u,:) € C[0,00)
such that
@ X(u,0) = g(u)
Q X(u,-)— fot <§(u) - ﬁ fﬂ(u.s) f(r)dr) ds is a continuous
martingale, where m(u, t) = {v: X(u,t) = X(v,t)},
m(u,s) = Leb{w : X(w, t) = X(u, t)};
Q@ X(u,t) < X(v,t), u<v;

© (X(u,), X(v, ) = fy “2lp=xedl g,
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.
Existence of the particle system

Theorem

Let g,¢ : [0,1] — R be non-decreasing 3-+-Holder continuous functions.
Then there exists a random cadlag map [0,1] > v — X(u,:) € C[0,00)
such that
@ X(u,0) = g(u)
Q X(u,-)— fot <§(u) - ﬁ fﬂ(u’s) f(r)dr) ds is a continuous
martingale, where m(u, t) = {v: X(u,t) = X(v,t)},
m(u,s) = Leb{w : X(w, t) = X(u, t)};
Q@ X(u,t) < X(v,t), u<v;
© (X(u,), X(v, ) = fy “2lp=xedl g,

Uniqueness is an open problem
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Idea of construction

o Forg" =" x%L,, &" =", &1, for an ordered partition {m;} of [0,1]

n

Xo(u,t) = xi(t)Ir, (u).

i=1

~- existence of {x;} is obtained by solving of a corresponding SDE in R".
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Idea of construction

o For g" =" xPL., &" =" &I, for an ordered partition {7;} of [0,1]

n

Xo(u,t) = xi(t)Ir, (u).

i=1

~- existence of {x;} is obtained by solving of a corresponding SDE in R".

@ A priori estimate

/(; P{m(u,s) <r}ds < Cer [(g(u£r) — g(u))* + (§(u+r) = &(u))?].
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Idea of construction

o For g" =" xPL., &" =" &I, for an ordered partition {7;} of [0,1]

n

Xo(u,t) = xi(t)Ir, (u).

i=1

~- existence of {x;} is obtained by solving of a corresponding SDE in R".

@ A priori estimate
/(; P{m(u,s) < r}ds < Cer [(g(u=£r) — g(u))* + (E(ux r) — &(u))?].

~ Control of ([;EL) =[5 JSP{m(u,s) < 1/r"/P} drds.

mP (u,s
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Idea of construction

o For g" =" xPL., &" =" &I, for an ordered partition {7;} of [0,1]

n

Xo(u,t) = xi(t)Ir, (u).

i=1

~- existence of {x;} is obtained by solving of a corresponding SDE in R".

@ A priori estimate
/(; P{m(u,s) < r}ds < Cer [(g(u=£r) — g(u))* + (E(ux r) — &(u))?].

~ Control of ([JEL) =[5 JSP{m(u,s) < 1/r"/P} drds.

mP (u,s

@ Tightness of finite particle system if g" — g, " — &.
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.
SDE in Lg for the particle system

There exists a space time white noise such that

1

dX(u, t) = D) -/7';(u,t) W (dr, dt) + <E(u) - m(}h 5 /%(u’t)f(r)dr> dt.
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.
SDE in Lg for the particle system

There exists a space time white noise such that

1 " ) .
m /Tr(u,t) W(dr, dt) + <$(U) B m(u,t) -/7T(u,t) f(f)dr> dt.

Let pr, be the projection in L5[0,1] onto
Ly(g) ={f : f is o(g)-measurable}

dX(u,t) =

g:[01]> R pre

l]
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.
SDE in Lg for the particle system

There exists a space time white noise such that

dX(u,t) = 7m(i’ 5 /T;(U,t) W(dr, dt) + <£(u) - m(L117 5 /%(u’t)g(r)dr> dt.

Let pr, be the projection in L5[0,1] onto

Ly(g) ={f : f is o(g)-measurable}

g:[01]> R pre

Then X; := X(-,t) € Lg solves

dXt — err th + (é - err é)dt
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Number of particles

How many distinct particles does the system contain at every time t?

CFWD: particle approach September 16, 2022



Finite number of particles

dX; = pry, dW; + (& - prx, §)dt.
Hence, for the martingale part M of X we have

t t
E|| M| = / E| pry, [isds = / EN(s)ds < oo,

where N(t) is the number of distinct particles at time t.
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.
Infinite number of particles

Theorem

Let £ takes infinite number of distinct values. Then a.s. there exists a dense
(random) set R C [0, 00) such that N(t) = +oo, Vt € R.

CFWD: particle approach September 16, 2022



.
Infinite number of particles

Theorem

Let & takes infinite number of distinct values. Then a.s. there exists a dense
(random) set R C [0, 00) such that N(t) = +oo, Vt € R.
Idea of the proof.

@ Let the statement is not true, then Ja < b such that

N(t) = || pry, s < 00, Vt € [a,b], w.p.p.
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.
Infinite number of particles

Theorem

Let & takes infinite number of distinct values. Then a.s. there exists a dense
(random) set R C [0, 00) such that N(t) = +oo, Vt € R.

Idea of the proof.
@ Let the statement is not true, then Ja < b such that

N(t) = || pry, s < 00, Vt € [a,b], w.p.p.

o [a,b] =U {telab]: |pry s < n} w.p.p.
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Infinite number of particles

Theorem
Let & takes infinite number of distinct values. Then a.s. there exists a dense
(random) set R C [0, 00) such that N(t) = +oo, Vt € R.

Idea of the proof.
@ Let the statement is not true, then Ja < b such that

N(t) = || pry, s < 00, Vt € [a,b], w.p.p.

o [a,b] =U {telab]: |pry s < n} w.p.p.

@ Since t + || pry, ||ns is lower semi-continuous, {t : || pry [|}s < n} is closed.
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.
Infinite number of particles

Theorem

Let & takes infinite number of distinct values. Then a.s. there exists a dense
(random) set R C [0, 00) such that N(t) = +oo, Vt € R.

Idea of the proof.
@ Let the statement is not true, then Ja < b such that
N(t) = | pry, lfis < oo, Vt € [a,b], w.p.p.
o [a,b] =UZ {t € [ab]: [[pry [lis < n} w.p.p.

@ Since t + || pry, ||ns is lower semi-continuous, {t : || pry, s < n} is closed.

@ By the Baire category theorem, (a1, b1) C [a, b], In > 1 such that

N(t) = | prx, H2H5 <n, Vte& (a,bi), w.p.p.
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